Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
German
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
SOlJarKNHX
1
00001
iQ4h87ojuP
1
00002
OLJV9vs0Lj
1
00003
3v8cpIfuZb
1
00004
aqQkSeIqWI
1
00005
SmeHv5ei29
1
00006
WIlnoCqNl4
1
00007
FSOfjTwGkH
1
00008
ehskDwswc3
1
00009
FSOfjTwGkH
1
00010
GBGBiCG8zp
1
00011
bR1xHgQMv8
1
00012
6p5tl5FtQ7
1
00013
vdwAU2SzDw
1
00013
ZBW9Ob1y4A
1
00014
bdrKTO93ry
1
00015
5rHhraHsUT
1
00016
NcLl0Wn2RN
1
00017
XVKXSL9ngi
1
00017
XTsRzZCfGL
1
00018
c0mjbslAAk
1
00019
UIFwra15oV
1
00020
DeMVWHsQIq
1
00021
tquigOCMqs
1
00021
uJkX7ka6yA
1
00022
NGMPTGSrcw
1
00023
RKP6Zz4Po8
1
00024
6IiOFMYmeg
1
00025
ZoAtgcBPcA
1
00026
VmbJnl73Y2
1
00027
XwKsnbTHYr
1
00028
m7haZW9njV
1
00029
atfwp5LcrD
1
00030
7Qbi3cup7r
1
00031
kFW5dGyXmd
1
00032
qLd8F9TWaT
1
00033
brwWT6spza
1
00034
WrEi1L9rPz
1
00035
9vh0B6q9Xf
1
00036
jWTyzUzLtw
1
00037
IClgFH5oxI
1
00038
htQqEkZrN0
1
00039
qwCL21Q2nZ
1
00040
tyq7ppIugg
1
00041
RQxvNeUpzx
1
00042
jyeyCfCN3C
1
00043
JnOng0wVJY
1
00044
LrePbttGFk
1
00045
PI5Pj9Ju0X
1
00045
kGv14Yoz0P
1
00046
7KS7rrgWg9
1
00047
ydRgD4qbuq
1
00048
0VB7dfcug2
1
00049
4ssyFFAjyS
1
00050
1SxRC6mdqM
1
00051
cEw15BvvUI
1
00052
59IvIpJNBT
1
00053
BA3oUHHeAU
1
00054
QBBIebNmsK
1
00055
s5opxmsZR7
1
00055
MBOb0UCgAm
1
00056
U5DKXP6ega
1
00056
zeYmQ1UNIw
1
00057
2n5EizHDyz
1
00058
3tXVoCt1rJ
1
00059
2NmWZlOEpE
1
00060
Orho9IuHmQ
1
00061
wteUHuM56j
1
00062
KBOUOUeehj
1
00062
kisieVydnG
1
00063
sXInJZabfB
1
00064
03IM6Qi03i
1
00064
XtDTqQZXmz
1
00065
EWGtEMZLxR
1
00066
ifJdyfFVii
1
00067
UOhEAXtQiP
1
00067
FNhbxKl1Kv
1
00067
Dp6cTqgPYj
1
00068
dFi2sGOS1g
1
00069
vSgAkbmZBh
1
00070
TJiWvmyBCn
1
00071
wjBDNJijlS
1
00071
rWDHqeBisb
1
00072
B5thxdUE70
1
00073
kDo5jS1Oco
1
00074
0oDczXKjFY
1
00075
MUKRe5gWsf
1
00076
ONtLm4UJh1
1
00076
Y0xNV9cGua
1
00076
kabPkbpxbN
1
00077
iZQQrktAfu
1
00078
8slZK14KZ7
1
00079
naEx0junNZ
1
00080
eAhxv3Jw5f
1
00081
Ir5Pjs8DEX
1
00082
dkznq7ks5A
1
00083
DRrgI3jzHM
1
00084
z52Dm7tO4f
1
00085
SFINWoZpSM
1
00086
i6Zkaifwtb
1
End of preview. Expand in Data Studio

GerDaLIRSmall

An MTEB dataset
Massive Text Embedding Benchmark

The dataset consists of documents, passages and relevance labels in German. In contrast to the original dataset, only documents that have corresponding queries in the query set are chosen to create a smaller corpus for evaluation purposes.

Task category t2t
Domains Legal, Written
Reference https://github.com/lavis-nlp/GerDaLIR

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["GerDaLIRSmall"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{wrzalik-krechel-2021-gerdalir,
  abstract = {We present GerDaLIR, a German Dataset for Legal Information Retrieval based on case documents from the open legal information platform Open Legal Data. The dataset consists of 123K queries, each labelled with at least one relevant document in a collection of 131K case documents. We conduct several baseline experiments including BM25 and a state-of-the-art neural re-ranker. With our dataset, we aim to provide a standardized benchmark for German LIR and promote open research in this area. Beyond that, our dataset comprises sufficient training data to be used as a downstream task for German or multilingual language models.},
  address = {Punta Cana, Dominican Republic},
  author = {Wrzalik, Marco  and
Krechel, Dirk},
  booktitle = {Proceedings of the Natural Legal Language Processing Workshop 2021},
  month = nov,
  pages = {123--128},
  publisher = {Association for Computational Linguistics},
  title = {{G}er{D}a{LIR}: A {G}erman Dataset for Legal Information Retrieval},
  url = {https://aclanthology.org/2021.nllp-1.13},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("GerDaLIRSmall")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 22203,
        "number_of_characters": 209081381,
        "num_documents": 9969,
        "min_document_length": 151,
        "average_document_length": 19707.823653325308,
        "max_document_length": 427235,
        "unique_documents": 9969,
        "num_queries": 12234,
        "min_query_length": 150,
        "average_query_length": 1031.0680889324833,
        "max_query_length": 23560,
        "unique_queries": 12234,
        "none_queries": 0,
        "num_relevant_docs": 14320,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.1705084191597188,
        "max_relevant_docs_per_query": 9,
        "unique_relevant_docs": 9969,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
52