Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
Korean
Size:
10K - 100K
ArXiv:
License:
File size: 8,996 Bytes
d40ccca 47cd2e6 d40ccca 47cd2e6 d40ccca 47cd2e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
---
annotations_creators:
- expert-annotated
language:
- kor
license: cc-by-sa-4.0
multilinguality: monolingual
task_categories:
- text-classification
task_ids:
- multi-label-classification
- sentiment-analysis
- sentiment-scoring
- sentiment-classification
- hate-speech-detection
dataset_info:
features:
- name: text
dtype: string
- name: label
sequence: int64
splits:
- name: train
num_bytes: 822254
num_examples: 8200
- name: validation
num_bytes: 869866
num_examples: 8776
- name: test
num_bytes: 209358
num_examples: 2037
download_size: 1259113
dataset_size: 1901478
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
tags:
- mteb
- text
---
<!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
<div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
<h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">KorHateSpeechMLClassification</h1>
<div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
<div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
</div>
The Korean Multi-label Hate Speech Dataset, K-MHaS, consists of 109,692 utterances from Korean online news comments,
labelled with 8 fine-grained hate speech classes (labels: Politics, Origin, Physical, Age, Gender, Religion, Race, Profanity)
or Not Hate Speech class. Each utterance provides from a single to four labels that can handles Korean language patterns effectively.
For more details, please refer to the paper about K-MHaS, published at COLING 2022.
This dataset is based on the Korean online news comments available on Kaggle and Github.
The unlabeled raw data was collected between January 2018 and June 2020.
The language producers are users who left the comments on the Korean online news platform between 2018 and 2020.
| | |
|---------------|---------------------------------------------|
| Task category | t2c |
| Domains | Social, Written |
| Reference | https://paperswithcode.com/dataset/korean-multi-label-hate-speech-dataset |
## How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
```python
import mteb
task = mteb.get_tasks(["KorHateSpeechMLClassification"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
```
<!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
## Citation
If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
```bibtex
@inproceedings{lee-etal-2022-k,
address = {Gyeongju, Republic of Korea},
author = {Lee, Jean and
Lim, Taejun and
Lee, Heejun and
Jo, Bogeun and
Kim, Yangsok and
Yoon, Heegeun and
Han, Soyeon Caren},
booktitle = {Proceedings of the 29th International Conference on Computational Linguistics},
month = oct,
pages = {3530--3538},
publisher = {International Committee on Computational Linguistics},
title = {K-{MH}a{S}: A Multi-label Hate Speech Detection Dataset in {K}orean Online News Comment},
url = {https://aclanthology.org/2022.coling-1.311},
year = {2022},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
```
# Dataset Statistics
<details>
<summary> Dataset Statistics</summary>
The following code contains the descriptive statistics from the task. These can also be obtained using:
```python
import mteb
task = mteb.get_task("KorHateSpeechMLClassification")
desc_stats = task.metadata.descriptive_stats
```
```json
{
"test": {
"num_samples": 2037,
"number_of_characters": 70625,
"number_texts_intersect_with_train": 2,
"min_text_length": 1,
"average_text_length": 34.67108492881689,
"max_text_length": 300,
"unique_texts": 2037,
"min_labels_per_text": 1,
"average_label_per_text": 1.1467844869906725,
"max_labels_per_text": 3,
"unique_labels": 9,
"labels": {
"8": {
"count": 1103
},
"0": {
"count": 202
},
"5": {
"count": 148
},
"1": {
"count": 163
},
"2": {
"count": 229
},
"4": {
"count": 139
},
"7": {
"count": 46
},
"3": {
"count": 301
},
"6": {
"count": 5
}
}
},
"train": {
"num_samples": 8200,
"number_of_characters": 276145,
"number_texts_intersect_with_train": null,
"min_text_length": 1,
"average_text_length": 33.676219512195125,
"max_text_length": 302,
"unique_texts": 8192,
"min_labels_per_text": 1,
"average_label_per_text": 1.138170731707317,
"max_labels_per_text": 4,
"unique_labels": 9,
"labels": {
"8": {
"count": 4451
},
"2": {
"count": 886
},
"4": {
"count": 553
},
"3": {
"count": 1223
},
"1": {
"count": 658
},
"5": {
"count": 602
},
"0": {
"count": 754
},
"7": {
"count": 181
},
"6": {
"count": 25
}
}
}
}
```
</details>
---
*This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)* |