Datasets:
id
stringlengths 2
5
| text
stringlengths 1
122
| title
stringclasses 1
value |
---|---|---|
C469
|
11.0 سنة
| |
C2614
|
كريس يونغ
| |
C5316
|
2.0
| |
C4555
|
2013
| |
C3886
|
3.0
| |
C6368
|
ديف إدموندز
| |
C2741
|
جون دي مول
| |
C6653
|
1865
| |
C6391
|
1895
| |
C4525
|
1999
| |
C878
|
The Four Seasons
| |
C5329
|
فليتوود ماك
| |
C465
|
إيفون إليمان
| |
C5019
|
إرميا
| |
C3535
|
كريستيانو رونالدو
| |
C4138
|
تخفيف التوتر
| |
C1921
|
إيران
| |
C1196
|
ملعب جامعة فينيكس
| |
C2128
|
شارلن
| |
C4129
|
6.0
| |
C341
|
8.0
| |
C6423
|
سلاي فوكس
| |
C2764
|
بول زيردين
| |
C6208
|
5.0 18.0 سنة
| |
C3989
|
2019-08-29
| |
C887
|
2004
| |
C217
|
2016
| |
C6586
|
2017-03-28
| |
C1955
|
1984
| |
C3198
|
1992
| |
C5006
|
دونالد أوكونور
| |
C6452
|
جين كيلي
| |
C2252
|
جين هاجين
| |
C1984
|
55.0 67.0 قدم
| |
C3297
|
دوني أوزموند
| |
C3853
|
2002
| |
C5332
|
قطر
| |
C3768
|
جودي
| |
C1544
|
فيز
| |
C173
|
بيلا
| |
C4704
|
ماكس
| |
C794
|
ليزس
| |
C1007
|
تشادويك بوسمان
| |
C4537
|
385.0
| |
C3827
|
2019-06-24
| |
C2257
|
هادواي
| |
C6620
|
إيثانول
| |
C1032
|
1999-06-22
| |
C6193
|
ويليام هولدن
| |
C570
|
أليك غينيس
| |
C5130
|
جاك هاوكينز
| |
C1616
|
جالاهاد
| |
C3501
|
برسيفال
| |
C950
|
لانسلوت
| |
C764
|
غاريث
| |
C5797
|
غواين
| |
C850
|
سايمون كاول
| |
C3559
|
جوليان هوف
| |
C2542
|
هاوي مانديل
| |
C5591
|
غابرييلي يونيون
| |
C2273
|
تيري كروز
| |
C2756
|
ماك ديفيس
| |
C5153
|
هوزير
| |
C3433
|
2014-03-14
| |
C3390
|
ميليسا أوردواي
| |
C5062
|
مانويلا أربيلياز
| |
C702
|
أمبير لانكستر
| |
C1053
|
جيمس أوهلوران
| |
C2767
|
أبراهام لينكون
| |
C3029
|
ويليام شيرمان
| |
C1024
|
يوليسيس جرانت
| |
C6133
|
جينيفر غودين
| |
C751
|
جين كالمينت
| |
C1947
|
جيرويمون كيمورا
| |
C2960
|
5.0
| |
C228
|
بورتر واغونر
| |
C4028
|
دوللي بارتون
| |
C1313
|
جورج واشنطن
| |
C1267
|
ما هو اسم الكلية في بيت الحيوان
| |
C1646
|
أنجلينا جولي
| |
C4676
|
ويليام سكوت
| |
C585
|
سكوت كان
| |
C1424
|
جيوفاني ريبيسي
| |
C6095
|
نيكولاس كيج
| |
C4339
|
روبرت دوفال
| |
C4642
|
8.0 فصل من فصول السنة
| |
C3276
|
1975
| |
C5235
|
هاديس
| |
C6396
|
2017-08-11
| |
C1556
|
ماجي بيترسون
| |
C6207
|
جاسون هولدر
| |
C5614
|
كارلوس براثويت
| |
C5525
|
بحيرة تابو
| |
C2376
|
إسماعيل بيه
| |
C3008
|
1973-03-29
| |
C3339
|
مارجو روبي
| |
C2937
|
1338000.0
| |
C1324
|
بيلي كونولي
| |
C2206
|
رين بريور
| |
C2954
|
كريس برات
|
Multilingual Knowledge Questions & Answers (MKQA)contains 10,000 queries sampled from the Google Natural Questions dataset. For each query we collect new passage-independent answers. These queries and answers are then human translated into 25 Non-English languages.
Task category | t2t |
Domains | Written |
Reference | https://github.com/apple/ml-mkqa |
Source datasets:
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_task("MKQARetrieval")
evaluator = mteb.MTEB([task])
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repository.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@misc{mkqa,
author = {Shayne Longpre and Yi Lu and Joachim Daiber},
title = {MKQA: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering},
url = {https://arxiv.org/pdf/2007.15207.pdf},
year = {2020},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Loïc and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("MKQARetrieval")
desc_stats = task.metadata.descriptive_stats
{}
This dataset card was automatically generated using MTEB
- Downloads last month
- 975