Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
query-id
string
corpus-id
string
score
int64
train_query0_0
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_0
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_1
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_1
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_2
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_2
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_3
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_3
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_4
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_4
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_5
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_5
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_6
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_6
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_7
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_7
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query0_8
apositive_ecd817aabfe213f5a5e91dc220afd5ed_00000
1
train_query0_8
negative_0ad782b6889176442e05ac9e1cd73cfb_00000
0
train_query1_0
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_0
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_0
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_0
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_0
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_0
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_0
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_0
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_0
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_0
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_0
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_1
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_1
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_1
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_1
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_1
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_1
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_1
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_1
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_1
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_1
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_1
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_2
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_2
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_2
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_2
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_2
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_2
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_2
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_2
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_2
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_2
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_2
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_3
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_3
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_3
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_3
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_3
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_3
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_3
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_3
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_3
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_3
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_3
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_4
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_4
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_4
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_4
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_4
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_4
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_4
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_4
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_4
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_4
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_4
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_5
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_5
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_5
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_5
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_5
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_5
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_5
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_5
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_5
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_5
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_5
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_6
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_6
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_6
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_6
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_6
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
train_query1_6
negative_913bf9ddf0f7570ac91a102a698b86da_00004
0
train_query1_6
negative_30e0273e60864b2c9bc517688aa3cc8c_00005
0
train_query1_6
negative_251c0238dda8bcbd2d959c77075203a7_00006
0
train_query1_6
negative_8e73f1c5560cdc0a96e62b40ced5ff8b_00007
0
train_query1_6
negative_7e28b57ac9eae9fed5bf6d3a6ee64d67_00008
0
train_query1_6
negative_51321193d8106d58e96fd5aa6366b9cb_00009
0
train_query1_7
apositive_86b0c2f8b672e20d9043c2f3541443a7_00000
1
train_query1_7
negative_f3b55f99b538af689d169ddbfd349912_00000
0
train_query1_7
negative_4ffead8f868cf199c79d657d61d3f9dc_00001
0
train_query1_7
negative_f18a469063945fa0cc05b0764ec69e0f_00002
0
train_query1_7
negative_a15073ca36c52fe122db3ec83a02ce75_00003
0
End of preview. Expand in Data Studio

MindSmallReranking

An MTEB dataset
Massive Text Embedding Benchmark

Microsoft News Dataset: A Large-Scale English Dataset for News Recommendation Research

Task category t2t
Domains News, Written
Reference https://msnews.github.io/assets/doc/ACL2020_MIND.pdf

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["MindSmallReranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{wu-etal-2020-mind,
  abstract = {News recommendation is an important technique for personalized news
service. Compared with product and movie recommendations which have been comprehensively studied,
the research on news recommendation is much more limited, mainly due to the lack of a high-quality benchmark
dataset. In this paper, we present a large-scale dataset named MIND for news recommendation. Constructed from
the user click logs of Microsoft News, MIND contains 1 million users and more than 160k English news
articles, each of which has rich textual content such as title, abstract and body. We demonstrate MIND a good
testbed for news recommendation through a comparative study of several state-of-the-art news recommendation
methods which are originally developed on different proprietary datasets. Our results show the performance of
news recommendation highly relies on the quality of news content understanding and user interest modeling.
Many natural language processing techniques such as effective text representation methods and pre-trained
language models can effectively improve the performance of news recommendation. The MIND dataset will be
available at https://msnews.github.io.},
  address = {Online},
  author = {Wu, Fangzhao  and Qiao, Ying  and Chen, Jiun-Hung  and Wu, Chuhan  and Qi,
Tao  and Lian, Jianxun  and Liu, Danyang  and Xie, Xing  and Gao, Jianfeng  and Wu, Winnie  and Zhou, Ming},
  booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  doi = {10.18653/v1/2020.acl-main.331},
  editor = {Jurafsky, Dan  and Chai, Joyce  and Schluter, Natalie  and Tetreault, Joel},
  month = jul,
  pages = {3597--3606},
  publisher = {Association for Computational Linguistics},
  title = {{MIND}: A Large-scale Dataset for News
Recommendation},
  url = {https://aclanthology.org/2020.acl-main.331},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("MindSmallReranking")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 2367791,
        "number_of_characters": 162620316,
        "num_documents": 5277,
        "min_document_length": 11,
        "average_document_length": 65.06348303960584,
        "max_document_length": 176,
        "unique_documents": 5277,
        "num_queries": 2362514,
        "min_query_length": 11,
        "average_query_length": 68.68826004840606,
        "max_query_length": 251,
        "unique_queries": 2362514,
        "none_queries": 0,
        "num_relevant_docs": 97006943,
        "min_relevant_docs_per_query": 2,
        "average_relevant_docs_per_query": 1.8289660928993436,
        "max_relevant_docs_per_query": 295,
        "unique_relevant_docs": 5277,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 2362514,
        "min_top_ranked_per_query": 2,
        "average_top_ranked_per_query": 41.06168556038187,
        "max_top_ranked_per_query": 295
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
139