Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Samoed commited on
Commit
535a035
·
verified ·
1 Parent(s): 227478e

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md CHANGED
@@ -1,4 +1,13 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: corpus
4
  features:
@@ -89,4 +98,149 @@ configs:
89
  path: top_ranked/train-*
90
  - split: test
91
  path: top_ranked/test-*
 
 
 
92
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-annotated
4
+ language:
5
+ - eng
6
+ license: other
7
+ multilinguality: monolingual
8
+ task_categories:
9
+ - text-ranking
10
+ task_ids: []
11
  dataset_info:
12
  - config_name: corpus
13
  features:
 
98
  path: top_ranked/train-*
99
  - split: test
100
  path: top_ranked/test-*
101
+ tags:
102
+ - mteb
103
+ - text
104
  ---
105
+ <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md -->
106
+
107
+ <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;">
108
+ <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">MindSmallReranking</h1>
109
+ <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div>
110
+ <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div>
111
+ </div>
112
+
113
+ Microsoft News Dataset: A Large-Scale English Dataset for News Recommendation Research
114
+
115
+ | | |
116
+ |---------------|---------------------------------------------|
117
+ | Task category | t2t |
118
+ | Domains | News, Written |
119
+ | Reference | https://msnews.github.io/assets/doc/ACL2020_MIND.pdf |
120
+
121
+
122
+ ## How to evaluate on this task
123
+
124
+ You can evaluate an embedding model on this dataset using the following code:
125
+
126
+ ```python
127
+ import mteb
128
+
129
+ task = mteb.get_tasks(["MindSmallReranking"])
130
+ evaluator = mteb.MTEB(task)
131
+
132
+ model = mteb.get_model(YOUR_MODEL)
133
+ evaluator.run(model)
134
+ ```
135
+
136
+ <!-- Datasets want link to arxiv in readme to autolink dataset with paper -->
137
+ To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb).
138
+
139
+ ## Citation
140
+
141
+ If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb).
142
+
143
+ ```bibtex
144
+
145
+ @inproceedings{wu-etal-2020-mind,
146
+ abstract = {News recommendation is an important technique for personalized news
147
+ service. Compared with product and movie recommendations which have been comprehensively studied,
148
+ the research on news recommendation is much more limited, mainly due to the lack of a high-quality benchmark
149
+ dataset. In this paper, we present a large-scale dataset named MIND for news recommendation. Constructed from
150
+ the user click logs of Microsoft News, MIND contains 1 million users and more than 160k English news
151
+ articles, each of which has rich textual content such as title, abstract and body. We demonstrate MIND a good
152
+ testbed for news recommendation through a comparative study of several state-of-the-art news recommendation
153
+ methods which are originally developed on different proprietary datasets. Our results show the performance of
154
+ news recommendation highly relies on the quality of news content understanding and user interest modeling.
155
+ Many natural language processing techniques such as effective text representation methods and pre-trained
156
+ language models can effectively improve the performance of news recommendation. The MIND dataset will be
157
+ available at https://msnews.github.io.},
158
+ address = {Online},
159
+ author = {Wu, Fangzhao and Qiao, Ying and Chen, Jiun-Hung and Wu, Chuhan and Qi,
160
+ Tao and Lian, Jianxun and Liu, Danyang and Xie, Xing and Gao, Jianfeng and Wu, Winnie and Zhou, Ming},
161
+ booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
162
+ doi = {10.18653/v1/2020.acl-main.331},
163
+ editor = {Jurafsky, Dan and Chai, Joyce and Schluter, Natalie and Tetreault, Joel},
164
+ month = jul,
165
+ pages = {3597--3606},
166
+ publisher = {Association for Computational Linguistics},
167
+ title = {{MIND}: A Large-scale Dataset for News
168
+ Recommendation},
169
+ url = {https://aclanthology.org/2020.acl-main.331},
170
+ year = {2020},
171
+ }
172
+
173
+
174
+ @article{enevoldsen2025mmtebmassivemultilingualtext,
175
+ title={MMTEB: Massive Multilingual Text Embedding Benchmark},
176
+ author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
177
+ publisher = {arXiv},
178
+ journal={arXiv preprint arXiv:2502.13595},
179
+ year={2025},
180
+ url={https://arxiv.org/abs/2502.13595},
181
+ doi = {10.48550/arXiv.2502.13595},
182
+ }
183
+
184
+ @article{muennighoff2022mteb,
185
+ author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
186
+ title = {MTEB: Massive Text Embedding Benchmark},
187
+ publisher = {arXiv},
188
+ journal={arXiv preprint arXiv:2210.07316},
189
+ year = {2022}
190
+ url = {https://arxiv.org/abs/2210.07316},
191
+ doi = {10.48550/ARXIV.2210.07316},
192
+ }
193
+ ```
194
+
195
+ # Dataset Statistics
196
+ <details>
197
+ <summary> Dataset Statistics</summary>
198
+
199
+ The following code contains the descriptive statistics from the task. These can also be obtained using:
200
+
201
+ ```python
202
+ import mteb
203
+
204
+ task = mteb.get_task("MindSmallReranking")
205
+
206
+ desc_stats = task.metadata.descriptive_stats
207
+ ```
208
+
209
+ ```json
210
+ {
211
+ "test": {
212
+ "num_samples": 2367791,
213
+ "number_of_characters": 162620316,
214
+ "num_documents": 5277,
215
+ "min_document_length": 11,
216
+ "average_document_length": 65.06348303960584,
217
+ "max_document_length": 176,
218
+ "unique_documents": 5277,
219
+ "num_queries": 2362514,
220
+ "min_query_length": 11,
221
+ "average_query_length": 68.68826004840606,
222
+ "max_query_length": 251,
223
+ "unique_queries": 2362514,
224
+ "none_queries": 0,
225
+ "num_relevant_docs": 97006943,
226
+ "min_relevant_docs_per_query": 2,
227
+ "average_relevant_docs_per_query": 1.8289660928993436,
228
+ "max_relevant_docs_per_query": 295,
229
+ "unique_relevant_docs": 5277,
230
+ "num_instructions": null,
231
+ "min_instruction_length": null,
232
+ "average_instruction_length": null,
233
+ "max_instruction_length": null,
234
+ "unique_instructions": null,
235
+ "num_top_ranked": 2362514,
236
+ "min_top_ranked_per_query": 2,
237
+ "average_top_ranked_per_query": 41.06168556038187,
238
+ "max_top_ranked_per_query": 295
239
+ }
240
+ }
241
+ ```
242
+
243
+ </details>
244
+
245
+ ---
246
+ *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*