Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
validation_query0
apositive_validation_query0_00000
1
validation_query0
apositive_validation_query0_00001
1
validation_query0
apositive_validation_query0_00002
1
validation_query0
apositive_validation_query0_00003
1
validation_query0
apositive_validation_query0_00004
1
validation_query0
negative_validation_query0_00000
0
validation_query0
negative_validation_query0_00001
0
validation_query0
negative_validation_query0_00002
0
validation_query0
negative_validation_query0_00003
0
validation_query0
negative_validation_query0_00004
0
validation_query0
negative_validation_query0_00005
0
validation_query0
negative_validation_query0_00006
0
validation_query0
negative_validation_query0_00007
0
validation_query0
negative_validation_query0_00008
0
validation_query0
negative_validation_query0_00009
0
validation_query0
negative_validation_query0_00010
0
validation_query0
negative_validation_query0_00011
0
validation_query0
negative_validation_query0_00012
0
validation_query0
negative_validation_query0_00013
0
validation_query0
negative_validation_query0_00014
0
validation_query0
negative_validation_query0_00015
0
validation_query0
negative_validation_query0_00016
0
validation_query0
negative_validation_query0_00017
0
validation_query0
negative_validation_query0_00018
0
validation_query0
negative_validation_query0_00019
0
validation_query0
negative_validation_query0_00020
0
validation_query0
negative_validation_query0_00021
0
validation_query0
negative_validation_query0_00022
0
validation_query0
negative_validation_query0_00023
0
validation_query0
negative_validation_query0_00024
0
validation_query1
apositive_validation_query1_00000
1
validation_query1
apositive_validation_query1_00001
1
validation_query1
apositive_validation_query1_00002
1
validation_query1
apositive_validation_query1_00003
1
validation_query1
apositive_validation_query1_00004
1
validation_query1
negative_validation_query1_00000
0
validation_query1
negative_validation_query1_00001
0
validation_query1
negative_validation_query1_00002
0
validation_query1
negative_validation_query1_00003
0
validation_query1
negative_validation_query1_00004
0
validation_query1
negative_validation_query1_00005
0
validation_query1
negative_validation_query1_00006
0
validation_query1
negative_validation_query1_00007
0
validation_query1
negative_validation_query1_00008
0
validation_query1
negative_validation_query1_00009
0
validation_query1
negative_validation_query1_00010
0
validation_query1
negative_validation_query1_00011
0
validation_query1
negative_validation_query1_00012
0
validation_query1
negative_validation_query1_00013
0
validation_query1
negative_validation_query1_00014
0
validation_query1
negative_validation_query1_00015
0
validation_query1
negative_validation_query1_00016
0
validation_query1
negative_validation_query1_00017
0
validation_query1
negative_validation_query1_00018
0
validation_query1
negative_validation_query1_00019
0
validation_query1
negative_validation_query1_00020
0
validation_query1
negative_validation_query1_00021
0
validation_query1
negative_validation_query1_00022
0
validation_query1
negative_validation_query1_00023
0
validation_query1
negative_validation_query1_00024
0
validation_query2
apositive_validation_query2_00000
1
validation_query2
apositive_validation_query2_00001
1
validation_query2
apositive_validation_query2_00002
1
validation_query2
negative_validation_query2_00000
0
validation_query2
negative_validation_query2_00001
0
validation_query2
negative_validation_query2_00002
0
validation_query2
negative_validation_query2_00003
0
validation_query2
negative_validation_query2_00004
0
validation_query2
negative_validation_query2_00005
0
validation_query2
negative_validation_query2_00006
0
validation_query2
negative_validation_query2_00007
0
validation_query2
negative_validation_query2_00008
0
validation_query2
negative_validation_query2_00009
0
validation_query2
negative_validation_query2_00010
0
validation_query2
negative_validation_query2_00011
0
validation_query2
negative_validation_query2_00012
0
validation_query2
negative_validation_query2_00013
0
validation_query2
negative_validation_query2_00014
0
validation_query2
negative_validation_query2_00015
0
validation_query2
negative_validation_query2_00016
0
validation_query2
negative_validation_query2_00017
0
validation_query2
negative_validation_query2_00018
0
validation_query2
negative_validation_query2_00019
0
validation_query2
negative_validation_query2_00020
0
validation_query2
negative_validation_query2_00021
0
validation_query2
negative_validation_query2_00022
0
validation_query2
negative_validation_query2_00023
0
validation_query2
negative_validation_query2_00024
0
validation_query3
apositive_validation_query3_00000
1
validation_query3
apositive_validation_query3_00001
1
validation_query3
apositive_validation_query3_00002
1
validation_query3
apositive_validation_query3_00003
1
validation_query3
apositive_validation_query3_00004
1
validation_query3
negative_validation_query3_00000
0
validation_query3
negative_validation_query3_00001
0
validation_query3
negative_validation_query3_00002
0
validation_query3
negative_validation_query3_00003
0
validation_query3
negative_validation_query3_00004
0
validation_query3
negative_validation_query3_00005
0
validation_query3
negative_validation_query3_00006
0
End of preview. Expand in Data Studio

SciDocsRR

An MTEB dataset
Massive Text Embedding Benchmark

Ranking of related scientific papers based on their title.

Task category t2t
Domains Academic, Non-fiction, Written
Reference https://allenai.org/data/scidocs

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["SciDocsRR"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{cohan-etal-2020-specter,
  abstract = {Representation learning is a critical ingredient for natural language processing systems. Recent Transformer language models like BERT learn powerful textual representations, but these models are targeted towards token- and sentence-level training objectives and do not leverage information on inter-document relatedness, which limits their document-level representation power. For applications on scientific documents, such as classification and recommendation, accurate embeddings of documents are a necessity. We propose SPECTER, a new method to generate document-level embedding of scientific papers based on pretraining a Transformer language model on a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, Specter can be easily applied to downstream applications without task-specific fine-tuning. Additionally, to encourage further research on document-level models, we introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction, to document classification and recommendation. We show that Specter outperforms a variety of competitive baselines on the benchmark.},
  address = {Online},
  author = {Cohan, Arman  and
Feldman, Sergey  and
Beltagy, Iz  and
Downey, Doug  and
Weld, Daniel},
  booktitle = {Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  doi = {10.18653/v1/2020.acl-main.207},
  editor = {Jurafsky, Dan  and
Chai, Joyce  and
Schluter, Natalie  and
Tetreault, Joel},
  month = jul,
  pages = {2270--2282},
  publisher = {Association for Computational Linguistics},
  title = {{SPECTER}: Document-level Representation Learning using Citation-informed Transformers},
  url = {https://aclanthology.org/2020.acl-main.207},
  year = {2020},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("SciDocsRR")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 122578,
        "number_of_characters": 8761260,
        "num_documents": 118600,
        "min_document_length": 8,
        "average_document_length": 71.52865935919056,
        "max_document_length": 300,
        "unique_documents": 118600,
        "num_queries": 3978,
        "min_query_length": 13,
        "average_query_length": 69.87456008044244,
        "max_query_length": 300,
        "unique_queries": 3978,
        "none_queries": 0,
        "num_relevant_docs": 118600,
        "min_relevant_docs_per_query": 26,
        "average_relevant_docs_per_query": 4.92684766214178,
        "max_relevant_docs_per_query": 60,
        "unique_relevant_docs": 118600,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 3978,
        "min_top_ranked_per_query": 26,
        "average_top_ranked_per_query": 29.813976872800403,
        "max_top_ranked_per_query": 60
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
403