Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
Dataset Viewer
Auto-converted to Parquet
query-id
string
corpus-id
string
score
int64
validation_query0
apositive_validation_query0_00000
1
validation_query0
negative_validation_query0_00000
0
validation_query0
negative_validation_query0_00001
0
validation_query0
negative_validation_query0_00002
0
validation_query0
negative_validation_query0_00003
0
validation_query0
negative_validation_query0_00004
0
validation_query0
negative_validation_query0_00005
0
validation_query0
negative_validation_query0_00006
0
validation_query0
negative_validation_query0_00007
0
validation_query0
negative_validation_query0_00008
0
validation_query0
negative_validation_query0_00009
0
validation_query0
negative_validation_query0_00010
0
validation_query0
negative_validation_query0_00011
0
validation_query0
negative_validation_query0_00012
0
validation_query0
negative_validation_query0_00013
0
validation_query0
negative_validation_query0_00014
0
validation_query0
negative_validation_query0_00015
0
validation_query0
negative_validation_query0_00016
0
validation_query0
negative_validation_query0_00017
0
validation_query0
negative_validation_query0_00018
0
validation_query0
negative_validation_query0_00019
0
validation_query0
negative_validation_query0_00020
0
validation_query0
negative_validation_query0_00021
0
validation_query0
negative_validation_query0_00022
0
validation_query0
negative_validation_query0_00023
0
validation_query0
negative_validation_query0_00024
0
validation_query0
negative_validation_query0_00025
0
validation_query0
negative_validation_query0_00026
0
validation_query0
negative_validation_query0_00027
0
validation_query0
negative_validation_query0_00028
0
validation_query0
negative_validation_query0_00029
0
validation_query0
negative_validation_query0_00030
0
validation_query0
negative_validation_query0_00031
0
validation_query0
negative_validation_query0_00032
0
validation_query0
negative_validation_query0_00033
0
validation_query0
negative_validation_query0_00034
0
validation_query0
negative_validation_query0_00035
0
validation_query0
negative_validation_query0_00036
0
validation_query0
negative_validation_query0_00037
0
validation_query0
negative_validation_query0_00038
0
validation_query0
negative_validation_query0_00039
0
validation_query0
negative_validation_query0_00040
0
validation_query0
negative_validation_query0_00041
0
validation_query0
negative_validation_query0_00042
0
validation_query0
negative_validation_query0_00043
0
validation_query0
negative_validation_query0_00044
0
validation_query0
negative_validation_query0_00045
0
validation_query0
negative_validation_query0_00046
0
validation_query0
negative_validation_query0_00047
0
validation_query0
negative_validation_query0_00048
0
validation_query0
negative_validation_query0_00049
0
validation_query0
negative_validation_query0_00050
0
validation_query0
negative_validation_query0_00051
0
validation_query0
negative_validation_query0_00052
0
validation_query0
negative_validation_query0_00053
0
validation_query0
negative_validation_query0_00054
0
validation_query0
negative_validation_query0_00055
0
validation_query0
negative_validation_query0_00056
0
validation_query0
negative_validation_query0_00057
0
validation_query0
negative_validation_query0_00058
0
validation_query0
negative_validation_query0_00059
0
validation_query0
negative_validation_query0_00060
0
validation_query0
negative_validation_query0_00061
0
validation_query0
negative_validation_query0_00062
0
validation_query0
negative_validation_query0_00063
0
validation_query0
negative_validation_query0_00064
0
validation_query0
negative_validation_query0_00065
0
validation_query0
negative_validation_query0_00066
0
validation_query0
negative_validation_query0_00067
0
validation_query0
negative_validation_query0_00068
0
validation_query0
negative_validation_query0_00069
0
validation_query0
negative_validation_query0_00070
0
validation_query0
negative_validation_query0_00071
0
validation_query0
negative_validation_query0_00072
0
validation_query0
negative_validation_query0_00073
0
validation_query0
negative_validation_query0_00074
0
validation_query0
negative_validation_query0_00075
0
validation_query0
negative_validation_query0_00076
0
validation_query0
negative_validation_query0_00077
0
validation_query0
negative_validation_query0_00078
0
validation_query0
negative_validation_query0_00079
0
validation_query0
negative_validation_query0_00080
0
validation_query0
negative_validation_query0_00081
0
validation_query0
negative_validation_query0_00082
0
validation_query0
negative_validation_query0_00083
0
validation_query0
negative_validation_query0_00084
0
validation_query0
negative_validation_query0_00085
0
validation_query0
negative_validation_query0_00086
0
validation_query0
negative_validation_query0_00087
0
validation_query0
negative_validation_query0_00088
0
validation_query0
negative_validation_query0_00089
0
validation_query0
negative_validation_query0_00090
0
validation_query0
negative_validation_query0_00091
0
validation_query0
negative_validation_query0_00092
0
validation_query0
negative_validation_query0_00093
0
validation_query0
negative_validation_query0_00094
0
validation_query0
negative_validation_query0_00095
0
validation_query0
negative_validation_query0_00096
0
validation_query0
negative_validation_query0_00097
0
validation_query0
negative_validation_query0_00098
0
End of preview. Expand in Data Studio

WebLINXCandidatesReranking

An MTEB dataset
Massive Text Embedding Benchmark

WebLINX is a large-scale benchmark of 100K interactions across 2300 expert demonstrations of conversational web navigation. The reranking task focuses on finding relevant elements at every given step in the trajectory.

Task category t2t
Domains Academic, Web, Written
Reference https://mcgill-nlp.github.io/weblinx

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["WebLINXCandidatesReranking"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{lù2024weblinx,
  archiveprefix = {arXiv},
  author = {Xing Han Lù and Zdeněk Kasner and Siva Reddy},
  eprint = {2402.05930},
  primaryclass = {cs.CL},
  title = {WebLINX: Real-World Website Navigation with Multi-Turn Dialogue},
  year = {2024},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("WebLINXCandidatesReranking")

desc_stats = task.metadata.descriptive_stats
{
    "validation": {
        "num_samples": 317809,
        "number_of_characters": 102848781,
        "num_documents": 316508,
        "min_document_length": 152,
        "average_document_length": 318.17634941296905,
        "max_document_length": 1605,
        "unique_documents": 316508,
        "num_queries": 1301,
        "min_query_length": 142,
        "average_query_length": 1647.5180630284397,
        "max_query_length": 9356,
        "unique_queries": 1301,
        "none_queries": 0,
        "num_relevant_docs": 316508,
        "min_relevant_docs_per_query": 21,
        "average_relevant_docs_per_query": 1.01076095311299,
        "max_relevant_docs_per_query": 945,
        "unique_relevant_docs": 316508,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 1301,
        "min_top_ranked_per_query": 21,
        "average_top_ranked_per_query": 243.2805534204458,
        "max_top_ranked_per_query": 945
    },
    "test_iid": {
        "num_samples": 407410,
        "number_of_characters": 131631330,
        "num_documents": 405972,
        "min_document_length": 153,
        "average_document_length": 318.135696550501,
        "max_document_length": 1471,
        "unique_documents": 405972,
        "num_queries": 1438,
        "min_query_length": 173,
        "average_query_length": 1722.6321279554938,
        "max_query_length": 10467,
        "unique_queries": 1438,
        "none_queries": 0,
        "num_relevant_docs": 405972,
        "min_relevant_docs_per_query": 15,
        "average_relevant_docs_per_query": 1.0528511821974966,
        "max_relevant_docs_per_query": 1149,
        "unique_relevant_docs": 405972,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 1438,
        "min_top_ranked_per_query": 15,
        "average_top_ranked_per_query": 282.317107093185,
        "max_top_ranked_per_query": 1149
    },
    "test_cat": {
        "num_samples": 1261751,
        "number_of_characters": 402615943,
        "num_documents": 1258191,
        "min_document_length": 156,
        "average_document_length": 313.91351392594606,
        "max_document_length": 1590,
        "unique_documents": 1258191,
        "num_queries": 3560,
        "min_query_length": 161,
        "average_query_length": 2149.6587078651687,
        "max_query_length": 8502,
        "unique_queries": 3560,
        "none_queries": 0,
        "num_relevant_docs": 1258191,
        "min_relevant_docs_per_query": 14,
        "average_relevant_docs_per_query": 1.0016853932584269,
        "max_relevant_docs_per_query": 1245,
        "unique_relevant_docs": 1258191,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 3560,
        "min_top_ranked_per_query": 14,
        "average_top_ranked_per_query": 353.4244382022472,
        "max_top_ranked_per_query": 1245
    },
    "test_geo": {
        "num_samples": 1155697,
        "number_of_characters": 371063547,
        "num_documents": 1150781,
        "min_document_length": 154,
        "average_document_length": 315.00053963351843,
        "max_document_length": 1289,
        "unique_documents": 1150781,
        "num_queries": 4916,
        "min_query_length": 146,
        "average_query_length": 1742.6588689991863,
        "max_query_length": 19082,
        "unique_queries": 4916,
        "none_queries": 0,
        "num_relevant_docs": 1150781,
        "min_relevant_docs_per_query": 3,
        "average_relevant_docs_per_query": 1.0024410089503661,
        "max_relevant_docs_per_query": 1274,
        "unique_relevant_docs": 1150781,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 4916,
        "min_top_ranked_per_query": 3,
        "average_top_ranked_per_query": 234.08889340927584,
        "max_top_ranked_per_query": 1274
    },
    "test_vis": {
        "num_samples": 1612156,
        "number_of_characters": 534911902,
        "num_documents": 1606858,
        "min_document_length": 154,
        "average_document_length": 327.165126601106,
        "max_document_length": 1796,
        "unique_documents": 1606858,
        "num_queries": 5298,
        "min_query_length": 176,
        "average_query_length": 1737.2595318988297,
        "max_query_length": 28468,
        "unique_queries": 5298,
        "none_queries": 0,
        "num_relevant_docs": 1606858,
        "min_relevant_docs_per_query": 11,
        "average_relevant_docs_per_query": 1.0152887882219706,
        "max_relevant_docs_per_query": 1819,
        "unique_relevant_docs": 1606858,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 5298,
        "min_top_ranked_per_query": 11,
        "average_top_ranked_per_query": 303.2952057380143,
        "max_top_ranked_per_query": 1819
    },
    "test_web": {
        "num_samples": 837319,
        "number_of_characters": 277932894,
        "num_documents": 834175,
        "min_document_length": 157,
        "average_document_length": 326.280188209908,
        "max_document_length": 1542,
        "unique_documents": 834175,
        "num_queries": 3144,
        "min_query_length": 146,
        "average_query_length": 1831.4624681933842,
        "max_query_length": 15329,
        "unique_queries": 3144,
        "none_queries": 0,
        "num_relevant_docs": 834175,
        "min_relevant_docs_per_query": 2,
        "average_relevant_docs_per_query": 1.0588422391857506,
        "max_relevant_docs_per_query": 1064,
        "unique_relevant_docs": 834175,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": 3144,
        "min_top_ranked_per_query": 2,
        "average_top_ranked_per_query": 265.3228371501272,
        "max_top_ranked_per_query": 1064
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
53