Dataset Viewer
sentences
sequencelengths 5.46k
27.8k
| labels
sequencelengths 5.46k
27.8k
|
---|---|
["Is there any significant time dilation on other planets orbiting the sun?","Information Paradox wi(...TRUNCATED) | ["astronomy.stackexchange.com.txt","astronomy.stackexchange.com.txt","astronomy.stackexchange.com.tx(...TRUNCATED) |
["Touchégg doesn't work on my Chromebook","How to add school email to mail client?","Turn off keybo(...TRUNCATED) | ["elementaryos.stackexchange.com.txt","elementaryos.stackexchange.com.txt","elementaryos.stackexchan(...TRUNCATED) |
["emacsclient directly start eshell command command line","org agenda: how to show only todo's with (...TRUNCATED) | ["emacs.stackexchange.com.txt","emacs.stackexchange.com.txt","emacs.stackexchange.com.txt","emacs.st(...TRUNCATED) |
["ON DUPLICATE KEY UPDATE question","SQL keyword difference between MySQL and Oracle 10g?","Accessin(...TRUNCATED) | ["dba.stackexchange.com.txt","dba.stackexchange.com.txt","dba.stackexchange.com.txt","dba.stackexcha(...TRUNCATED) |
["Syntactic word that carries no meaning - is there a name for that?","Grammar concepts required for(...TRUNCATED) | ["conlang.stackexchange.com.txt","conlang.stackexchange.com.txt","conlang.stackexchange.com.txt","co(...TRUNCATED) |
["Is it possible that Goku is more powerful than Beerus in Super Saiyan God Super Saiyan form?","Why(...TRUNCATED) | ["anime.stackexchange.com.txt","anime.stackexchange.com.txt","anime.stackexchange.com.txt","anime.st(...TRUNCATED) |
["SHA256 password hash generation and verification","Is wrapping the service layer worthwhile?","Gro(...TRUNCATED) | ["codereview.stackexchange.com.txt","codereview.stackexchange.com.txt","codereview.stackexchange.com(...TRUNCATED) |
["Whole genome amino acid composition tool?","Why are trichromat cone cells unable to sense ultravio(...TRUNCATED) | ["biology.stackexchange.com.txt","biology.stackexchange.com.txt","biology.stackexchange.com.txt","bi(...TRUNCATED) |
["Custom Layout in panels width","Send mail to users including receiver's username","Marking objects(...TRUNCATED) | ["drupal.stackexchange.com.txt","drupal.stackexchange.com.txt","drupal.stackexchange.com.txt","drupa(...TRUNCATED) |
["Is it necessary to tune the step size, when using Adam?","Time series regression using SVR","How t(...TRUNCATED) | ["datascience.stackexchange.com.txt","datascience.stackexchange.com.txt","datascience.stackexchange.(...TRUNCATED) |
End of preview. Expand
in Data Studio
Clustering of titles from 121 stackexchanges. Clustering of 25 sets, each with 10-50 classes, and each class with 100 - 1000 sentences.
Task category | t2c |
Domains | Web, Written |
Reference | https://arxiv.org/abs/2104.07081 |
How to evaluate on this task
You can evaluate an embedding model on this dataset using the following code:
import mteb
task = mteb.get_tasks(["StackExchangeClustering.v2"])
evaluator = mteb.MTEB(task)
model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)
To learn more about how to run models on mteb
task check out the GitHub repitory.
Citation
If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.
@article{geigle:2021:arxiv,
archiveprefix = {arXiv},
author = {Gregor Geigle and
Nils Reimers and
Andreas R{\"u}ckl{\'e} and
Iryna Gurevych},
eprint = {2104.07081},
journal = {arXiv preprint},
title = {TWEAC: Transformer with Extendable QA Agent Classifiers},
url = {http://arxiv.org/abs/2104.07081},
volume = {abs/2104.07081},
year = {2021},
}
@article{enevoldsen2025mmtebmassivemultilingualtext,
title={MMTEB: Massive Multilingual Text Embedding Benchmark},
author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
publisher = {arXiv},
journal={arXiv preprint arXiv:2502.13595},
year={2025},
url={https://arxiv.org/abs/2502.13595},
doi = {10.48550/arXiv.2502.13595},
}
@article{muennighoff2022mteb,
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
url = {https://arxiv.org/abs/2210.07316},
doi = {10.48550/ARXIV.2210.07316},
}
Dataset Statistics
Dataset Statistics
The following code contains the descriptive statistics from the task. These can also be obtained using:
import mteb
task = mteb.get_task("StackExchangeClustering.v2")
desc_stats = task.metadata.descriptive_stats
{
"test": {
"num_samples": 2048,
"number_of_characters": 117782,
"min_text_length": 19,
"average_text_length": 57.5107421875,
"max_text_length": 148,
"unique_texts": 116,
"min_labels_per_text": 7,
"average_labels_per_text": 1.0,
"max_labels_per_text": 37,
"unique_labels": 121,
"labels": {
"53": {
"count": 24
},
"26": {
"count": 15
},
"108": {
"count": 10
},
"4": {
"count": 24
},
"12": {
"count": 27
},
"68": {
"count": 11
},
"86": {
"count": 28
},
"37": {
"count": 32
},
"47": {
"count": 30
},
"7": {
"count": 16
},
"15": {
"count": 26
},
"119": {
"count": 18
},
"88": {
"count": 20
},
"102": {
"count": 18
},
"49": {
"count": 15
},
"2": {
"count": 36
},
"1": {
"count": 29
},
"40": {
"count": 8
},
"101": {
"count": 19
},
"91": {
"count": 37
},
"79": {
"count": 21
},
"5": {
"count": 13
},
"35": {
"count": 16
},
"41": {
"count": 14
},
"63": {
"count": 23
},
"73": {
"count": 8
},
"99": {
"count": 17
},
"42": {
"count": 15
},
"110": {
"count": 27
},
"64": {
"count": 21
},
"0": {
"count": 16
},
"18": {
"count": 12
},
"55": {
"count": 13
},
"34": {
"count": 16
},
"90": {
"count": 27
},
"114": {
"count": 17
},
"77": {
"count": 8
},
"32": {
"count": 26
},
"109": {
"count": 17
},
"78": {
"count": 12
},
"104": {
"count": 11
},
"96": {
"count": 19
},
"70": {
"count": 26
},
"105": {
"count": 19
},
"80": {
"count": 11
},
"38": {
"count": 17
},
"50": {
"count": 14
},
"30": {
"count": 18
},
"83": {
"count": 18
},
"52": {
"count": 10
},
"93": {
"count": 15
},
"58": {
"count": 9
},
"71": {
"count": 19
},
"16": {
"count": 14
},
"6": {
"count": 18
},
"89": {
"count": 16
},
"87": {
"count": 18
},
"14": {
"count": 8
},
"117": {
"count": 9
},
"66": {
"count": 28
},
"29": {
"count": 22
},
"82": {
"count": 13
},
"100": {
"count": 26
},
"45": {
"count": 19
},
"51": {
"count": 12
},
"60": {
"count": 24
},
"81": {
"count": 27
},
"17": {
"count": 28
},
"103": {
"count": 10
},
"33": {
"count": 15
},
"95": {
"count": 20
},
"3": {
"count": 8
},
"113": {
"count": 10
},
"21": {
"count": 12
},
"39": {
"count": 27
},
"112": {
"count": 9
},
"85": {
"count": 17
},
"65": {
"count": 13
},
"24": {
"count": 20
},
"75": {
"count": 16
},
"111": {
"count": 8
},
"36": {
"count": 22
},
"74": {
"count": 23
},
"84": {
"count": 15
},
"94": {
"count": 21
},
"44": {
"count": 13
},
"61": {
"count": 25
},
"56": {
"count": 19
},
"107": {
"count": 8
},
"28": {
"count": 19
},
"11": {
"count": 14
},
"10": {
"count": 13
},
"92": {
"count": 8
},
"43": {
"count": 20
},
"48": {
"count": 7
},
"106": {
"count": 19
},
"120": {
"count": 14
},
"25": {
"count": 19
},
"46": {
"count": 14
},
"116": {
"count": 13
},
"54": {
"count": 14
},
"20": {
"count": 25
},
"13": {
"count": 10
},
"19": {
"count": 15
},
"22": {
"count": 20
},
"23": {
"count": 12
},
"72": {
"count": 18
},
"8": {
"count": 33
},
"27": {
"count": 9
},
"67": {
"count": 7
},
"97": {
"count": 11
},
"62": {
"count": 17
},
"69": {
"count": 11
},
"118": {
"count": 13
},
"31": {
"count": 8
},
"76": {
"count": 12
},
"59": {
"count": 11
},
"98": {
"count": 17
},
"115": {
"count": 10
},
"9": {
"count": 7
},
"57": {
"count": 7
}
}
}
}
This dataset card was automatically generated using MTEB
- Downloads last month
- 2,473