Dataset Viewer
Auto-converted to Parquet
id
stringlengths
9
9
title
stringlengths
4
231
abstract
stringlengths
17
2.86k
categories
sequencelengths
1
10
embedding
sequencelengths
384
384
0704.0001
Calculation of prompt diphoton production cross sections at Tevatron and LHC energies
A fully differential calculation in perturbative quantum chromodynamics is presented for the production of massive photon pairs at hadron colliders. All next-to-leading order perturbative contributions from quark-antiquark, gluon-(anti)quark, and gluon-gluon subprocesses are included, as well as all-orders resummation of initial-state gluon radiation valid at next-to-next-to-leading logarithmic accuracy. The region of phase space is specified in which the calculation is most reliable. Good agreement is demonstrated with data from the Fermilab Tevatron, and predictions are made for more detailed tests with CDF and DO data. Predictions are shown for distributions of diphoton pairs produced at the energy of the Large Hadron Collider (LHC). Distributions of the diphoton pairs from the decay of a Higgs boson are contrasted with those produced from QCD processes at the LHC, showing that enhanced sensitivity to the signal can be obtained with judicious selection of events.
[ "hep-ph" ]
[ -0.156532302498817, -0.009849769994616, 0.00018175512377600003, 0.042825125157833, 0.041687250137329004, -0.041802916675806004, -0.048837717622518005, 0.058298673480749005, 0.045866809785366, -0.029216323047876, 0.014007752761244002, -0.03299069404602, -0.037642024457454, -0.007823763415217, 0.01960969902575, 0.019830517470836, -0.021747171878814003, -0.06129541620612101, -0.082282662391662, -0.021338846534490002, -0.048137921839952004, 0.028107617050409, -0.034191880375146005, 0.020694715902209, 0.075170531868934, -0.089081339538097, -0.028267951682209, -0.006740303244441001, 0.045626819133758004, 0.013720552437007, 0.024570018053054, -0.014596370048820001, -0.022001806646585003, 0.035376049578189, 0.07275602966547001, 0.048512298613786003, 0.030321231111884003, -0.09438397735357201, 0.033207383006811, -0.030268989503383, 0.042913995683193006, 0.005985657218843, 0.0029201612342140003, -0.017928896471858, 0.063810564577579, 0.022821528837084003, 0.027265729382634003, -0.05577294155955301, -0.049449469894170005, 0.003937886096537, 0.07088603824377, 0.050149973481893005, -0.012203608639538, 0.068006575107574, -0.052437804639339, 0.022821824997663002, -0.0019421075703570001, -0.09284985810518201, 0.031897909939289, 0.06648337841033901, -0.123174078762531, 0.000980713055469, -0.07068333029747001, -0.018118727952241002, 0.029658025130629, -0.012069569900631, -0.025972500443458002, 0.019617669284343, 0.035000309348106, 0.039449281990528, 0.016846207901835, 0.027087528258562, -0.06603733450174301, -0.030748927965760002, -0.011678651906549, 0.038383748382329004, 0.056188698858022, 0.007214448414742, -0.023693051189184, -0.07997349649667701, 0.052807513624429, -0.007976495660841, 0.011605333536863001, -0.049559228122234004, 0.0011020438978440001, 0.016094617545604, -0.044252395629882, 0.11726169288158401, 0.009718122892081, -0.025546643882989002, -0.024603182449936003, -0.11445033550262401, -0.042580589652061004, -0.013851129449903, 0.012616166844964001, 0.15303449332714, 0.076094806194305, -0.08053819835186, 0.056748174130916006, 0.036482725292444, 0.029339384287595003, -0.014293796382844, 0.017465112730860002, 0.007733801379799001, 0.047638557851314, -0.012707666493952, 0.037907425314188004, 0.08006579428911201, -0.005076488945633, -0.076613560318946, 0.10790816694498001, 0.026733364909887, 0.022462628781795002, -0.060222025960683004, -0.063842795789241, 0.051705528050661004, -0.016857365146279002, 0.032899808138608, -0.020475488156080003, -0.07392512261867501, 0.036833535879850006, 0.006420610938221, 0.035203848034143004, 0.05568540468811901, 0.025853661820292, -0.028293590992689, -0.028219968080520002, 6.864339669245057e-33, 0.072955295443534, -0.017597705125808, 0.028873808681964003, -0.027799068018794, -0.06919313222169801, 0.052972462028265006, 0.008120190352201, -0.058500230312347, -0.008946294896304, 0.017288682982325002, -0.06456907093524901, -0.066706113517284, -0.0021619410254060003, -0.088226586580276, -0.032212987542152, -0.010462978854775, -0.026453543454408004, 0.051758773624897, -0.012082261033356, 0.050816930830478, -0.000145943820825, 0.0052274935878810005, -0.059575550258159006, 0.003217882942408, 0.050661835819482005, 0.09944779425859401, -0.019563326612114, 0.034289386123418, -0.12099505215883201, 0.027662716805934, -0.010259998030960001, 0.100950635969638, -0.014053613878786002, 0.07109996676445, 0.027974706143140002, -0.042627681046724, -0.051325578242540006, -0.049811821430921006, 0.046105775982141, -0.012201203964650001, 0.024117747321724003, 0.050011321902275, -0.08013231307268101, -0.07412213832139901, 0.023456934839487003, -0.017757600173354, 0.06927947700023601, -0.017921408638358, -0.010323753580451001, -0.031676724553108, -0.000574823410715, 0.036938600242137, 0.028102440759539, -0.0037961120251560005, 0.015350881963968001, -0.030065834522247002, 0.11148207634687402, -0.022452561184763003, 0.065623395144939, 0.096127122640609, -0.026714902371168, 0.038061410188674004, -0.005861833225935, 0.018870832398533002, -0.08393919467926, 0.019262064248323, -0.027362182736396002, 0.011503553949296001, 0.0005195644334880001, 0.060892052948474, -0.0027924755122510003, 0.035873536020517, -0.023000279441475, -0.11463723331689801, 0.158667519688606, -0.004839609842747001, -0.0040668114088470006, 0.067212790250778, 0.001811951515264, 0.033270418643951, 0.015380323864519001, -0.014329391531646002, -0.037972170859575, 0.025522822514176, -0.025851314887404, 0.007152282167226001, -0.036770075559616006, -0.014133033342659002, -0.07122079282999001, 0.0035979999229310005, -0.051803383976221, 0.014823660254478002, 0.09191904962062801, -0.01243525929749, -0.080553203821182, -6.356226358630371e-33, -0.05689465627074201, 0.03240206465125, 0.015599751845002001, 0.02138602361083, -0.067783243954181, -0.059261947870254, -0.039775602519512, -0.038780070841312006, 0.035451728850603, 0.057852022349834005, 0.005140646360814001, 0.019083244726061002, -0.12653785943984902, -0.046361308544874004, -0.027974924072623003, 0.072103887796401, 0.026208976283669003, 0.015764804556965002, 0.045196294784545, 0.01790914312005, 0.037982109934091006, 0.024761077016592, 0.026108324527740003, -0.001556989154778, 0.0075272903777650006, -0.019031122326850003, 0.095736742019653, -0.095680795609951, 0.041689902544021, -0.047510620206594, -0.08368454873561801, -0.050684124231338, 0.020706443116068, 0.09580511599779101, 0.030411375686526004, -0.034584116190671005, 0.08980008214712101, 0.012433179654181, 0.028520451858639002, -0.029566694051027003, 0.095071591436862, 0.07458861172199201, -0.030662914738059002, 0.012365654110908002, 0.008480031043291, 0.042592324316501, -0.049610521644353006, 0.032340958714485, -0.023062845692038002, -0.016537154093384, -0.042806882411241004, 0.012675746344029001, 0.027677163481712, 0.08051262050867, -0.052474781870841, -0.036481019109487006, 0.000937900913413, 0.009075255133211, -0.024652950465679002, -0.01670829206705, -0.079487793147563, -0.124236300587654, -0.0032478692010040004, -0.033679913729429, 0.028441300615668002, 0.041658625006675006, -0.054724171757698004, 0.065446235239505, 0.003843693761155, -0.038159430027008, 0.021642560139298002, -0.077618345618247, 0.06267461180686901, -0.023220181465148003, -0.028990805149078, 0.008873328566551, 0.111760810017585, -0.10209619253873801, 0.125199019908905, 0.0038298289291560004, -0.050481583923101, 0.043337292969226004, -0.019759809598326003, -0.009564686566591001, 0.028689783066511, 0.07517641037702501, -0.022212136536836003, 0.071026392281055, -0.010035608895123001, -0.090455003082752, -0.08829888701438901, 0.043308552354574, 0.11464310437440801, 0.040368191897869006, 0.080662004649639, -4.7869868069483346e-8, 0.036410737782716, -0.06256364285945801, -0.029642406851053002, -0.00108196272049, 0.052823912352323005, 0.007394278421998001, -0.034581806510686, 0.022757524624466, -0.027756728231906003, 0.050463803112506006, 0.08120144903659801, -0.008372694253921, -0.043935380876064, -0.10332418233156201, -0.015182331204414002, 0.04156507179141, 0.009032092988491001, -0.051525641232728, -0.032202590256929, 0.004382566548883001, 0.06390769034624101, 0.039332173764705006, 0.064967073500156, -0.01445120293647, -0.10163050889968801, 0.004415520932525, -0.001216449541971, 0.022853091359138003, -0.009176744148135001, -0.045613572001457006, 0.03086868673563, -0.047946579754352, -0.06457501649856501, 0.037395536899566005, 0.001511169481091, -0.031505171209573, -0.059329502284526006, -0.013072497211396, 0.153718397021293, 0.077322393655776, -0.044531378895044, 0.045155327767133005, -0.043269541114568, 0.079567961394786, -0.047942921519279, 0.016080658882856, -0.036457870155572, -0.07184930890798501, -0.043666925281286004, 0.037094894796609004, -0.032134748995304004, -0.026824442669749003, 0.006843043491244, -0.05924624577164601, -0.059982683509588006, -0.006299801170825001, -0.027087572962045003, -0.034921031445264004, 0.0038388543762260005, -0.01173401530832, 0.11425928026437701, -0.013897941447794, -0.049476198852062, 0.049007005989551 ]
0704.0002
Sparsity-certifying Graph Decompositions
We describe a new algorithm, the $(k,\ell)$-pebble game with colors, and use it obtain a characterization of the family of $(k,\ell)$-sparse graphs and algorithmic solutions to a family of problems concerning tree decompositions of graphs. Special instances of sparse graphs appear in rigidity theory and have received increased attention in recent years. In particular, our colored pebbles generalize and strengthen the previous results of Lee and Streinu and give a new proof of the Tutte-Nash-Williams characterization of arboricity. We also present a new decomposition that certifies sparsity based on the $(k,\ell)$-pebble game with colors. Our work also exposes connections between pebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and Westermann and Hendrickson.
[ "math.CO", "cs.CG" ]
[ 0.011608333326876, 0.037656318396329005, 0.008663988672196001, -0.06791180372238101, 0.004836788866668, -0.03156679496169, 0.030588788911700002, -0.10043661296367601, -0.034346096217632, 0.03999949991703, -0.06152690574526701, -0.018924012780189, 0.067679204046726, 0.05716785416007, -0.004576847888529001, 0.06070588529109901, 0.044322706758975004, 0.007878673262894001, -0.010107878595590002, -0.029769549146294004, -0.080557651817798, -0.09729911386966701, -0.100500501692295, -0.009412094950675002, 0.059501063078641, -0.030030306428670002, -0.018611494451761003, 0.020694751292467003, 0.033751126378774005, -0.012849683873355002, 0.001642773277126, -0.020777294412255003, 0.025985274463891, -0.011375249363481001, 0.003959860187023, 0.09650922566652201, -0.038043528795242004, -0.023842919617891003, -0.045774199068546004, 0.047900069504976, 0.014004724100232001, 0.06863377243280401, -0.043701361864805006, 0.040314733982086, -0.014256287366151001, 0.061591144651174004, -0.083681166172027, 0.006871121935546001, -0.033100169152021006, -0.06991480290889701, -0.035231418907642004, -0.067354030907154, -0.06500194966793, -0.032699853181838004, -0.010499935597181001, -0.06840658187866201, -0.00032098381780000003, -0.041792422533035, 0.0253278426826, 0.0018878225237130002, 0.066721692681312, -0.081609390676021, -0.013421720825135002, 0.032207325100898, -0.001243397127836, 0.028074268251657004, 0.093304231762886, -0.040780253708362, -0.025616047903895003, 0.06783337146043701, 0.054795127362012, 0.021268941462039, -0.020166711881756002, 0.069193705916404, 0.015377853997051001, 0.037011515349149, 0.025926124304533, -0.032739885151386004, -0.090519979596138, 0.002194017171859, -0.032898321747779, -0.010258113034069, -0.09299337863922101, -0.043535165488719, 0.036487869918346, -0.052759326994419, -0.06740517169237101, 0.008734812960028001, 0.018605349585413003, 0.000877778336871, -0.065250717103481, 0.037763819098472005, -0.023521469905972002, 0.058961313217878, -0.062477666884660006, 0.007369810249656001, 0.038184192031621, -0.013255543075501001, -0.0021113210823380003, 0.101947970688343, -0.032814957201480005, -0.010387730784714002, 0.07193420827388701, -0.0006392929353750001, 0.03454902768135, 0.068295888602733, -0.036294624209403, 0.036651112139225006, -0.024022847414016002, -0.00012523558689200002, 0.056738622486591006, 0.024460408836603, 0.041980072855949006, 0.138103008270263, -0.088600426912307, -0.057746741920709006, -0.0007413029670710001, -0.031816441565752, 0.07318643480539301, 0.064320638775825, 0.130207955837249, -0.031496699899435, -0.015503612346947, -0.02826646156609, 0.07762087136507001, 0.008044959977269001, -0.004619698505848, 1.3273231297199131e-33, 0.09960631281137401, 0.055727671831846, 0.059966564178466006, 0.01854134351015, 0.089748620986938, -0.037280015647411, -0.000519062101375, -0.017557479441165, 0.0015713083557780002, -0.009591380134224, -0.076182194054126, 0.029584892094135003, 0.0011515077203510002, 0.041745956987142, 0.061004169285297005, -0.036067582666873, 0.062916867434978, -0.017658341675996, 0.027571627870202002, -0.06828936189413, 0.042464885860681006, 0.009745636954903, 0.001999044325202, -0.049723234027624005, -0.011773027479648, 0.013037834316492001, 0.028115602210164, -0.09147959202528, 0.016959998756647002, 0.003106927499175, -0.060815196484327004, -0.024045662954449, 0.001059086294844, 0.149270921945571, 0.013935537077486002, 0.023018393665552, -0.031516794115304, -0.050534531474113006, 0.010629237629473001, 0.000828231044579, -0.003334564622491, 0.007345280144363001, -0.004829141777008, 0.003057054709643, -0.045213773846626004, -0.017584262415766, 0.047329619526863, 0.007826025597751, -0.038435611873865, 0.016180414706468003, 0.020826805382966003, -0.042161650955677005, 0.019937418401241, 0.032496623694896004, 0.018314475193619003, -0.049269832670688005, 0.032886855304241, -0.025166859850287, -0.035596936941146004, 0.018158612772822002, 0.05614558607339801, 0.022652318701148002, 0.058592237532138006, -0.005305256228893, -0.011411214247345002, 0.04810958728194201, -0.06609077751636501, -0.038841366767883, 0.032748505473136, -0.073416508734226, -0.052394371479749006, 0.053315877914428, 0.023147374391555002, -0.051403775811195006, 0.024202696979045, -0.03222357109189, 0.102942593395709, -0.132362440228462, -0.066926717758178, -0.042744725942611, -0.089742071926593, -0.068447850644588, -0.026700900867581003, -0.09890439361333801, -0.117886215448379, -0.069214865565299, 0.064444042742252, 0.035664547234773004, 0.023556958884, -0.07525258511304801, -0.07503584027290301, 0.019390890374779, -0.042732361704111, -0.039921823889017, 0.049732342362403, -2.3760287516980052e-33, -0.073176838457584, -0.021199101582169002, 0.011760928668081, 0.11275950074195801, 0.016481315717101, -0.074639305472373, -0.0269829146564, -0.020954329520463003, -0.012977400794625001, -0.019704075530171002, -0.091305650770664, 0.074707560241222, 0.060083828866481004, 0.009677586145699, -0.018328821286559, 0.029826901853084002, -0.022519489750266002, 0.022839032113552003, -0.053997412323951006, -0.009158528409898, -0.056496258825063005, 0.099011354148387, -0.028046125546097003, -0.044480983167886005, 0.09959522634744601, 0.018581615760922, -0.038689646869897, -0.031117159873247, -0.005950906779617001, 0.080479554831981, 0.027520198374986003, -0.11328573524951902, -0.039015673100948, -0.04200242832303, 0.019213691353797, 0.034216135740280006, 0.034141134470701, 0.050411969423294005, -0.008461747318506001, 0.054050918668508, -0.0063054799102240005, -0.033888667821884, -0.10501825064420701, 0.06609319895505901, -0.021210789680480003, 0.060862779617309, -0.007362246047705001, 0.005599892698228, -0.0334286801517, -0.005343473982065, 0.012134294025599, 0.047442339360713, 0.065449722111225, 0.002163499593734, 0.023152373731136003, -0.054165340960025, -0.012230386026203001, 0.057233959436416, -0.029402827844023004, -0.020510705187916003, -0.042412031441926006, 0.019461628049612, -0.134509027004241, 0.100332051515579, 0.049007978290319006, 0.0038621281273660004, -0.019946157932281, -0.051163550466299, -0.056757703423500006, 0.024742553010582, -0.016055349260568, 0.062375232577323005, -0.05877478420734401, 0.0010565627599130002, 0.057489618659019005, 0.079673424363136, -0.0030482034198930003, 0.09654212743043901, -0.053251434117555, 0.062045283615589, -0.019603153690695003, 0.032473199069499005, 0.043880566954612, -0.017208699136972, -0.020183017477393, 0.050519756972789, 0.011482043191790001, 0.012392080388963, 0.00880230218172, 0.0007570857414970001, 0.07668288052082001, 0.020483091473579, 0.08250431716442101, -0.011282275430858002, 0.027153888717293004, -4.122775720816207e-8, -0.080157473683357, 0.038790300488471006, -0.015249926596879002, -0.048040378838777, 0.08405841886997201, -0.047282364219427005, 0.13893072307109802, 0.005066019948571, -0.044103030115365004, 0.050911311060190007, 0.07494288682937601, -0.019545407965779003, -0.018615238368511002, 0.001068182755261, 0.028815113008022003, 0.017627254128456, 0.010832450352609001, -0.012690255418419002, -0.027872044593095002, 0.11895110458135601, -0.071431837975978, -0.018854662775993, -0.055851466953754, 0.059810522943735005, -0.044184323400259004, -0.02237838320434, -0.054704707115888006, 0.0038574787322430003, 0.053543910384178, 0.066973887383937, -0.018305849283933, 0.026177860796451003, 0.11855732649564701, -0.009330121800303001, -0.012265948578715002, 0.130376353859901, -0.014172008261084001, 0.07919017970561901, -0.11054726690053901, -0.025381693616509, -0.114788345992565, 0.016154002398252, -0.06027553603053001, -0.065792977809906, 0.022155487909913, 0.014143667183816001, -0.025192925706505002, -0.024186974391341, -0.0061738677322860005, -0.0027048420161, -0.09216839820146501, -0.004258560948073, -0.053750365972518005, -0.042108725756406, 0.044355489313602, 0.033454123884439003, -0.039369825273752004, 0.012037156149744, 0.122286260128021, -0.03602160513401, -0.017733303830027, -0.002014119876548, 0.0029643049929290004, 0.01802896335721 ]
0704.0003
The evolution of the Earth-Moon system based on the dark matter field fluid model
The evolution of Earth-Moon system is described by the dark matter field fluid model proposed in the Meeting of Division of Particle and Field 2004, American Physical Society. The current behavior of the Earth-Moon system agrees with this model very well and the general pattern of the evolution of the Moon-Earth system described by this model agrees with geological and fossil evidence. The closest distance of the Moon to Earth was about 259000 km at 4.5 billion years ago, which is far beyond the Roche's limit. The result suggests that the tidal friction may not be the primary cause for the evolution of the Earth-Moon system. The average dark matter field fluid constant derived from Earth-Moon system data is 4.39 x 10^(-22) s^(-1)m^(-1). This model predicts that the Mars's rotation is also slowing with the angular acceleration rate about -4.38 x 10^(-22) rad s^(-2).
[ "physics.gen-ph" ]
[ 0.039972614496946, -0.024627147242426, 0.059972889721393, -0.015364713966846001, 0.04483814537525101, -0.033622208982706, -0.108420141041278, 0.045315135270357, -0.006271466612815001, 0.015210637822747002, -0.005329419393092, -0.025275480002164, 0.011509659700095001, -0.099443100392818, -0.04835507273674, -0.070254825055599, -0.015922075137495002, -0.010917961597442, -0.055893111974, 0.001398235559463, -0.06474908441305101, 0.059154901653528005, -0.022589797154068003, 0.055427722632884, -0.063905157148838, 0.079106301069259, 0.006188177037984, 0.025658089667558, -0.023510601371526003, -0.07426077127456601, -0.039193391799926, 0.004097550176084, 0.002131008775904, -0.023190174251794003, -0.044994421303272004, 0.028904965147376, -0.024926811456680003, -0.015148933976888001, -0.007750038523226001, -0.032566729933023, -0.00047999765956700005, -0.055152583867311006, 0.066001787781715, -0.022102134302258002, 0.034045878797769005, 0.06095826998353, 0.06771788001060401, -0.031216071918606002, -0.011711474508047002, 0.005676066502928, -0.0032936735078690003, -0.0023074166383590003, -0.032367169857025, 0.071910016238689, -0.06398531794548, -0.09775769710540701, 0.016715787351131002, 0.006047117058187001, 0.023813121020793002, -0.026474487036466002, 0.0011784108355640001, 0.023202395066618003, -0.003329796250909, -0.009360904805362, 0.034280404448509, 0.031367693096399, -0.118267588317394, -0.014978315681219, -0.047038052231073005, 0.012222174555063001, -0.040978997945785, 0.068871587514877, -0.035050749778747003, -0.06708985567092801, -0.071732871234416, 0.028986295685172, 0.037549823522567, 0.07728206366300501, 0.065180733799934, -0.040431879460811004, 0.023916052654385, 0.008409403264522, 0.010508989915251002, 0.019574951380491, -0.065276749432086, -0.037073120474815, -0.066651374101638, 0.078732252120971, -0.06345869600772801, -0.002648329129442, 0.08321885019540701, 0.037151839584112, -0.040912684053182005, -0.026316203176975, 0.081958755850791, 0.04766185209155, -0.063351415097713, -0.020122045651078002, 0.022997280582785003, -0.018064415082335, -0.021646425127983003, 0.09324308484792701, 0.001055085216648, 0.096382819116115, 0.087286807596683, 0.00208784150891, 0.040577840059995006, 0.003014556830748, 0.026401923969388, 0.044654060155153004, -0.006057592574506001, 0.006027262657880001, -0.070382155478, -0.0039142654277380005, -0.04743161797523401, -0.033904545009136006, -0.024032624438405002, 0.042403258383274, -0.108021706342697, 0.031704708933830004, 0.033380508422851, 0.042323794215917004, -0.051006551831960005, -0.0067671779543160004, 0.073951579630374, -0.031452193856239, -0.0683214366436, 6.425264060209124e-34, 0.033136762678623005, 0.012307077646255, -0.006908567622303001, 0.015704968944191003, -0.025274934247136, -0.006166239734739, 0.006778351496905001, 0.077039584517478, -0.072168052196502, 0.053072515875101006, -0.03981159627437501, 0.040475144982337, 0.004703356884419, -0.042384024709463, -0.055908855050802, 0.06858253479003901, 0.018495175987482, -0.038598977029323, 0.019149951636791, 0.013097176328301001, 0.029378116130828004, -0.07002065330743701, -0.066747166216373, -0.069516226649284, -0.024398909881711003, -0.010804842226207001, -0.026062292978167003, -0.008383817039430001, 0.0008404033142140001, -0.031321883201599, -0.044597540050745, 0.006966847460716001, 0.017619531601667, 0.048129051923751005, 0.008911240845918001, 0.023251740261912002, 0.0035177154932170005, 0.012187859043478001, 0.005772300530225, -0.074006766080856, 0.078464798629283, 0.017345659434795, -0.015065746381878001, -0.09158543497323901, 0.04331677034497201, 0.024033278226852, 0.08461118489503801, -0.12466811388731001, 0.071518249809741, 0.010106129571795, 0.14032977819442702, 0.0033138252329080005, -0.048078954219818004, 0.07910338044166501, 0.09096473455429001, -0.010248037055134001, -0.024019431322813003, 0.025336595252156, -0.07909952104091601, 0.13665443658828702, 0.032457310706377, -0.047510396689176004, 0.051829010248184, -0.013186841271817, 0.07894867658615101, 0.029199918732047, 0.014209222048521002, 0.030686056241393003, -0.067582197487354, -0.026359656825661004, -0.012284730561077001, -0.09214241057634301, 0.009184884838759, 0.026449097320437, -0.036541316658258, -0.005064879078418001, 0.06834632903337401, -0.10680472105741501, 0.026549965143203003, 0.014962216839194001, -0.030973864719271004, 0.06056592240929601, -0.016044951975345, -0.09759351611137301, -0.07306304574012701, -0.016931697726249, 0.043346323072910004, 0.104801729321479, 0.020571107044816003, -0.080669403076171, 0.042041223496198, -0.051172260195016, 0.026999950408935002, 0.033043727278709, -0.009411858394742, -3.9716820687156184e-33, -0.070682890713214, -0.063127271831035, -0.054466504603624004, 0.025369212031364, 0.09781099110841701, 0.0035754239652300004, 0.007699148729443, 0.05185193568468, -0.04409159719944, 0.020945500582456002, 0.097553148865699, -0.003171682357788, 0.045987974852323005, -0.032829344272613005, 0.097918264567852, -0.042766295373439005, 0.010609269142150001, 0.00034142986987700005, 0.076604165136814, 0.017090998589992003, 0.052060637623071004, 0.075145363807678, 0.069563701748847, -0.073981188237667, -0.049637239426374005, -0.035440150648355005, 0.049067676067352003, 0.02191007323563, -0.042238801717758005, 0.09775972366333001, -0.086037307977676, 0.050168145447969006, 0.008820591494441001, -0.032605271786451, -0.066186614334583, 0.078791037201881, -0.058370102196931006, -0.017835041508078003, 0.0044048344716420005, -0.013587533496320001, 0.019815955311059, 0.014561654068529, 0.019662523642182003, -0.086438909173011, 0.044020511209964, 0.004928553476929, 0.025166939944028, 0.126307234168052, 0.016228485852479, -0.0000254758633673191, 0.03872587159276, -0.04673560336232101, -0.08995147049427, 0.000599401828367, -0.034195836633443, 0.08914127945899901, -0.0011419210350140001, 0.041167240589857004, -0.063419215381145, -0.039379056543111, -0.012700052000582001, 0.018063025549054, -0.04288658127188601, -0.079874172806739, -0.008908653631806, -0.021828617900609002, -0.029233094304800002, 0.031970828771591, 0.045917812734842, 0.052649099379777006, -0.020227670669555, -0.024381753057241003, 0.05125271901488301, 0.078198373317718, 0.067948810756206, -0.0018294785404570002, 0.081908099353313, -0.022740244865417, 0.06348194181919001, 0.004469441249966, -0.074981585144996, 0.09924110025167401, 0.063339471817016, -0.051281243562698, -0.019081700593233, -0.09195020794868401, -0.09270404279232, -0.025736367329955, -0.09541031718254, 0.066452696919441, -0.07857496291399, -0.142467677593231, -0.0030682734213760003, -0.007794545032083, -0.09324231743812501, -4.8717929246322456e-8, 0.044896129518747004, -0.008547740988433, 0.069491945207118, 0.07340046018362001, -0.003959538415074001, 0.053360261023044, 0.032379627227783, 0.08695161342620801, 0.014083025045692001, 0.004312372766435001, 0.07785420864820401, 0.011221599765121, 0.026667537167668003, -0.069448180496692, -0.037465028464794006, 0.10468259453773401, 0.01771693304181, -0.010800924152135, 0.007110471371561001, 0.027137489989399, 0.09628554433584201, 0.040954574942588, -0.014346117153763, -0.053249523043632, 0.033449180424213, -0.002980635501444, 0.046276777982711, -0.037977706640958, -0.05292580276727601, -0.030481671914458, -0.011795112863183, -0.04671289399266201, 0.056828860193490004, -0.11397965997457501, -0.042857162654399004, -0.037952776998281, -0.062421903014183, -0.010537143796682, 0.032019842416048, 0.042122479528188005, 0.026532093062996, 0.062567129731178, -0.08509325236082001, -0.05470259487628901, -0.030711006373167003, 0.054271418601274005, -0.020771177485585, -0.047948315739631, -0.001264035468921, 0.012252180837094001, -0.040823969990015, 0.019386660307645003, 0.01903898641467, -0.056390512734651004, 0.077432386577129, -0.037541948258876, -0.054981954395771006, 0.030487891286611002, -0.012915814295411, 0.005081039387732, -0.029819536954164002, -0.062868319451808, 0.023938322439789002, 0.006866023875772001 ]
0704.0004
A determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata
We show that a determinant of Stirling cycle numbers counts unlabeled acyclic single-source automata. The proof involves a bijection from these automata to certain marked lattice paths and a sign-reversing involution to evaluate the determinant.
[ "math.CO" ]
[ -0.072438545525074, -0.016826102510094, -0.057654924690723, 0.007210647687315001, -0.008430263958871, 0.057396739721298, 0.033863808959722005, -0.049570698291063, -0.001025282428599, -0.05525761842727601, 0.023326253518462, -0.08718047291040401, 0.081449933350086, -0.018179785460233, -0.024723889306187, 0.012303291819989001, -0.043483458459377004, -0.05412136018276201, 0.038875859230756, -0.059204190969467003, -0.014083324931561001, 0.0051228972151870006, -0.051050305366516, -0.025837190449237, 0.058082327246665004, -0.035507801920175004, -0.09122546762228001, -0.010480505414307001, 0.06841427832841801, -0.006907155271619001, -0.109018042683601, 0.120929226279258, 0.025379676371812, 0.019246328622102002, 0.084483295679092, -0.026048552244901, 0.035733308643102, 0.027539892122149003, 0.047038197517395006, 0.048939019441604004, 0.071221806108951, 0.007952871732413, 0.065605878829956, 0.005824256222695, -0.026593947783112002, 0.033510688692331, 0.027706678956747003, 0.025958344340324003, -0.10390378534793801, -0.022579971700906, 0.036844193935394, 0.066193677484989, -0.047027055174112, 0.005381766241043, -0.030585126951336004, -0.08857946842908801, -0.015956044197082003, -0.06737980246543801, 0.034260366111993006, -0.028681928291916, 0.014561178162693, -0.013007816858589, -0.10830041021108601, -0.01903879456222, 0.046732135117053, 0.07259204238653101, -0.008219781331717, -0.034124955534935004, 0.006411138456314001, 0.07312023639678901, -0.018442988395690002, -0.089415296912193, -0.016343843191862002, 0.026298509910702, 0.06531778723001401, 0.039741422981023004, -0.005985126364976, -0.07866406440734801, -0.041354652494192005, -0.067069642245769, -0.07147680222988101, 0.010094052180647, -0.0017347278771920002, -0.006203370634466, -0.00009229898569174112, 0.023627741262316003, -0.044204939156770005, 0.010543641634285, 0.08972115069627701, 0.032717522233724004, -0.0035720409359780003, -0.019394438713788, 0.144029706716537, 0.017540734261274, -0.07405515760183301, 0.051348134875297005, 0.017093509435653003, 0.11711706221103602, 0.041451517492532, 0.058305174112319, 0.005459667183458, 0.08001229166984501, -0.002010295167565, -0.000314646575134, -0.046990692615509005, 0.04783795773983, -0.000845892936922, 0.000909993832465, -0.036781676113605, -0.023748351261019002, 0.0037987537216390005, -0.022906193509697, 0.04817563667893401, 0.040560722351074004, -0.036790177226066, -0.030567146837711, -0.018486766144633, 0.012368298135697, 0.031237732619047002, 0.001803051913157, 0.05331577360630001, -0.048986978828907006, -0.018593233078718, 0.09890516847372001, 0.05087002366781201, 0.020107422024011, -0.049778733402490005, 3.017034270067045e-33, -0.013066538609564, 0.040058143436908, 0.083219684660434, -0.004678082652390001, 0.101003341376781, -0.034882888197898004, -0.016895046457648, -0.080338835716247, -0.009912529028952, 0.06656310707330701, 0.025120582431554003, 0.15397873520851102, 0.014006852172315001, -0.017556758597493, -0.078018739819526, 0.025843571871519002, 0.010702976956963001, -0.019407702609896, 0.023212289437651003, -0.041929010301828, 0.047398645430803, 0.10588246583938501, 0.011967547237873001, -0.011477126739919002, -0.059860989451408005, -0.033708151429891, 0.018706558272242, 0.011463244445621001, 0.00866802688688, 0.035973940044641, -0.051844596862792004, 0.032627183943986005, 0.032642286270856004, 0.08840985596179901, 0.019563881680369002, -0.019109664484858003, -0.011773160658776, -0.005378026980906001, 0.006695815827697, -0.023145979270339002, 0.008880600333213001, 0.009498268365859, -0.044346489012241, -0.039124097675085005, 0.039352353662252, -0.062119301408529004, 0.00021938155987200002, 0.00809418130666, -0.029837114736437003, 0.008013915270566, 0.03241991251707, -0.014799983240664002, -0.018540171906352, -0.06957402080297401, -0.06773740053176801, 0.02671568095684, 0.005088282749056001, 0.041168734431266, 0.0072585353627800005, 0.107240058481693, -0.088552549481391, 0.07969509065151201, -0.009922948665916, -0.026941327378153003, -0.026504430919885, 0.026516873389482002, -0.027748251333832002, -0.030357006937265004, 0.0994358882308, 0.025166742503643, -0.0386782027781, 0.031472720205783004, -0.08473974466323801, 0.025750352069735003, 0.05955034866929, -0.049476344138383005, 0.050664268434047005, -0.08672558516263901, -0.044529728591442004, 0.056906595826148, -0.10911498218774701, 0.057774577289819, -0.023958753794431003, -0.022086150944232, 0.06013541296124401, -0.067353710532188, -0.081459291279315, -0.005964044947177001, -0.08362690359354001, -0.059071417897939, 0.05699106305837601, -0.071021370589733, 0.065510384738445, 0.030006421729922003, 0.009638212621212, -4.7921639012781284e-33, -0.026333076879382, -0.091586217284202, 0.07302700728178001, 0.018042676150798003, -0.06220523267984301, -0.043918982148170006, 0.017008058726787, 0.037556387484073, 0.031130399554967002, 0.023452635854482002, 0.046091977506875006, 0.11491132527589701, 0.042033445090055, 0.092491492629051, 0.016847424209117, -0.078929059207439, 0.10316789895296001, 0.012342054396867001, -0.014619892463088001, 0.008263817988336001, 0.011947873979806001, 0.10732459276914501, 0.003536140779033, 0.034813024103641003, -0.093597628176212, 0.007487149443477, -0.062637396156787, 0.043513990938663004, 0.07313269376754701, 0.11353888362646102, 0.04899512603878901, -0.026827143505215003, 0.019981550052762, -0.029517088085412, 0.002521983580663, -0.060092512518167, 0.020770093426108003, 0.020822593942284, -0.06738048791885301, 0.06784486770629801, -0.010088670998811, -0.058313917368650006, -0.016701601445674, 0.00048221484757900006, 0.062574781477451, 0.028572812676429003, -0.024923579767346, 0.031152313575148003, -0.036551740020513, -0.04236214607954, 0.035794295370578, 0.040678843855857, -0.016342807561159002, -0.049709118902683, -0.013670716434717001, 0.021608989685773003, 0.032452512532472, 0.061192382127046, 0.044476367533206, -0.028229737654328003, -0.059188179671764006, -0.009694084525108, -0.004823683295398, -0.08837237209081601, 0.088892094790935, -0.10384243726730301, -0.035569902509450003, -0.022762449458241, 0.005955974105745001, 0.0032989457249640005, 0.084984168410301, 0.067131236195564, -0.07437913119792901, -0.048671204596757, -0.011214422062039, -0.020878246054053, 0.009817777201533, -0.028325036168098002, -0.018874013796448, -0.035387270152568005, -0.15069741010665802, 0.010481408797204, -0.06461814045906, 0.071942746639251, -0.151462793350219, -0.058936454355716004, 0.09990667551755901, -0.019332829862833002, 0.077469788491725, 0.021195514127612003, 0.026920096948742003, -0.008949407376348001, 0.065717428922653, 0.07421847432851701, -0.000638467085082, -3.197645881414246e-8, 0.002997043542563, 0.040380194783210005, 0.055504813790321, -0.017765145748853, 0.038115661591291004, -0.005103439092636, -0.029272822663187002, -0.005713732913136001, -0.006713682785630001, -0.025034200400114, 0.09189655631780601, 0.011652024462819, -0.015114244073629001, -0.015104664489626001, -0.038045473396778, 0.006190214306116001, -0.010640122927725001, 0.035617627203464, -0.034115370362997, 0.026748485863208, -0.019270366057753, -0.018315069377422, 0.014011184684932001, 0.008179415017366, -0.051728378981351006, -0.129372775554656, -0.017603542655706, -0.072087727487087, -0.07209930568933401, -0.014449809677898, 0.029064236208796, -0.035156421363353, 0.038783974945545, 0.016623236238956, -0.034817583858966, 0.024920031428337003, -0.025383200496435002, -0.060313757508993, 0.050140161067247, -0.024590648710727, -0.012180731631815002, -0.007405882235616001, -0.079318970441818, 0.021116154268383, -0.079682752490043, -0.033351156860589, -0.027016341686248002, -0.07357450574636401, -0.06613898277282701, -0.065456338226795, -0.029259964823722003, -0.062667876482009, -0.0073693855665620004, -0.092737644910812, -0.000540071865543, 0.009231204167008001, -0.002426498802378, -0.027229519560933002, 0.08531060814857401, 0.084574975073337, -0.034394171088933, 0.084875933825969, 0.02718099951744, -0.0067803286947300005 ]
0704.0005
From dyadic $\Lambda_{\alpha}$ to $\Lambda_{\alpha}$
In this paper we show how to compute the $\Lambda_{\alpha}$ norm, $\alpha\ge 0$, using the dyadic grid. This result is a consequence of the description of the Hardy spaces $H^p(R^N)$ in terms of dyadic and special atoms.
[ "math.CA", "math.FA" ]
[ 0.041168045252561, 0.0024056097026910004, -0.107305623590946, -0.003542532911524, 0.035340379923582, 0.04383815824985501, 0.046264503151178006, 0.010279029607772001, 0.025894371792674002, -0.11483709514141001, 0.019302509725093002, 0.03643151000142, -0.055798172950744004, 0.003400027519091, 0.002425281330943, -0.062029357999563, -0.041049163788557004, -0.004656797740608, -0.14307148754596702, 0.093111410737037, 0.025749482214450004, -0.029445322230458003, 0.041723348200321, 0.038071975111961004, -0.06826174259185701, 0.012801401317119002, 0.043998774141073005, 0.05983457714319201, 0.063660018146038, 0.015455598011612, 0.060857459902763006, -0.034762471914291, 0.093093797564506, 0.038810160011053, 0.029815664514899004, 0.027796125039458, -0.002178625436499, 0.00787596963346, -0.0033282786607740002, 0.020139418542385, -0.015861310064792, 0.036953169852495006, 0.051403518766164, 0.07555744051933201, -0.050716027617454, 0.0074201081879430005, -0.039016235619783006, 0.010428914800286002, -0.037650402635335006, -0.061036217957735006, -0.028955249115824002, 0.042557727545499004, 0.051829013973474, -0.007568975910544001, -0.053499598056077007, 0.017252311110496, 0.055339545011520004, -0.05531086400151201, 0.06785774230957001, -0.066227249801158, 0.013937404379248002, -0.029724251478910002, 0.058649323880672004, 0.025001099333167003, -0.05306764692068101, -0.015890950337052002, 0.040794853121042, 0.025092935189604003, -0.007824820466339, 0.054348468780517, -0.07038469612598401, -0.024989936500787003, -0.082742765545845, -0.072793662548065, -0.043602608144283, -0.0048600072041150005, 0.005074716173112, -0.060659620910882006, 0.036677412688732, -0.0039678327739230005, 0.012118645012378, -0.015110002830624001, -0.067477047443389, 0.051073815673589006, 0.021271731704473003, 0.010881322436034001, -0.093293890357017, -0.060220658779144, 0.053074628114700005, -0.03763385489583, -0.045260269194841, -0.030906978994607003, -0.032393224537372, 0.011916261166334001, -0.18299725651741, 0.058747474104166, 0.029083803296089002, 0.019208148121833, 0.016243306919932, 0.07733125239610601, -0.059847626835107005, -0.0939736738801, 0.009461509995162001, 0.038773953914642, -0.032892119139432005, -0.014671353623270001, 0.0165481492877, 0.0034916761796920004, -0.023368421941995003, 0.022524023428559, 0.050864595919847, -0.07192000746726901, -0.018037041649222003, 0.009121492505073001, 0.044701546430587005, -0.053467556834220005, 0.12235713750123901, 0.095395036041736, 0.058875396847724006, -0.010507272556424, 0.050906356424093004, -0.028281742706894004, 0.07288133352994901, -0.005322373472154001, 0.030794270336627003, 0.035794854164123, -0.08386375010013501, -2.1903948674871422e-33, 0.094325304031372, 0.010880078189074001, -0.04437690600752801, 0.029933335259556004, 0.025837609544396, 0.00292643927969, -0.051968276500701, 0.024116110056638003, 0.026568809524178002, -0.013809883967041001, 0.044149115681648005, 0.053263518959283, 0.026956997811794003, -0.087367266416549, -0.021354839205741, 0.020293351262807003, -0.024199301376938, 0.050824865698814004, 0.064683683216571, 0.02497792057693, 0.050656024366617, 0.079243294894695, 0.09530192613601601, 0.07136969268321901, 0.0024899265263220003, -0.09208375960588401, 0.027733629569411004, -0.047226283699274, 0.014366644434630002, -0.0006215072353370001, 0.033558562397956, 0.004972234833985001, 0.004261365160346, 0.004551046993583, 0.021286824718117003, 0.023630976676940002, -0.123876251280307, -0.000023470298401662152, -0.029278269037604002, -0.050562359392642, -0.06109257042407901, -0.08177027851343101, 0.023692809045314, -0.01921759173274, -0.015569027513265, 0.036093086004257, 0.083545692265033, 0.032027825713157, 0.045282304286956, -0.039693757891654004, 0.045725014060735, 0.005848176777362, -0.06582830101251601, -0.037977982312440005, 0.0054251579567790005, -0.030421713367104003, -0.05899429693818001, 0.065862879157066, 0.095000475645065, 0.058332867920398004, -0.026893936097621002, -0.009021421894431001, 0.022519266232848, -0.015722637996077, 0.028052937239408004, -0.114981509745121, 0.039705134928226006, -0.050710458308458, 0.089185141026973, -0.028890313580632, 0.041146636009216, 0.015813708305358002, 0.045905772596597005, 0.035681530833244005, 0.008146503008902, 0.049015633761882005, -0.062038816511631005, -0.10446687787771201, 0.016640180721879002, -0.0063656060956410005, -0.070711992681026, 0.040240485221147, 0.047667048871517, 0.012739849276840002, -0.015373203903436002, -0.114521585404872, -0.024473171681165, -0.000583516026381, -0.019431199878454, -0.056142840534448006, -0.041584774851799004, -0.09529402107000301, 0.033784884959459, -0.053493749350309004, 0.007291039917618001, 1.0457566923609621e-33, -0.065826974809169, -0.054885439574718003, -0.071881726384162, 0.052529018372297, 0.018069041892886002, 0.01598479039967, -0.011644475162029001, 0.068269856274127, -0.014642497524619002, 0.032619334757328006, 0.064340330660343, 0.0015463531017300002, -0.058297384530305, 0.002412830712273, 0.06568402796983701, 0.0010864040814340002, 0.056891292333602, 0.00541722215712, -0.030179398134350003, -0.021683283150196003, 0.07118718326091701, -0.041648630052804, 0.031199336051940002, 0.085178613662719, -0.024645689874887, -0.017469491809606, 0.006617136765271, 0.053211290389299004, -0.017560133710503002, 0.016804760321974, 0.06417196989059401, -0.027480144053697003, -0.047671750187873, 0.044154502451419005, -0.011558985337615001, -0.043342005461454, -0.019599493592977, 0.071724809706211, -0.055769432336091, 0.04894096031785, -0.038816351443529004, 0.010363764129579001, 0.0070987301878630005, 0.060383066534996005, -0.034392666071653005, 0.004286032170057, 0.04258969053626, -0.049098957329988, 0.029423292726278003, -0.003679737914353, -0.045382194221019, -0.058136101812124, 0.032359462231397004, 0.047894656658172004, -0.011825503781437001, 0.020476473495364002, 0.018261384218931, 0.05958711355924601, 0.07209651172161101, -0.033702448010444, -0.063999854028224, -0.011033250018954001, 0.037939675152301004, 0.123966477811336, -0.009580221958458, -0.053442388772964006, -0.050627201795578, -0.11827888339757901, -0.047832995653152, 0.078469358384609, 0.0030096338596190004, 0.00463695731014, 0.021684765815734003, 0.038056898862123004, -0.028129486367106, -0.025815589353442, 0.12891618907451602, -0.101582914590835, -0.00106548552867, -0.009222198277711001, -0.028266888111829, 0.043273996561765005, -0.008092852309346001, 0.045116707682609, -0.024351391941308, -0.09823370724916401, 0.08632718771696, 0.054701082408428005, -0.015101815573871, -0.039349976927042, 0.046212859451770005, -0.013625522144138001, -0.023063108325004, -0.070935957133769, 0.08392696082592001, -3.62702756717681e-8, 0.033426381647586004, -0.095413751900196, -0.049116823822259, -0.066535919904708, 0.057531245052814005, -0.073079735040664, 0.02035198546946, 0.010613250546157001, -0.011064308695495, 0.09169457852840401, 0.070361338555812, -0.005904714111238001, -0.009763310663402, -0.0077042486518620005, 0.014312567189335, -0.016267996281385002, -0.009725106880068, 0.015830632299184, -0.025647876784205003, 0.00611114129424, 0.006965263281017001, 0.004049562849104, -0.016898034140467002, 0.001686183968558, -0.050006244331598004, -0.07493945956230101, -0.040964934974908, -0.16997906565666202, -0.00045810180017700006, -0.058594528585672004, 0.028032205998897, 0.042352940887212004, 0.102572999894618, 0.043956149369478004, -0.052215997129678005, 0.05609148368239401, 0.063649885356426, -0.074721530079841, -0.06379310786724, 0.08774820715188901, -0.027284253388643, -0.014723647385835, 0.034299571067094005, -0.040047954767942005, 0.052721187472343, 0.035173807293176006, -0.056475847959518, 0.138240367174148, 0.019199108704924, 0.076031789183616, -0.013715323992073002, 0.033096630126237, -0.029923386871814003, -0.036708638072013, -0.093222863972187, -0.047561515122652005, -0.065084122121334, -0.046851713210344, 0.0069260373711580005, -0.025191489607095004, 0.037820361554622005, 0.020883237943053003, 0.034254763275384, -0.031161785125732002 ]
0704.0006
Bosonic characters of atomic Cooper pairs across resonance
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} \ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
[ "cond-mat.mes-hall" ]
[ -0.044402178376913, 0.0033760899677870004, -0.048713743686676005, 0.05100630223751, -0.048035338521003, 0.08637636154890001, -0.009062255732715001, 0.022349575534462002, 0.037755336612463004, -0.111049965023994, -0.037221498787403, 0.010721891187131, -0.023797998204827003, -0.045268770307302, 0.017016550526022002, -0.007921217940747, 0.083758130669593, -0.08104440569877601, -0.062111996114254005, 0.064722217619419, -0.005602590274065, -0.020423462614417003, 0.06623709201812701, 0.002791155828163, 0.053715296089649006, -0.043432064354419, 0.06882942467927901, 0.028818391263484, 0.046069663017988004, -0.002390576060861, 0.062116757035255, 0.0022595101036130003, 0.07933431118726701, -0.014565724879503, 0.034741759300231004, -0.117121152579784, 0.07965038716793, 0.035790294408798, 0.024043355137109004, -0.070696637034416, -0.0063971341587600004, 0.083932675421237, -0.047557041049003004, 0.051563031971454, -0.048950169235467, -0.017706096172332, 0.078905910253524, -0.021090989932417002, -0.037207942456007004, -0.048301123082637, 0.031986769288778, 0.12307293713092801, -0.057306513190269005, 0.06351651996374101, 0.014783673919737, 0.072473734617233, -0.10195025056600501, -0.025695957243442, -0.044513843953609, -0.039568785578012, -0.055960550904273, 0.010227259248495001, 0.008535963483154, -0.014040401205420001, 0.120695173740386, -0.014474126510322, -0.015032877214252002, 0.005772139411419, 0.0038496004417530004, 0.06973379850387501, -0.010257378220558, -0.036950919777154, 0.022350121289491, 0.045775704085826006, 0.07772708684206, 0.063150599598884, 0.030079513788223003, -0.035499330610036, 0.055926859378814, -0.051312047988176006, -0.058427322655916006, -0.036283135414123, -0.052460707724094, 0.0016312527004620002, -0.039264313876628, -0.015506537631154001, -0.10674569755792601, -0.065747685730457, -0.04284323006868301, -0.053583864122629006, -0.012468215078115002, -0.09171230345964401, 0.00039968779310500005, -0.051142688840627004, -0.026398127898573, -0.0065890215337270006, 0.07890211045742, 0.064571402966976, 0.076855413615703, 0.068860881030559, 0.019363140687346, -0.03315382823348, 0.0047190249897530005, 0.0006218483322300001, -0.06570206582546201, 0.043266061693429, 0.04817893356084801, 0.046728000044822006, 0.020344302058219, 0.013166512362658, 0.06829046458005901, -0.05194508656859301, 0.038428653031587004, -0.045254066586494, -0.022501658648252, -0.02457807585597, -0.01860729791224, 0.061873763799667005, 0.030660148710012002, -0.08589879423379801, 0.046666610985994006, 0.007672486826777, -0.000108920190541, 0.05683154612779601, -0.035749919712543, 0.009864170104265001, -0.083190433681011, 3.6244689554735474e-33, 0.058416604995727005, 0.086789764463901, 0.025938030332326, 0.008014149963855001, 0.008824589662253001, -0.013487162068486, 0.004038286861032, -0.11421702802181201, -0.10804271697998001, 0.06960604339838, -0.014272976666688001, 0.039681375026702, 0.101026222109794, -0.06844660639762801, 0.004876776598393, 0.025914436206221, -0.019770324230194, -0.006048066541552001, -0.0009316360228690001, 0.0037526828236870004, 0.080110698938369, 0.11770843714475601, -0.018454901874065, 0.0020272764377290003, 0.015654917806386, 0.001390772638842, -0.004715151153504, -0.057844959199428, -0.09360581636428801, 0.022520573809742, 0.023354476317763002, 0.13948215544223702, -0.022677900269627002, 0.007159966044127001, 0.011970938183367, -0.100120387971401, -0.11763118207454601, -0.025990854948759003, -0.002126451581716, -0.045232512056827004, -0.03522415831685, 0.007477109320461001, -0.052360959351062004, 0.013235166668891001, 0.06381797790527301, -0.076689504086971, 0.044965639710426004, 0.058158122003078, 0.030884198844432, -0.018716936931014002, 0.010273452848196, -0.013459392823278002, -0.026618482545018002, 0.07058351486921301, 0.076758831739425, -0.023601977154612003, 0.075715169310569, -0.005027928855270001, 0.008849873207509, 0.024600233882665003, 0.001014835666865, 0.048149153590202005, 0.045661855489015, -0.012403970584273002, -0.00019581236119800002, 0.019301170483231, -0.144431799650192, -0.030308771878480002, 0.090035825967788, 0.015258133411407, 0.008667672052979001, 0.13036774098873102, 0.022395379841327, -0.029828740283846, -0.006983227096498, -0.027197446674108002, 0.009599538519978001, -0.11597406864166201, 0.030402397736907002, 0.017722813412547, -0.050543759018182005, -0.07605057954788201, 0.029398668557405003, -0.008179798722267, -0.081083759665489, -0.026680696755647004, -0.106793344020843, -0.052397415041923, -0.019335065037012003, 0.047196634113788, -0.056697078049182004, -0.050705194473266005, 0.030798941850662002, -0.05837208405137, -0.038770962506532, -4.243910764660721e-33, 0.043888665735721005, 0.023335920646786003, 0.012009382247924002, -0.060991559177637, -0.015626678243279003, -0.008553838357329, -0.015718802809715, 0.005854189861565001, -0.014383840374648, -0.017950721085071, 0.083602167665958, 0.040721144527196, 0.016076728701591003, -0.0037998766638330005, 0.013771861791610001, 0.044126812368631, 0.029727566987276, -0.037978004664182004, 0.08187106996774601, -0.025639243423938002, -0.035564817488193005, -0.011650488711893002, 0.043770175427198, -0.018118508160114, -0.09888112545013401, 0.027690446004271, 0.096196211874485, -0.022822629660367, 0.08903791755437801, 0.008485347963869001, -0.0024255937896660003, 0.04535049572587, -0.005682786926627, 0.002792488317936, -0.026621978729963, 0.0066331010311840004, 0.005899539217352001, -0.030053850263357003, -0.028569841757416004, -0.051918178796768, -0.041661031544208006, 0.058956526219844006, 0.001117426902055, -0.016538912430405003, 0.033271916210651, 0.047485597431659005, -0.00029255732079, -0.036477532237768, -0.034959871321916004, -0.065870128571987, 0.0019045067019760002, -0.049361478537321, -0.012955292128026001, -0.012640876695513, -0.04829060658812501, -0.047893598675727005, 0.034846186637878, 0.013331573456525001, 0.10293910652399, 0.00040608481504000003, -0.004012312274426001, -0.006118446588516, 0.109633944928646, 0.008915668353438001, 0.028293330222368, 0.0026876679621630002, -0.072152875363826, 0.06121391057968101, 0.08244404196739101, -0.007301232311874001, -0.06318012624979001, -0.07272276282310401, 0.050460610538721, 0.014128843322396, 0.011358102783560002, 0.004802805837243, 0.06389562785625401, -0.05764855444431301, -0.009788463823497, 0.08323474973440101, -0.149598300457, 0.035765562206506, -0.053400062024593006, 0.033387366682291, 0.007243969943374001, 0.020566234365105, -0.07718260586261701, 0.052857615053653, 0.036144107580184, 0.049383845180273, -0.00199796189554, 0.0029575140215450002, 0.068152897059917, -0.022927725687623003, 0.051304135471582, -4.732276792651646e-8, 0.01300027500838, -0.09211216121912001, -0.07218873500823901, 0.027375947684049003, 0.02743718586862, 0.045778419822454, -0.029355280101299, -0.050417933613061, -0.037071224302053, 0.018527036532759, 0.0191963147372, 0.036059468984603, -0.0036971860099580004, -0.059786949306726005, 0.029756160452961002, -0.008202501572668, -0.021384922787547, -0.10310011357069, -0.044792052358388006, -0.068920359015464, -0.046668156981468006, 0.045469470322132007, 0.003011548193171, 0.047202497720718, -0.07345939427614201, -0.013329557143151, -0.06589758396148601, -0.059227246791124004, -0.045021869242191, 0.031796783208847004, -0.034597937017679, 0.027293119579553, 0.066399335861206, 0.062849789857864, 0.044941559433937, -0.052507601678371006, -0.09080177545547401, 0.04531530663371, -0.060840535908937, 0.039883781224489004, 0.033533543348312, 0.084557600319385, -0.011520669795572001, 0.07985395938158, 0.110529392957687, -0.012180611491203001, -0.009356634691357, 0.013003970496356002, -0.014862836338579, -0.014765319414436002, -0.06349406391382201, 0.069707944989204, -0.029501924291253003, -0.026671381667256, -0.07265935093164401, 0.010104175657033001, -0.096684128046035, -0.009634817950427001, 0.050761170685291006, -0.012919375672936, 0.00209229812026, -0.021612726151943002, -0.043120529502630005, -0.022063860669732 ]
0704.0007
Polymer Quantum Mechanics and its Continuum Limit
A rather non-standard quantum representation of the canonical commutation relations of quantum mechanics systems, known as the polymer representation has gained some attention in recent years, due to its possible relation with Planck scale physics. In particular, this approach has been followed in a symmetric sector of loop quantum gravity known as loop quantum cosmology. Here we explore different aspects of the relation between the ordinary Schroedinger theory and the polymer description. The paper has two parts. In the first one, we derive the polymer quantum mechanics starting from the ordinary Schroedinger theory and show that the polymer description arises as an appropriate limit. In the second part we consider the continuum limit of this theory, namely, the reverse process in which one starts from the discrete theory and tries to recover back the ordinary Schroedinger quantum mechanics. We consider several examples of interest, including the harmonic oscillator, the free particle and a simple cosmological model.
[ "gr-qc" ]
[ -0.048069596290588004, -0.021847963333129, 0.010979495011270001, 0.017822604626417, -0.06533695757389, 0.09635341912508001, 0.0046644187532360005, 0.015140078030526001, 0.04628929868340401, -0.081413894891738, 0.04138584062457, 0.009377397596836, -0.12087079137563701, 0.056284084916114, 0.062993876636028, -0.010058162733912001, -0.043773621320724, 0.029214749112725, -0.019702067598700003, 0.012700820341706002, 0.079004295170307, 0.005755815189331001, -0.002333189127966, 0.031760618090629, -0.026442546397447003, -0.0009021948790170001, 0.04346203058958, -0.051261968910694004, 0.028103843331336004, 0.039696540683507, 0.014941792003810002, -0.013187424279749001, -0.037496257573366006, -0.003974698483943001, 0.10747683793306301, 0.073041059076786, 0.042610619217157, -0.0038532034959640003, 0.007778846658766001, -0.007702036760747001, 0.089093945920467, 0.039359990507364, -0.045582931488752004, 0.0037136401515450003, -0.002105557359755, -0.038761965930461, -0.04812674596905701, 0.005054571200162001, -0.111713968217372, -0.010914973914623, 0.011507648974657001, 0.06522749364376, 0.01179630216211, -0.054348785430192004, 0.034323152154684004, 0.037445936352014, 0.023712711408734002, -0.035882577300071, 0.021868776530027, -0.151657596230506, -0.059476245194673004, -0.034337483346462, -0.016970131546258, 0.06264581531286201, 0.083667017519474, -0.014332533814013, -0.027556436136364004, 0.008655171841382, 0.044209390878677, 0.099622122943401, -0.087527506053447, 0.062867574393749, -0.054084222763776, -0.001963630784302, 0.071359671652317, -0.045262467116117006, 0.012503732927143001, 0.06110120564699101, 0.007322299294173, 0.089147970080375, -0.022427763789892002, -0.010194442234933002, 0.001983979251235, -0.027164038270711004, 0.018794188275933002, 0.0190613232553, 0.016017640009522, 0.047691434621810004, -0.041676759719848, -0.028412986546754, -0.056125588715076, -0.077036723494529, -0.013666615821421, -0.046601086854934005, 0.038811076432466, 0.068901419639587, 0.05299186706542901, -0.009177503176033, 0.050134778022766, -0.022275455296039002, 0.065643206238746, -0.099067650735378, 0.06092713400721501, 0.041647542268037005, 0.056420966982841006, -0.035527307540178, -0.023938573896884002, -0.05409688130021, 0.009286236017942, -0.005341534968465, 0.050478570163249005, -0.057798799127340005, 0.099993832409381, -0.015532968565821, -0.07137443125247901, -0.013119477778673, 0.039540197700262, 0.08602540940046301, -0.024300340563058003, 0.031639192253351, -0.013873245567083001, -0.039093680679798, -0.005108957178890001, -0.046812508255243, -0.011124350130558, -0.003501717466861, -0.039561089128255005, -7.113834671787241e-34, 0.048623509705066, 0.0032690027728670005, 0.056775230914354005, -0.0019293368095530002, 0.102587915956974, -0.001900646137073, 0.061872418969869, -0.003193855751305, -0.066578619182109, 0.027913076803088, 0.031812135130167, 0.029618373140692003, 0.030314544215798003, 0.027255969122052002, -0.024655230343341, 0.026347531005740003, -0.032325852662324, 0.016744026914238, 0.149908453226089, -0.053134486079216, 0.003841030178591, 0.05934714898467001, -0.016484297811985002, 0.08883784711360901, -0.082396291196346, -0.038638446480035005, 0.010969898663461, 0.025001998990774002, -0.071777552366256, -0.011798276565968002, -0.051001042127609, 0.079607874155044, 0.00924186501652, 0.038315340876579, 0.032920964062213, 0.024730838835239, -0.031518846750259004, -0.038978490978479004, -0.038270719349384, -0.019617768004536, 0.018030550330877002, -0.036829210817813006, 0.002343573607504, -0.07013125717639901, -0.028048373758792003, 0.016320399940013, 0.14442941546440102, -0.09418812394142101, -0.09166532754898, 0.05282228812575301, 0.014024787582457001, 0.016667056828737002, -0.08842895179986901, 0.014481820166110002, 0.019032057374715, -0.090336792171001, 0.011903669685125, 0.013588814996182001, -0.073753252625465, 0.040677789598703, -0.025274537503719, 0.071963831782341, 0.073259100317955, 0.015126848593354001, -0.022951597347855002, -0.041173655539751004, 0.007510852999985, -0.053193502128124, 0.025111725553870003, -0.019428316503763, -0.033630441874265005, 0.08033674955368, -0.049289051443338006, 0.051949054002761, 0.050451010465621005, 0.002637054538354, -0.07086026668548501, -0.12479681521654101, -0.029852051287889002, -0.007325499318540001, 0.022762779146432002, -0.044810503721237, -0.022175576537847002, -0.004842112772166, -0.025670390576124, -0.111402943730354, -0.05279923602938601, -0.019710121676325, 0.051479283720254, -0.072222299873828, -0.09239751845598201, -0.089731313288211, 0.060342881828546004, -0.011094914749264, -0.010145849548280001, -3.419932571088485e-33, -0.03705021739006, -0.091060973703861, 0.06583413481712301, 0.031955704092979, 0.033752162009477005, 0.010488762520253, -0.05337643250823, 0.088879875838756, -0.058485802263021004, -0.126931026577949, 0.10087496787309601, 0.017003774642944003, 0.042167276144027, 0.09248559921979901, 0.01001189276576, 0.06178730353713, -0.010199915617704001, -0.022200809791684, 0.010369922034442002, -0.030284900218248003, 0.021051784977316003, -0.061254449188709, 0.003445900278165, 0.043861795216798005, 0.012251838110387001, 0.08923942595720201, 0.101281180977821, -0.011104613542556001, 0.087580114603042, 0.039629861712455, 0.023910712450742003, -0.040332466363906, -0.01695686019957, 0.084484450519084, -0.051950208842754, -0.03717491403222, -0.005506107583642001, 0.06582301855087201, 0.00012529344530700002, -0.026534605771303003, 0.011343947611749, -0.015545746311545, 0.10133469849824901, -0.015166112221777002, 0.012382566928863002, -0.100611202418804, 0.03702025860548, -0.037819448858499, -0.062842942774295, -0.027716066688299002, -0.032462578266859, 0.009342815726995001, 0.023551970720291002, 0.011562492698431001, -0.12163941562175701, 0.07123404741287201, -0.021192789077758, -0.066901057958602, 0.037281330674886, -0.015831034630537002, -0.016443280503153003, 0.029150040820240003, 0.061884388327598, 0.085904791951179, 0.023649860173463003, -0.030340598896145002, -0.033745251595973004, -0.038751367479562, -0.041348107159137004, -0.09481053799390701, -0.006197778973728, -0.05665364116430201, -0.012162523344159001, 0.055387996137142, 0.05923340842127801, -0.045425407588481, 0.02737296372652, -0.049257889389991004, 0.038581360131502006, -0.04938593134284, -0.036539699882268004, 0.03746984899044, 0.06263681501150101, -0.028470011427998, 0.001060183276422, -0.091481976211071, -0.035312987864017, -0.044718410819768004, -0.008828397840261001, -0.016077358275651002, 0.015427856706082, -0.01203697733581, -0.05703269317746101, 0.054846961051225, 0.034821506589651004, -4.483375093400355e-8, -0.010084440931677001, -0.009951606392860001, -0.005620460025966, 0.010816895402967, 0.029208410531282, 0.09454673528671201, 0.0190603826195, -0.04329527914524001, -0.039886966347694, 0.041651058942079, 0.026983393356204, -0.024762123823165002, -0.12620918452739702, 0.04923872649669601, 0.007909742183983, 0.063626013696193, -0.071062587201595, 0.013453704304993002, 0.0033301613293580004, -0.034093938767910004, -0.015398784540593001, 0.034770701080560004, -0.0038717044517390005, -0.023912852630019, -0.052114166319370006, 0.020604899153113, -0.029782041907310004, 0.0476632155478, 0.044218067079782, -0.040320139378309, -0.072211518883705, 0.033534161746501, -0.024419400840997002, 0.087104447185993, -0.098920866847038, -0.08199106901884001, -0.029027806594967002, -0.05239972099661801, -0.041083298623561006, 0.04526609182357701, 0.07947547733783701, 0.06349300593137701, -0.039585266262292, 0.030443675816059, 0.018879577517509002, -0.004345975816249, -0.059963177889585, 0.040158402174711005, -0.00009100575698539616, 0.11504967510700201, -0.078460350632667, 0.046494606882333006, -0.047019775956869, -0.05056016519665701, -0.05186565965414, 0.045109067112207, -0.043271761387586004, -0.001525146886706, -0.052572853863239004, 0.039220929145812, -0.051477123051881006, -0.045494690537452004, 0.044268578290939005, 0.034304127097129 ]
0704.0008
Numerical solution of shock and ramp compression for general material properties
A general formulation was developed to represent material models for applications in dynamic loading. Numerical methods were devised to calculate response to shock and ramp compression, and ramp decompression, generalizing previous solutions for scalar equations of state. The numerical methods were found to be flexible and robust, and matched analytic results to a high accuracy. The basic ramp and shock solution methods were coupled to solve for composite deformation paths, such as shock-induced impacts, and shock interactions with a planar interface between different materials. These calculations capture much of the physics of typical material dynamics experiments, without requiring spatially-resolving simulations. Example calculations were made of loading histories in metals, illustrating the effects of plastic work on the temperatures induced in quasi-isentropic and shock-release experiments, and the effect of a phase transition.
[ "cond-mat.mtrl-sci" ]
[ -0.075468078255653, 0.052233114838600006, 0.106310673058032, 0.07757237553596401, -0.021904695779085003, -0.063681066036224, -0.07773596793413101, 0.09117696434259401, -0.037735588848590004, 0.017289653420448, -0.099736168980598, -0.0036993834655730004, 0.020322548225522003, 0.016555981710553003, 0.045281425118446, -0.051847591996192, -0.014343291521072, 0.053633570671081, -0.010459415614604001, 0.059549871832132006, 0.09638775885105101, 0.013651688583195001, -0.08547153323888701, -0.030467160046100002, 0.09199015796184501, 0.004237176850438, -0.009975568391382, 0.033682387322187, 0.058517210185527004, -0.018720025196671, 0.003119973931461, -0.028404630720615002, -0.153680235147476, 0.040685847401618, -0.026228541508316, 0.028040608391165, -0.014512199908494, 0.058860659599304005, -0.06544537097215601, -0.011322737671434002, -0.051821392029523, 0.06905163079500101, 0.06456453353166501, 0.017023142427206, 0.066604524850845, -0.058567333966493, 0.069019936025142, 0.020901851356029, -0.082343384623527, -0.009110582992434, 0.029579017311334003, 0.060850068926811, 0.099337682127952, 0.046689182519912005, -0.05105135589838, -0.010897655971348001, 0.098606005311012, -0.06844034790992701, -0.008007043972611, 0.017856426537036, -0.063087373971939, -0.040393535047769005, 0.08209905773401201, -0.058208536356687005, 0.032128535211086, 0.09178211539983701, 0.05080987885594301, 0.020455760881304002, 0.027892682701349, 0.048330131918191, -0.030033331364393002, -0.026176568120718002, 0.049896784126758006, -0.011779888533055002, 0.047679103910923004, -0.001622151932679, 0.010756317526102, 0.081866137683391, -0.084450408816337, 0.010657074861228001, -0.00024108271463700001, -0.05324375629425, 0.009122144430875001, -0.13703323900699602, -0.10051464289426801, 0.033105231821537004, 0.015250332653522, -0.014678001403808, 0.025499017909169003, 0.070023119449615, 0.06540910154581, 0.09688538312911901, 0.01172134373337, -0.0037432212848210003, 0.040795598179101, 0.0031211082823570002, -0.019023342058062002, -0.057514566928148006, 0.077930010855197, 0.0028944462537760004, -0.025744600221514, 0.039729829877614004, 0.019595801830291002, 0.032887697219848, -0.010374623350799, -0.090929806232452, -0.014732275158166, -0.00291133346036, 0.043059144169092005, 0.07022101432085001, 0.032432314008474, -0.023471469059586, -0.004890375304967, -0.08581506460905, -0.0022498290054500003, -0.052467558532953006, -0.077436991035938, -0.0052217827178530005, 0.0015161555493250001, -0.050338171422481, 0.064366802573204, -0.024609137326478, 0.002567485906183, -0.002306309295818, -0.0017542272107670001, -0.049823302775621005, -0.048945017158985006, 1.4183681977624722e-33, 0.00019715898088100002, -0.031864736229181005, -0.043345335870981, 0.101077564060688, -0.021797653287649002, -0.09594211727380701, 0.041150741279125005, 0.072484068572521, -0.017191119492053, 0.003622174728661, 0.017043782398104, 0.03956564515829, 0.021866938099265, 0.011454014107584001, 0.0033231540583070003, 0.040444482117891006, 0.036469042301177, -0.017616592347621002, -0.015402751043438, 0.008545097894966, -0.056997619569301, -0.035852495580911005, 0.045721273869276005, 0.012687722221016001, 0.022253490984439003, 0.083381615579128, -0.016269642859697002, -0.029119521379470003, -0.059931766241788004, -0.037860680371522, -0.023410852998495, 0.0045791459269820005, -0.054559040814638006, 0.051721032708883, 0.073055826127529, 0.041341394186019, 0.002738023875281, -0.049019761383533006, -0.012335691601037, 0.007304805330932001, -0.046495843678712005, -0.025725927203893002, 0.11442439258098601, 0.077164940536022, -0.039062727242708005, -0.032233294099569, -0.010335330851376001, 0.009693651460111, -0.10896371304988801, -0.052500165998935006, -0.024379629641771, 0.082257665693759, 0.030188014730811, -0.016808463260531002, -0.047795351594686, 0.034007336944341, 0.040187172591686006, -0.069669865071773, 0.05585966259241101, 0.0034446439240120004, 0.004307752009481, -0.039884943515062006, 0.033098351210355, -0.0071180276572700004, 0.072013363242149, 0.06587368249893101, -0.09178444743156401, 0.07674556970596301, 0.011298730038106001, 0.062990762293338, 0.012740979902446001, -0.031412918120622, 0.08771321922540601, -0.00045799824874800005, 0.019791793078184003, 0.049339260905981, 0.023294212296605003, -0.038967087864875, -0.012771121226251, -0.073076367378234, 0.00898597203195, 0.00043248463771300004, 0.001212087110616, -0.024963989853858, 0.005160603206604, -0.021443417295813002, 0.035618014633655, -0.025643737986683002, 0.027497656643390003, -0.070326305925846, -0.027258589863777, -0.011823516339063, 0.087554521858692, -0.02552074752748, 0.032693620771169, -2.4370097251988192e-33, 0.06754347681999201, 0.0176742374897, -0.08378960937261501, -0.017958674579858003, -0.005520793609321, -0.041873075067996, -0.031644091010093, 0.037038899958133004, -0.010624255053699001, -0.07866432517766901, 0.036075007170438, -0.080073878169059, -0.00864574778825, 0.062363985925912004, 0.004269160330295001, 0.010715650394558001, -0.01689544506371, -0.077754534780979, -0.019009279087185003, -0.043038532137870004, -0.00023568834876600003, -0.013303970918059, -0.065816715359687, -0.00915053114295, -0.011481523513793002, -0.07895052433013901, -0.020501272752881, -0.02014054916799, -0.021166555583477003, 0.025361655279994, -0.043119147419929005, -0.008775750175118, -0.0033839072566470003, 0.031604196876287, -0.031375627964735, 0.038163889199495, -0.037548262625932, -0.031026547774672, 0.102463088929653, -0.20652998983860002, 0.026466010138392, 0.033828556537628, -0.056839019060134006, 0.022973988205194, 0.026774967089295002, -0.016257559880614, -0.033490598201751, -0.0045168111100790005, 0.05820882692933001, 0.072800941765308, 0.037069421261548004, -0.013450211845338001, -0.005000467412173, -0.047756943851709005, 0.054827895015478, -0.004363719373941, 0.009768530726432, -0.033564385026693004, -0.019552210345864, 0.057531770318746005, -0.045253291726112005, -0.010007614269852002, 0.063161306083202, -0.018667904660105, -0.074496798217296, -0.09293168783187801, -0.084902197122573, -0.08893910050392101, -0.028663417324423002, -0.033142104744911, 0.046894002705812, 0.059476464986801, 0.10998503118753401, -0.036122597754001, 0.048172079026699004, -0.05518237128853701, 0.062190640717744, 0.031380012631416, -0.048117361962795, -0.0034279667306690003, 0.04226991534233, 0.033883351832628, -0.031221739947795004, 0.049472268670797, -0.05874061211943601, 0.026203377172350002, -0.015735220164060003, 0.11695297807455, 0.015422553755342001, -0.020110197365283, -0.00108160439413, 0.022248869761824, 0.12379278242588002, 0.029745379462838003, -0.044630274176597005, -4.813088594346482e-8, -0.045618005096912, 0.069663509726524, 0.03272682800889, -0.018719689920544, 0.011602990329265001, 0.131645634770393, 0.013957741670310001, -0.036260269582271, -0.007123155053704, -0.11487589031457901, 0.010310545563697001, -0.05452260375022801, 0.043493561446666, 0.025327663868665, -0.058907002210617, 0.027919694781303003, 0.048687938600778004, 0.036846399307250005, -0.047588996589183, -0.026316873729228002, -0.085977956652641, -0.011587410233914, 0.066887259483337, 0.034089177846908, 0.004880256485193001, -0.007001805584877001, -0.023443873971700002, 0.036523930728435, 0.033915847539901005, -0.029187126085162003, -0.137109205126762, -0.025787301361560003, -0.027958054095506002, 0.05807114765048001, 0.0054658479057250004, 0.11124627292156201, 0.018960863351821, 0.054613314568996006, 0.07075652480125401, 0.025773145258426004, -0.011988482438027002, 0.0016198464436450002, 0.015312841162085, -0.00040426987106900004, 0.054245304316282, 0.007554506883025, -0.14354170858860002, 0.028771230950951004, -0.00011512295168300001, 0.055659983307123004, -0.048203878104686, 0.031375516206026, -0.06704204529523801, 0.05528676509857101, 0.07550758123397801, -0.000795894942712, -0.071856386959552, 0.030209358781576004, 0.0066845226101570005, 0.008368954062461001, 0.032693855464458, -0.040799103677272006, -0.0064153843559320006, -0.022188544273376003 ]
0704.0009
The Spitzer c2d Survey of Large, Nearby, Insterstellar Clouds. IX. The Serpens YSO Population As Observed With IRAC and MIPS
We discuss the results from the combined IRAC and MIPS c2d Spitzer Legacy observations of the Serpens star-forming region. In particular we present a set of criteria for isolating bona fide young stellar objects, YSO's, from the extensive background contamination by extra-galactic objects. We then discuss the properties of the resulting high confidence set of YSO's. We find 235 such objects in the 0.85 deg^2 field that was covered with both IRAC and MIPS. An additional set of 51 lower confidence YSO's outside this area is identified from the MIPS data combined with 2MASS photometry. We describe two sets of results, color-color diagrams to compare our observed source properties with those of theoretical models for star/disk/envelope systems and our own modeling of the subset of our objects that appear to be star+disks. These objects exhibit a very wide range of disk properties, from many that can be fit with actively accreting disks to some with both passive disks and even possibly debris disks. We find that the luminosity function of YSO's in Serpens extends down to at least a few x .001 Lsun or lower for an assumed distance of 260 pc. The lower limit may be set by our inability to distinguish YSO's from extra-galactic sources more than by the lack of YSO's at very low luminosities. A spatial clustering analysis shows that the nominally less-evolved YSO's are more highly clustered than the later stages and that the background extra-galactic population can be fit by the same two-point correlation function as seen in other extra-galactic studies. We also present a table of matches between several previous infrared and X-ray studies of the Serpens YSO population and our Spitzer data set.
[ "astro-ph" ]
[ -0.059517703950405, -0.039250247180461, 0.08139153569936701, 0.031676843762397, 0.04954494535923001, -0.09421519190073001, 0.010088779963552001, 0.017028700560331, 0.06147189065814, 0.03748857229948, -0.038612749427556006, -0.04791086539626101, 0.027750862762331, -0.088506363332271, 0.039303094148635004, -0.048711221665143, 0.06345028430223401, -0.105331376194953, 0.022899819537997003, 0.04817130789160701, -0.013198283500969, 0.021508321166038003, -0.042380921542644, 0.013757930137217001, 0.050894256681203, -0.032431319355964, -0.024002952501177, 0.022923739627003, -0.007439324632287, -0.047172661870718, 0.056533247232437, 0.025471357628703003, -0.015333851799368001, -0.005917621776461, 0.037513792514801005, -0.08826009929180101, 0.060487959533929006, -0.033404145389795005, -0.012928845360875001, -0.006660183425992, -0.007191341370344001, -0.039013400673866, -0.010971961542963002, 0.009091211482882, -0.049811333417892005, -0.025324083864688002, -0.071627102792263, 0.033942550420761004, -0.074446104466915, -0.038044780492782, -0.037197373807430004, -0.055462453514337005, -0.03542998060584, 0.07827772200107501, 0.055895149707794, 0.007507355883717001, 0.039774276316165, -0.131352290511131, 0.07473907619714701, -0.020078480243682, 0.015739442780613, -0.008029351010918001, -0.025614060461521003, -0.0644356533885, 0.00458636926487, 0.016435747966170002, -0.002150081098079, 0.033336579799652, 0.017122436314821, -0.009840134531259, 0.007756694220006001, 0.059351723641157005, -0.074658326804637, 0.05078715458512301, 0.032840136438608, 0.04928757995367, 0.06515724956989201, -0.024373646825551, 0.050927110016345006, -0.08353359252214401, 0.035406485199928006, 0.098032772541046, 0.005273080896586, 0.066482067108154, -0.06372631341218901, -0.07238657772541, -0.07424792647361701, 0.029168823733925, -0.012135491706430001, 0.005165848881006001, 0.019565805792808002, 0.009249401278793, -0.106821484863758, -0.008035267703235, -0.0039325435645870006, 0.02065085247159, 0.043009433895349, -0.07710624486207901, 0.11264909803867301, 0.042922358959913004, 0.003350143320858, -0.029352512210607, 0.047663904726505, -0.021714065223932003, -0.037163443863391, -0.010834743268787, 0.074171185493469, -0.041187219321727, -0.023841973394155003, -0.0056677884422240005, 0.037863202393054005, 0.0025531444698570003, -0.12377931177616101, -0.011505589820444001, -0.011937594041228001, -0.012952527031302001, -0.045938801020383, 0.069923065602779, -0.12106057256460101, -0.09713992476463301, -0.009694650769233001, 0.073779687285423, 0.025357013568282002, 0.069697223603725, 0.022692427039146, -0.014949912205338001, -0.086748994886875, 4.1635201753759225e-34, 0.097391158342361, -0.023144440725445, 0.017800789326429003, 0.071088939905166, -0.021918905898928, -0.002588536590337, -0.025673678144812, 0.059989608824253006, -0.024509647861123002, 0.00306506617926, -0.08368062227964401, -0.038814138621091, 0.0006384016014630001, 0.016952561214566002, 0.073201842606067, -0.013076893985271001, 0.011409764178097002, 0.039140842854976, -0.08941216766834201, 0.022857444360852002, -0.037169910967350006, -0.010383596643805, 0.012548065744340002, -0.051540404558181006, 0.07397524267435, 0.069629527628421, 0.00854218378663, -0.06737844645977001, 0.0054444973357020005, 0.031705323606729, 0.023061482235789, 0.038608375936746, 0.051360946148633006, 0.071363292634487, 0.039120130240917005, -0.009828991256654, -0.062334958463907006, -0.007239043246954, -0.07378295063972401, -0.063673831522464, 0.032843109220266, 0.080100886523723, -0.034298110753297, 0.051419068127870005, 0.03264058753848, -0.026673180982470002, 0.020051795989274, -0.10293635725975, 0.025734640657901, 0.055926956236362006, 0.05542289093136701, 0.000812072772532, -0.09423553943634001, -0.024643586948513003, -0.044852819293737, 0.051426175981760004, 0.020677218213677, -0.05681402981281201, 0.00731135951355, 0.017988953739404002, -0.001127370866015, 0.019252896308898003, 0.055324476212263, -0.046590339392423005, -0.002239804947748, 0.17906637489795602, -0.038608286529779004, 0.017360741272568002, -0.041218876838684006, 0.05125635862350401, -0.06297320127487101, -0.0009363004937760001, 0.029344214126467004, -0.06578738242387701, 0.039936043322086, -0.036161392927169, 0.11885076761245701, 0.038366664201021, 0.016320396214723, 0.0065070735290640004, -0.09454767405986701, -0.045839369297027005, -0.095811262726783, -0.123585671186447, -0.08385796099901201, -0.013608960434794001, -0.005733738653361, 0.065269663929939, -0.027702324092388, -0.0007485545938830001, 0.06395611166954, -0.00877193454653, -0.036874126642942005, -0.04397394135594301, -0.160036861896514, -3.936852171100754e-33, -0.004030677024275, 0.040685500949621006, -0.031774278730154, 0.01296052057296, -0.045206956565380006, 0.033990781754255, 0.027091352269053, 0.023974090814590003, -0.055621281266212005, -0.08037714660167601, -0.066980741918087, 0.094969317317008, 0.014193379320204001, -0.072217777371406, 0.027332322672009003, -0.026735302060842, -0.0036264886148270003, 0.015741750597953002, -0.08331239968538201, -0.015624072402715001, 0.04758084565401, -0.022573476657271, 0.10226248949766101, -0.038458008319139, -0.032469633966684, 0.021690497174859002, -0.044912882149219006, 0.0018529639346520001, -0.018607165664434003, 0.0011772426078090002, -0.002460992196574, -0.061191610991954005, 0.032776650041341004, -0.0037086063530290003, -0.004953733645379, -0.010793347842991002, -0.001953318715095, -0.005044849589467, -0.103154882788658, 0.000253877427894, -0.041384421288967, 0.004390772432088, -0.062948986887931, 0.04351682960987, -0.014088878408074, -0.046373408287763006, 0.004437041003257001, 0.053885817527770004, -0.0020543807186180004, -0.028667587786912002, -0.006897331215441001, -0.029356230050325, -0.01717747375369, 0.10780999064445401, -0.007311206776648001, 0.049923025071620004, -0.03718913346529, 0.066146902740001, 0.030918529257178, 0.04898228496313001, -0.022574799135327003, -0.010665873996913001, 0.005112995393574, 0.011449139565229001, 0.05381754040718, -0.101849965751171, 0.100924037396907, -0.000992309418506, -0.001633929088711, 0.017060551792383, 0.061058264225721005, -0.070077061653137, -0.027482129633426004, -0.031298667192459, 0.064671240746974, 0.011544720269739002, -0.04518262296915, -0.084341190755367, 0.012700061313807002, 0.030164914205670003, -0.089590467512607, 0.06676980853080701, 0.038553494960069004, 0.008436264470219001, 0.07880931347608501, -0.004891589749604, -0.030089046806097003, -0.067334115505218, 0.026914166286587, 0.008430873043835, 0.005512528587132, 0.0066671501845120005, 0.01532497536391, -0.0034148909617210004, 0.034456793218851, -5.0096339521132904e-8, 0.037956587970256, 0.065273948013782, 0.080620393157005, 0.09536683559417701, 0.040284261107444, -0.069969072937965, -0.024402344599366, 0.06608669459819701, 0.020452868193387, 0.06543815881013801, 0.103436402976512, -0.011054622009396001, -0.011619928292930001, -0.138977453112602, 0.04867468774318601, -0.053307346999645004, 0.016110576689243, -0.051192265003919005, -0.058169592171907, 0.07776312530040701, -0.002464659279212, 0.033098194748163, -0.012135962955653001, -0.043009314686059, 0.018207715824246, -0.008944431319832, -0.032924059778451004, 0.042974721640348004, -0.014912306331098002, 0.015350892208516001, 0.042379669845104, -0.008391479961574001, 0.027714392170310003, -0.029648561030626002, 0.020213391631841, 0.030348869040608004, -0.040067367255687006, 0.020126020535826003, 0.002929694019258, 0.05622605979442501, -0.022526139393448, 0.029538867995142003, -0.036424510180950005, 0.005356129258871, 0.001821486279368, 0.12587423622608102, -0.026667049154639, -0.075722344219684, -0.042549829930067, 0.097564905881881, -0.043340425938367004, -0.041050795465707, -0.039049874991178006, 0.056971617043018, -0.08690138906240401, 0.001252458547241, -0.053701609373092006, 0.035490587353706006, 0.026064643636345003, 0.041376948356628, 0.09492298960685701, -0.043415781110525006, -0.073864229023456, 0.056318718940019004 ]
0704.0010
Partial cubes: structures, characterizations, and constructions
Partial cubes are isometric subgraphs of hypercubes. Structures on a graph defined by means of semicubes, and Djokovi\'{c}'s and Winkler's relations play an important role in the theory of partial cubes. These structures are employed in the paper to characterize bipartite graphs and partial cubes of arbitrary dimension. New characterizations are established and new proofs of some known results are given. The operations of Cartesian product and pasting, and expansion and contraction processes are utilized in the paper to construct new partial cubes from old ones. In particular, the isometric and lattice dimensions of finite partial cubes obtained by means of these operations are calculated.
[ "math.CO" ]
[ 0.028423333540558003, 0.038170855492353, -0.015587397851049001, -0.024360319599509003, -0.077891558408737, -0.039224315434694006, -0.013877422548830001, -0.015293619595468001, -0.016862198710441003, -0.066564053297042, -0.07998948544263801, 0.0073113935068240005, 0.014355925843119002, 0.038632482290267, 0.02321632951498, 0.0028318369295440003, 0.025305338203907003, 0.06864454597234701, -0.012461397796869, 0.05895927175879401, -0.009700437076389, -0.10602997988462401, -0.060696642845869, 0.011625715531408001, 0.034986637532711, 0.030965138226747003, 0.010086481459438001, 0.016941893845796002, 0.031435672193765, 0.027745166793465004, -0.033561054617166006, -0.038964360952377, 0.030644197016954002, 0.014027156867086001, 0.043652404099702, 0.02092195302248, -0.061014603823423004, 0.010776032693684, 0.058676488697528006, 0.056651130318641, 0.040234770625829, 0.03290208056569, 0.032081317156553005, 0.07504693418741201, -0.063580445945262, 0.030569307506084, -0.11324245482683101, 0.06478404998779201, -0.08604020625352801, -0.050324726849794006, -0.099099524319171, -0.027593750506639002, -0.078241042792797, 0.086487844586372, 0.052283432334661005, -0.061729814857244006, -0.021555243059992003, -0.036509994417428006, 0.045558456331491005, -0.07069934159517201, 0.054660990834236006, -0.045046404004096006, 0.017845554277300002, -0.07734064012765801, -0.020833052694797002, 0.020640984177589, -0.037638448178768005, -0.047252111136913, -0.07325438410043701, 0.12351019680500001, 0.005336937960237, 0.012598709203302002, -0.11582722514867701, 0.041001375764608, 0.028078993782401, -0.017144545912742, 0.019461574032902003, 0.020827688276767002, -0.08962985873222301, -0.049186233431100006, -0.098781429231166, 0.045676287263631, -0.06556994467973701, -0.005927932448685, -0.07110782712697901, -0.011241913773119, -0.07603088766336401, -0.028721492737531003, -0.014720305800437001, -0.032919999212026, 0.004342663101851, 0.025223108008503, -0.00463836081326, -0.006912396755069001, -0.008394874632358001, -0.071334190666675, 0.051858447492122005, 0.07376330345869, 0.09874206036329201, -0.007310802116990001, 0.06403955817222501, -0.051790922880172, -0.009328544139862002, 0.000952215283177, 0.008418058976531001, 0.07950630784034701, -0.07139254361391001, 0.016042992472648, 0.0014429248403750002, -0.07225354760885201, -0.038118910044431006, -0.020925564691424002, 0.021340996026992003, 0.002436289563775, -0.024803319945931, -0.068714745342731, 0.046594858169555005, -0.018846176564693, 0.058558788150548005, -0.000430147716542, 0.10436151921749101, 0.039673294872045003, 0.035368785262107, 0.012884525582194, -0.008123711682856001, -0.013620411977171001, 0.012115415185689002, 2.6290335232323552e-33, 0.059523381292819005, 0.057886738330125004, -0.012809006497263001, 0.067059874534606, 0.032930150628089, 0.10199535638093901, 0.000583967601414, -0.009824319742619, 0.077518351376056, 0.029129786416888, -0.11118885874748201, 0.09228243678808201, 0.054134808480739004, 0.025951309129595004, 0.023150442168116, 0.039452545344829004, 0.023085385560989, 0.027929391711950004, 0.019770575687289002, -0.045503459870815006, 0.032865475863218, 0.05397746711969301, -0.025351006537675, 0.097643375396728, -0.022936858236789003, -0.030604425817728, 0.016679540276527002, -0.076920874416828, -0.062473904341459004, -0.020013378933072, -0.004812920466065, -0.008018842898309, 0.0012574936263260001, 0.046164941042661, -0.0053850966505700005, 0.012897302396595001, 0.007828897796571001, -0.005152070429176, -0.08486142754554701, -0.064696118235588, 0.061920315027236, -0.017821263521909003, 0.016587115824222003, -0.070105738937854, -0.03669524565339, 0.019790738821029, 0.014844175428152001, 0.04723323136568, 0.029006969183683003, -0.049864035099744006, -0.006338752340525, 0.013456525281071, -0.009201621636748, -0.034232206642627, -0.044791769236326, -0.002881597261875, -0.014400238171219002, 0.047862026840448005, 0.012719836086034001, 0.133646145462989, -0.04637252539396201, 0.048077937215566004, 0.060432367026805, 0.0338946133852, -0.131050169467926, 0.027905013412237, -0.040155928581953, -0.046772219240665006, 0.11350460350513401, -0.046988625079393005, -0.081813067197799, 0.043222069740295, -0.028333958238363002, 0.07969877868890701, -0.013870751485228, -0.07469534873962401, -0.06992254406213701, -0.159254297614097, 0.012125222943723, -0.021960167214274, -0.100508481264114, 0.037038598209619, 0.11677511781454, -0.083890974521636, -0.009492668323218, -0.093488112092018, -0.045937921851873, -0.025148192420601, -0.009285310283303, 0.029524130746722003, -0.07499048858880901, 0.008314432576298, 0.033856622874736, 0.005709490273147, 0.049969922751188, -4.3034267783268234e-33, -0.026116503402590002, -0.049829170107841006, 0.004885809961706, 0.016206802800297, -0.029541511088609, -0.032862212508916, -0.037400748580694004, 0.071134626865386, -0.072638370096683, 0.0071613122709090005, 0.06035408005118301, -0.037200804799795005, 0.011339586228132002, -0.032129235565662, -0.012334888800978001, 0.058029301464557, -0.031934075057506, -0.05869968235492701, -0.058502055704593006, -0.038203541189432005, 0.017780691385269002, 0.048114262521266, -0.044565118849277004, 0.014114661142230001, -0.015436967834830001, 0.035264674574136005, -0.021589584648609002, -0.015594578348100002, 0.07447796314954701, 0.14233386516571, 0.019289392977952003, -0.074904240667819, -0.079134784638881, 0.032466787844896004, 0.041802037507295005, -0.052810024470090006, 0.0015132868429640002, 0.041645932942628, 0.074991382658481, -0.049443621188402, 0.001723639550618, -0.004839315079152, -0.011535170488059, 0.058126758784055, 0.054327294230461, 0.040306519716978004, 0.049670044332742004, 0.045570783317089004, -0.080188333988189, -0.01240689586848, -0.062479488551616, -0.027863934636116004, 0.086560241878032, -0.006243692710995, 0.03010825254023, 0.001155265024863, -0.06948651373386301, 0.036039989441633, 0.119094803929328, -0.020540686324238, -0.006805072072893, -0.005995507352054, 0.10142463445663401, -0.000242752750637, 0.024018479511141003, -0.006660753395408001, 0.002956565003842, -0.026358904317021002, -0.024540174752473002, 0.047690864652395006, 0.07937974482774701, 0.066297553479671, -0.09099218994379, -0.021650496870279003, -0.002991398097947, 0.012963087297976001, 0.002518975874409, 0.09478733688592901, -0.013921774923801, 0.054747391492128004, -0.035146914422512006, 0.08135376125574101, 0.055322848260402006, -0.03149377554655, -0.010453677736222002, -0.015137019567191, 0.024935938417911002, 0.058907359838485, -0.05589624121785101, -0.028646403923630003, -0.00018158937746100002, -0.024150621145963003, -0.021756790578365003, 0.068189479410648, 0.06086191907525001, -3.960547090287036e-8, -0.05858923494815801, -0.024598322808742003, -0.04805235564708701, -0.051335331052541004, 0.009773245081305, -0.075288191437721, 0.048766359686851, 0.13078944385051702, -0.03821911662817, 0.035696700215339, 0.096011705696582, -0.052726943045854006, -0.060746889561414004, 0.042371872812509, 0.01251792628318, -0.027296824380755, 0.028358995914459003, -0.034271527081727, 0.000434112444054, 0.009743443690240002, -0.06897117197513501, -0.030419118702411003, 0.025137243792414003, 0.058249082416296005, 0.007914659567177, -0.033761542290449004, -0.066863909363746, -0.029541457071900003, 0.070092968642711, 0.027679545804858003, 0.064587734639644, 0.008117828518152001, 0.139540269970893, 0.035336449742317005, 0.025665873661637, 0.05857535824179601, -0.017346978187561, 0.0017898293444880001, -0.009230216965079, 0.002251130295917, -0.033244013786315, -0.047828368842601006, -0.025563240051269, -0.026524936780333002, 0.09135203808546001, -0.052505481988191, -0.05280617624521201, 0.015575052239000001, -0.099836707115173, 0.037293173372745, -0.049829035997390005, -0.040346350520849006, 0.018971333280205, -0.07770027965307201, 0.036551825702190004, 0.022507457062602, -0.029972173273563003, -0.036792490631341004, 0.041225593537092, -0.018817560747265, -0.023578666150569003, 0.06542570143938001, 0.017894547432661, -0.008199339732527 ]
0704.0011
Computing genus 2 Hilbert-Siegel modular forms over $\Q(\sqrt{5})$ via the Jacquet-Langlands correspondence
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert-Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field $\Q(\sqrt{5})$. In those examples, we identify Hilbert-Siegel eigenforms that are possible lifts from Hilbert eigenforms.
[ "math.NT", "math.AG" ]
[ -0.067605838179588, 0.008281525224447, 0.005605866201221, -0.06725806742906501, -0.046513736248016004, 0.001582311931997, -0.036930363625288, 0.035048779100179006, -0.019718281924724003, -0.041782297194004, 0.022027933970093002, 0.025886964052915, -0.015359689481556001, -0.014765973202884001, -0.057078883051872004, -0.009834254160523, -0.04715104401111601, -0.016993623226881003, -0.017970645800232003, 0.021090578287839, 0.051618713885545, 0.009604496881365, -0.06914431601762701, 0.031814727932214, 0.069669134914875, -0.002035837853327, 0.07007373124361001, 0.088261932134628, 0.055760268121957, -0.08556962013244601, -0.050541225820779, 0.013661994598805, 0.017422040924429002, -0.015941619873046, -0.018634455278515, -0.006022497080266, 0.071190893650054, 0.054561868309974004, -0.0047230557538560005, -0.04788105189800201, -0.019926378503441002, -0.027394611388444002, -0.071723155677318, 0.009438583627343, -0.00363299017772, -0.037550166249275006, 0.046342115849256, 0.018302772194147002, 0.039351239800453006, -0.10682950168848, -0.030525512993335002, -0.011165969073772, 0.010772029869258001, 0.061336040496826005, -0.057972386479377004, -0.06022177636623301, 0.031562194228172004, -0.058876145631074, -0.006309018470346, 0.056852743029594005, -0.007529990281909001, 0.051333498209714, -0.031593594700098, -0.044227499514818004, -0.08480881899595201, 0.048431251198053006, 0.007328446488827, -0.10962442308664301, -0.016473745927214, -0.019939204677939002, -0.038492940366268005, -0.024757225066423003, 0.045837555080652, 0.001195592689327, -0.07662698626518201, 0.011954957619309, -0.10108825564384401, -0.011280355043709, -0.038884300738573005, 0.007089193910360001, -0.006416549906134001, 0.018333330750465, 0.054762825369834005, -0.024671502411365002, 0.044817212969064005, -0.027536468580365, -0.07612614333629601, 0.031622994691133, 0.10783086717128701, -0.032891817390918, 0.030555453151464, -0.024971444159746004, -0.044089820235967005, 0.020007358863949002, -0.12143538892269101, 0.050674807280302006, 0.08724875748157501, 0.067191772162914, 0.022516665980219, 0.039175692945718, 0.04914492368698101, -0.005457781255245001, -0.022491035982966003, -0.017315492033958, 0.07295589894056301, 0.027966674417257004, 0.065842680633068, 0.036227386444807004, -0.042637385427951, -0.13142408430576302, -0.040031056851148, -0.047388821840286005, -0.05327433720231001, -0.001107543357647, 0.061405669897794, 0.009337467141449, 0.044534370303153006, 0.040540106594562, -0.090812966227531, 0.038975775241851, 0.043391704559326005, -0.00624977517873, 0.042955800890922005, 0.038078144192695, -0.011064909398555001, 0.023936355486512, -0.15982511639595, 2.567873837856018e-33, 0.092778272926807, 0.19148713350296, 0.009219749830663001, 0.108008183538913, -0.080377750098705, -0.039535257965326004, -0.010559596121311, 0.050972357392311006, 0.043581563979387006, 0.008157643489539, 0.0363649725914, -0.013627004809677, 0.070541083812713, -0.099041245877742, 0.045242976397275, -0.021007167175412, -0.08325857669115001, -0.019187727943062, 0.017795838415622, -0.065665021538734, 0.07760456949472401, 0.035168293863534004, 0.012452758848667, -0.025393210351467, 0.058857917785644004, 0.11926553398370701, 0.087177887558937, 0.0066339033655820005, 0.025961872190237004, 0.05913161113858201, -0.016235625371336, -0.049940388649702, -0.047307793051004, -0.017105154693126002, 0.041374430060386005, -0.0020221446175120003, 0.0022511936258520003, -0.0029970246832810004, 0.034457769244909, -0.058879632502794, 0.0004902755608780001, -0.022545939311385002, -0.005738585256040001, -0.019526936113834003, 0.020357012748718, 0.028521018102765004, 0.051108058542013, 0.069398321211338, 0.06324627995491, -0.10568142682313901, -0.0024903416633600003, -0.032347582280635, -0.002336720703169, 0.076610766351222, 0.07741872221231401, 0.035314690321683, -0.010304389521479001, 0.005782151594758001, -0.034699644893407, 0.070019848644733, 0.07116086781024901, -0.00921166036278, -0.10428596287965701, -0.038031812757253, -0.065002739429473, -0.032360818237066005, -0.042615205049514, -0.047758415341377, 0.035440493375062006, 0.106736227869987, -0.020179321989417003, 0.021778041496872003, 0.036178942769765, 0.024662723764777003, 0.06550996005535101, -0.10633772611618, -0.004339717328548, -0.056520681828260005, -0.06223697215318601, 0.033031713217496005, -0.007960873655974001, 0.010150661692023001, -0.031525880098342, -0.006184502970427001, 0.012659523636102002, -0.107793524861335, 0.040650617331266, 0.015808101743459, -0.072902560234069, -0.105697877705097, 0.011133018881082, -0.07011092454195, 0.034109938889741, 0.023191528394818, -0.029648019000887003, -2.2783051308683482e-33, 0.052600104361772, -0.052385561168193005, -0.009183889254927, 0.021315261721611002, 0.011411430314183001, -0.021790727972984, 0.0006286166026250001, 0.027017567306756002, 0.000766357581596, 0.030425360426306003, -0.030677253380417, 0.009095109067857, 0.062864370644092, 0.0028269924223420003, 0.042702879756689, -0.023083597421646, -0.007847418077290001, -0.05749268084764401, 0.009821122512221002, -0.044870249927043006, -0.097160264849662, -0.014898498542606001, 0.031514972448349, -0.027510002255439002, -0.008400062099099001, 0.060846433043479003, -0.015816690400242, -0.0036714610178020003, 0.023299304768443004, 0.09822295606136301, 0.007448543328791001, -0.08725533634424201, -0.016276976093649, 0.0027792067267000003, -0.112242884933948, 0.012018267996609001, 0.026142472401261004, 0.022755037993192003, -0.0018085489282380002, 0.043540738523006, -0.039777748286724, -0.004155069589614, 0.08820562809705701, -0.008482374250888, -0.04046731442213, 0.042351692914962005, 0.039364878088235, 0.083894453942775, 0.0029478480573740004, -0.057587083429098004, 0.071831405162811, -0.040026117116212005, -0.12313361465930901, 0.098914355039596, -0.054522555321455, 0.0020754062570630004, 0.009324764832854, 0.01445922628045, -0.052769672125577004, 0.019400659948587, 0.005768034607172, 0.035078559070825, -0.038170870393514, -0.000574196048546, 0.061073556542396004, -0.08325868844985901, 0.026444407179951, 0.01334633398801, -0.0015965864295130001, 0.031448706984519, 0.018856199458241, -0.105702780187129, 0.055669669061899005, 0.034464370459318, 0.013054552488029001, 0.015358471311628001, -0.022288441658020002, 0.056470911949872006, 0.032831005752086, 0.0017042537219820002, 0.07179929316043801, -0.047631673514842, -0.060958802700042, 0.018766531720757002, -0.032276973128318, -0.026695938780903, 0.060364924371242, 0.058696430176496006, 0.022413779050111, -0.050032068043947005, 0.023248312994837, 0.067928656935691, 0.065777890384197, 0.10928985476493801, 0.090847611427307, -3.11187697832338e-8, 0.08510781824588701, -0.0433194860816, -0.015674149617552, -0.059754587709903, -0.0044672396034000006, -0.011638483963906002, -0.046530187129974004, 0.06527994573116301, 0.021733755245804003, 0.032044067978858004, -0.008610180579125, 0.03012916073203, 0.001166496193036, -0.002754203276708, -0.031298428773880005, 0.011214520782232, 0.053082320839166, 0.056983634829521006, -0.006021197419613, -0.041695959866046, 0.053850043565034006, -0.043725851923227005, -0.030594257637858002, 0.008840694092214, -0.08268919587135301, -0.032316930592060006, -0.072472222149372, -0.082762643694877, 0.028230395168066, 0.033760119229555005, -0.019896503537893, 0.05016450211405701, 0.056810516864061, -0.046966090798377005, -0.040433820337057, 0.073981761932373, -0.070676177740097, -0.028065815567970002, 0.018701042979955, 0.103054009377956, 0.068946100771427, 0.027834199368953, -0.062694899737834, -0.023485612124204, 0.106281824409961, 0.0085802199319, -0.019211968407034003, 0.020401680842041, 0.033382285386323006, 0.070241339504718, -0.086311265826225, -0.009038256481289001, -0.00803530588746, -0.013964767567813001, -0.08104932308197, -0.059542100876569005, -0.076023332774639, -0.05447606742382, 0.07814583182334901, -0.035031914710998, -0.036201730370521004, 0.047531254589557, 0.015443121083080002, 0.038211286067962 ]
0704.0012
Distribution of integral Fourier Coefficients of a Modular Form of Half Integral Weight Modulo Primes
Recently, Bruinier and Ono classified cusp forms $f(z) := \sum_{n=0}^{\infty} a_f(n)q ^n \in S_{\lambda+1/2}(\Gamma_0(N),\chi)\cap \mathbb{Z}[[q]]$ that does not satisfy a certain distribution property for modulo odd primes $p$. In this paper, using Rankin-Cohen Bracket, we extend this result to modular forms of half integral weight for primes $p \geq 5$. As applications of our main theorem we derive distribution properties, for modulo primes $p\geq5$, of traces of singular moduli and Hurwitz class number. We also study an analogue of Newman's conjecture for overpartitions.
[ "math.NT" ]
[ -0.112580642104148, 0.001256066723726, 0.045214086771011006, 0.051779761910438, 0.032096832990646, 0.09754883497953401, 0.07909372448921201, 0.12439208477735501, 0.014146298170089002, -0.026736909523606002, -0.028712304309010003, 0.030004290863871002, 0.022874366492033, -0.012021169066429001, -0.02164950966835, -0.07671708613634101, -0.046778999269008005, -0.055891979485750004, -0.0032163471914820004, 0.036001220345497, -0.002328493632376, 0.018818181008100003, -0.014226633124053001, 0.010301264934241001, 0.081381976604461, -0.065583236515522, -0.024240087717771003, 0.056744817644357, 0.039775948971509004, -0.025633407756686002, 0.004201322328299, 0.035194922238588, 0.004077507182955, -0.034263595938682, 0.06434992700815201, -0.013211182318627002, 0.046102665364742, 0.044931508600711004, -0.0009437942062500001, -0.044236995279788006, 0.055443402379751004, 0.039316233247518005, -0.05343559011816901, 0.015700750052928, -0.031788740307092, 0.008555078878998, 0.08170511573553, 0.046201933175325005, -0.059151098132133005, -0.033889543265104, 0.020274439826607, 0.102491080760955, 0.054132606834173, 0.01642657443881, -0.09474535286426501, -0.083029553294181, 0.014020939357578002, -0.09377641230821601, 0.010787794366478, 0.014376441948115002, -0.08285702019929801, 0.026101047173142003, -0.038484368473291, -0.022216938436031, -0.008736632764339001, -0.011765526607632, 0.024583671241998003, -0.075886145234107, 0.05385071784257801, 0.009237049147486001, 0.030781297013163, 0.029094811528921002, -0.037875514477491004, 0.008618746884167, -0.036597561091184005, -0.010294285602867001, -0.06386371701955701, -0.066055171191692, -0.113973729312419, -0.010333850048482, -0.006997997406870001, -0.028928734362125, 0.033668588846921005, -0.08064213395118701, 0.08114774525165501, 0.010085029527544, -0.09360267966985701, 0.035783622413873, 0.034806117415428, 0.036419577896595, -0.015938779339194003, -0.023531513288617002, 0.031840633600950005, 0.08284214138984601, -0.070473626255989, 0.052986603230237, -0.013267643749713, 0.020307609811425, 0.056360024958848, 0.06531511247158, 0.002716036047786, -0.010877740569412, 0.036656957119703, -0.020267888903617002, 0.00980119779706, 0.06180952116847001, 0.0036498974077400002, 0.0044126124121240005, -0.00042123181628900004, -0.053126499056816004, 0.027602307498455003, -0.103102549910545, 0.029116434976458, -0.033584851771593004, -0.005960522685199, -0.017329139634966, 0.046726182103157, 0.09300827234983401, -0.07199415564537001, 0.005125930532813, 0.07167649269104001, -0.018169643357396, -0.08847261965274801, 0.020387042313814, -0.00596541725099, 0.022958027198910002, -0.1103982552886, 1.9914051633990292e-33, 0.059963319450616004, 0.046760015189647, -0.017996011301875, 0.046211618930101006, 0.017731199041008002, 0.038190156221389, 0.028510630130767003, 0.096854664385318, 0.01822305470705, 0.0007845343789080001, 0.008326171897351001, 0.0016864789649840002, 0.027733214199543003, -0.07861997932195601, 0.016389803960919002, -0.020239612087607002, -0.00007435865700244904, -0.019966334104537003, 0.071875341236591, -0.060640383511781006, 0.044156998395919, -0.007873530499637, 0.035906042903661, 0.05117765069007801, 0.12925888597965202, 0.076005764305591, 0.038637381047010005, -0.057546410709619, -0.05215020477771701, 0.052365850657224, -0.020368803292512002, 0.011662789620459002, -0.008771345950663001, -0.011810176074504, 0.025614649057388, -0.04865713045001, -0.067442074418067, 0.011125996708869, -0.07748179882764801, 0.034488297998905, -0.043059643357992006, 0.05289373919367701, -0.06933055818080901, -0.07164040952920901, 0.009060421027243, -0.045330546796321, 0.104441806674003, 0.018339803442358003, 0.035271052271127, -0.022382389754056, 0.002604227280244, -0.032588522881269004, -0.01631935313344, 0.033323228359222, 0.011289863847196002, 0.046999134123325, 0.0024919935967770003, 0.018217615783214, 0.00014931996702200002, 0.048552967607975006, 0.05663767084479301, 0.014364414848387002, -0.073420643806457, -0.027110375463962003, -0.045224294066429006, -0.08041813224554001, 0.054866187274456, -0.029703810811042, 0.050760511308908005, 0.023485438898205, -0.025205502286553, 0.068166956305503, -0.023830726742744, 0.0058496431447560004, 0.021164111793041, -0.054987240582704, -0.051124662160873004, -0.014631504192948001, 0.0008629048825240001, 0.043229684233665, 0.035170696675777005, -0.01911786943674, 0.059144556522369, -0.0022717814426860003, -0.02122931741178, -0.077071115374565, 0.016075991094112, 0.020417125895619, -0.013219923712313002, -0.07948667556047401, 0.057349227368831, -0.073871634900569, 0.021488580852746002, -0.016914604231715, -0.035124849528074, -1.1887696309694061e-33, -0.045912314206361, -0.06482467800378801, -0.011019032448530001, 0.028974875807762004, -0.06610045582056001, -0.019152741879224, 0.009140870533883001, 0.086470037698745, 0.014985071495175, 0.014459189027547002, 0.040695179253816, -0.019340239465236, 0.038759220391511, 0.029336085543036003, -0.027707180008292, -0.053574893623590004, -0.010726477950811001, 0.1293326318264, 0.002887471113353, -0.01671715080738, -0.08648864924907601, 0.0021019394043830003, 0.020365444943308, 0.032523389905691, -0.11092384904623001, 0.030639050528407003, -0.050737418234348006, -0.026804238557815004, 0.033281374722719005, 0.11227426677942201, -0.0009090007515620001, -0.041113484650850005, -0.0282330699265, -0.093517631292343, -0.031837668269872, -0.052462052553892004, 0.07592120766639701, 0.049107871949672005, -0.005699614528566, 0.085620149970054, 0.035557780414819, -0.007487076800316001, 0.137996777892112, -0.056167591363191, -0.041625041514635, -0.022010028362274003, 0.086489185690879, -0.008991805836558, -0.015146559104323002, -0.057562533766031, 0.025391740724444, -0.052326459437608004, -0.008637609891593, 0.13357777893543202, -0.017852198332548003, -0.07358180731534901, 0.025093732401728002, 0.037936512380838006, -0.012197986245155001, -0.038510732352733, -0.01261293515563, 0.074204824864864, -0.032127562910318, 0.014672422781586002, 0.046395894140005, -0.055953372269868004, -0.017091827467083, -0.07147090882062901, 0.006467994768172, 0.024276340380311002, -0.020202085375785002, -0.12297514081001201, 0.07110408693552, 0.042374297976493, -0.042659655213356004, 0.06449314951896601, 0.015343308448791, 0.013721446506679, -0.021721564233303, 0.051211327314376005, -0.07280156016349701, -0.058843530714511004, -0.09731506556272501, -0.006454345770180001, 0.022319875657558, -0.05313387885689701, 0.07201329618692301, 0.045666255056858, -0.012017328292131, -0.045591499656438, 0.005844338797032, 0.067494802176952, 0.154776826500892, 0.071130543947219, 0.12056732922792401, -3.613699206539422e-8, 0.04608866572380001, -0.060608409345149, -0.146790608763694, -0.041287370026111006, 0.10074459761381101, 0.0130578847602, -0.017332088202238, -0.006652756128460001, -0.030905276536941, 0.06729733198881101, 0.056443404406309, 0.005212919786572, 0.036794420331716, 0.008665266446769, 0.009917001239955, 0.033506918698549, 0.010376491583883, 0.069115005433559, -0.010263240896165001, -0.05705711990594801, -0.01463935803622, 0.033953730016946, 0.000773211068008, -0.061515066772699, -0.099311716854572, -0.0026961511466650004, -0.072295673191547, -0.11839897185564001, -0.0018765837885430002, 0.015455831773579001, -0.028503794223070002, 0.034265935420989005, -0.003068736288696, -0.073279574513435, 0.005510331131517001, 0.061037003993988, 0.041610743850469006, -0.082298964262008, 0.008758996613323, 0.04814182594418501, 0.066749610006809, -0.031581401824951005, -0.023172453045845, -0.012933153659105, 0.123449027538299, -0.058987457305192004, -0.030586695298552003, 0.025312883779406003, -0.07080578804016101, 0.06394341588020301, -0.057666864246129004, -0.004834790248423, -0.01236957591027, -0.024040207266807, 0.007132320199161, 0.015411492437124, 0.015731628984212, -0.10187668353319101, 0.032465431839227, -0.038232263177633, -0.00027611301629800004, -0.006885117385536, -0.0015600431943310002, 0.034237261861562 ]
0704.0013
$p$-adic Limit of Weakly Holomorphic Modular Forms of Half Integral Weight
Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(\mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $\Gamma_{0}(4N)$ for $N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.
[ "math.NT" ]
[ -0.088236957788467, 0.023266704753041, 0.09538872539997101, 0.021000385284423002, 0.077232584357261, 0.045368857681751, 0.043433211743831, 0.126293629407882, 0.017773890867829, -0.06884355843067101, 0.012223764322698002, 0.007124909199774001, -0.016433656215667003, -0.023412674665451, 0.01773103326559, -0.06281114369630801, -0.055471129715442005, -0.002270817523822, -0.035855419933795006, 0.06601896136999101, 0.10511995851993501, 0.011363379657268, 0.011923046782612001, 0.028512207791209002, 0.045916818082332, 0.024000259116292003, 0.018825920298695002, 0.08317328244447701, 0.050117928534746004, 0.000535094586666, -0.039243023842573006, -0.040076505392789, -0.002379260025918, -0.037325304001569005, -0.001324207987636, -0.006569934543222001, 0.07343679666519101, -0.015672031790018002, 0.009618435055017001, -0.049778915941715005, 0.024196144193410003, 0.08557800948619801, -0.031636599451303, -0.02335181646049, -0.084063120186328, -0.014369954355061, 0.06908053159713701, -0.021613320335745003, -0.037882711738348, 0.00002635385499161202, -0.015609858557581001, 0.047832444310188, 0.019642727449536, 0.039874598383903004, -0.079469159245491, -0.08658233284950201, -0.012344880960881, -0.031548462808132005, 0.067420125007629, -0.003994449507445001, -0.038263034075498005, 0.011856405995786001, -0.041273597627878, -0.059093348681926006, 0.015659179538488, 0.00247983704321, 0.016767406836152, -0.135624051094055, -0.017437193542718003, -0.018429193645715002, 0.047534924000501, 0.006889618933200001, -0.046060223132371, 0.010544134303927, -0.09545415639877301, 0.0057573793455950005, -0.135283708572387, -0.055585999041795, -0.097207114100456, -0.020745079964399, 0.050405643880367, -0.019595965743064003, 0.021913394331932002, -0.031753249466419005, 0.028174314647912, -0.011895031668245001, -0.089079648256301, 0.039497178047895, 0.057351153343915, -0.008468833751976, 0.060770109295845004, -0.010805863887071, -0.019557503983378, 0.06951955705881101, -0.067791678011417, 0.028824580833315003, -0.026284525170922002, 0.09180039912462201, -0.0032921072561290002, 0.052530907094478003, 0.021434670314192, 0.036580078303813005, -0.015769826248288002, -0.024792877957224003, 0.007132054772228001, 0.033209674060344, 0.025323830544948002, -0.012238442897796001, -0.024863196536898002, 0.018353758379817002, -0.037399187684059004, -0.103403829038143, 0.042853627353906, -0.0017931517213580002, 0.014079935848712002, 0.004714457318186, 0.076625391840934, 0.024963952600955002, -0.07188917696475901, 0.030743287876248002, 0.009350825101137, -0.005989013705402, 0.050845298916101005, 0.022752918303012, 0.09692233800888, -0.018471455201506, -0.168419256806373, 2.5788094250675194e-33, 0.07211413234472201, 0.06999944150447801, 0.023238636553287003, 0.10140542685985501, -0.023258801549673, 0.004760568495839001, -0.002911341376602, 0.08313523977994901, 0.028313910588622003, 0.010674817487597, -0.037204086780548005, 0.032532971352338, 0.044449124485254, -0.07413806766271501, 0.04561473429203, -0.016152709722518, 0.055434025824069005, 0.0077729881741100005, 0.072066836059093, 0.00008708416135050358, 0.042351506650447006, 0.0008294162689700001, 0.08732192963361701, 0.0609364323318, 0.09500452876091, 0.052835889160633004, 0.017346879467368, 0.016548540443181003, -0.031617406755685, 0.050764877349138, 0.035908915102481, -0.05607450008392301, -0.01995300501585, -0.089275680482387, 0.035629712045192004, -0.049881897866725006, -0.073544926941394, 0.010467277839779, -0.04796203598380001, -0.004130880814045001, -0.009347915649414, 0.0032995191868390003, -0.053032021969556004, -0.024200711399316, -0.024789586663246002, 0.013571562245488, 0.05175033584237, 0.071933336555957, 0.054089579731225, -0.038967076689004, 0.043492611497640006, -0.040929995477199006, -0.080186635255813, 0.011081496253609002, 0.005242170765995, 0.033977042883634005, -0.09931230545043901, 0.00275452597998, -0.010370991192758, 0.067111261188983, 0.090791806578636, 0.016864808276295003, -0.041657257825136004, 0.052262693643569, -0.027770262211561002, -0.078100316226482, -0.005104843992739001, -0.012838031165301002, 0.047167181968688, 0.017000548541545, -0.032553266733884, -0.067054398357868, 0.022315999493002003, 0.05508509650826401, 0.019925406202673003, -0.058088764548301, -0.048737648874521006, -0.076068542897701, 0.011840247549116, 0.08839774876832901, -0.016264509409666002, -0.0028022292535750002, 0.027488322928547002, -0.00562198460102, -0.015813311561942, -0.08387281000614101, 0.033473752439022, 0.004639106336981, -0.050115182995796, -0.06514615565538401, -0.015499874949455001, -0.097058281302452, 0.004182562697678, -0.050379835069179, -0.07343792170286101, -3.547212160659644e-33, 0.027402311563491002, -0.06420237571001, -0.014713252894580002, -0.057991847395896, -0.084274902939796, 0.033046375960111, 0.031360231339931, 0.034937363117933, 0.026486720889806, 0.026352945715188, 0.11240056902170101, -0.038142461329698, 0.05343047901988, 0.045286402106285005, 0.022543502971529003, -0.07435967773199001, -0.05383457988500501, 0.04457908868789601, 0.036343149840831, -0.037585575133562005, -0.064487814903259, -0.029310464859008, -0.024026857689023, 0.051285222172737004, -0.09916316717863001, 0.019125556573271002, -0.017740944400429, 0.009030056186020001, 0.035863857716321, 0.078394681215286, -0.015443503856658, -0.022475196048617002, 0.010520111769437, -0.010521357879042001, -0.06599611043930001, -0.03964702039957, 0.034565083682537, 0.039120797067880006, 0.026051335036754, 0.071300700306892, -0.004671618342399, -0.00035966988070800003, 0.11138854920864101, -0.057869780808687, -0.084236122667789, -0.062984079122543, 0.085947170853614, -0.043856732547283006, -0.052681904286146004, -0.062814764678478, 0.020469348877668003, -0.103041097521781, -0.043318014591932005, 0.066447362303733, -0.020793689414858003, -0.044226713478565, -0.042331598699092005, 0.029564155265688, -0.030330974608659002, 0.016198340803384, 0.011389675550162001, 0.035166285932064, 0.028397390618920004, 0.0676781386137, 0.052993342280387004, -0.05095431208610501, 0.033516887575387004, -0.11366802453994701, 0.00046640730579300003, 0.006316950079053, -0.018356207758188, -0.096598416566848, 0.099938325583934, 0.11766161024570401, -0.000380453740945, 0.023497313261032, 0.005006676539778001, -0.010041178204119, -0.053963463753461005, -0.022533293813467, -0.083960048854351, -0.074774973094463, -0.09012205898761701, -0.064136549830436, -0.012787669897079001, -0.032973028719425, 0.041265562176704004, 0.038457054644823005, 0.009247073903679001, -0.08266389369964601, -0.015833036974072002, 0.028606908395886, 0.12512998282909302, 0.09066990762948901, 0.11263119429349801, -3.761234168564442e-8, 0.018719788640737003, -0.019513089209794002, -0.07258066534996001, -0.009718183428049, 0.036233037710189, -0.005018661729991001, -0.048223800957202, -0.006044274196028001, -0.020013248547911002, 0.043921843171119, 0.05057156085968, 0.011724540032446001, -0.017232859507203, -0.018990738317370002, -0.0020072816405440003, -0.010506002232432001, 0.008842865005135, 0.031840164214372, -0.005916057154536, -0.06853462755680001, 0.016761697828769, -0.009408568032085, -0.004960952792316, -0.024272862821817003, -0.029392629861831002, -0.0417360663414, -0.09167275577783501, -0.058250878006219, -0.022346680983901003, 0.041846986860036, 0.041353043168783, 0.00026842439547100004, 0.070574171841144, -0.098458275198936, 0.026708751916885, 0.012385687790811001, 0.015160871669650001, -0.060649130493402, 0.008341551758348, 0.11418750882148701, 0.073455773293972, -0.026991518214344003, -0.0019453607965260003, -0.026364725083112002, 0.148247137665748, -0.0017395124305030001, -0.024524036794900003, 0.066093645989894, -0.027660170570015002, 0.065051347017288, -0.018349260091781002, 0.04898140951991, -0.07829510420560801, 0.008604750968515, -0.004731323570013, -0.0015829178737470002, -0.016725981608033, -0.06533613055944401, 0.023947622627019, -0.050052251666784, 0.048826247453689006, 0.007238784804940001, -0.038690730929374, 0.020136622712016 ]
0704.0014
Iterated integral and the loop product
In this article we discuss a relation between the string topology and differential forms based on the theory of Chen's iterated integrals and the cyclic bar complex.
[ "math.CA", "math.AT" ]
[ -0.060343150049448006, 0.049399618059396, -0.014103047549724001, -0.044075276702642004, -0.090728722512722, 0.018104569986462, 0.07813096791505801, 0.101148404181003, 0.014196658506989, -0.126396164298057, 0.033184885978698, 0.025085173547267, 0.045356169342994, -0.040032636374235, -0.0033664733637120002, 0.039615646004676, -0.14079515635967202, -0.014667367562651001, -0.014310139231383, 0.008330069482326001, -0.069597385823726, 0.044342771172523006, 0.044456686824560006, 0.021600149571895003, -0.024482348933815002, 0.036252845078706006, 0.059809047728776, 0.064556077122688, 0.047214817255735, 0.0013988522114230001, 0.011414149776101001, -0.037919521331787005, -0.008886226452887001, -0.007943523116409001, 0.040891285985708, -0.0030972720123820002, 0.033233791589736, -0.014774398878216001, 0.029581466689705002, 0.062020272016525005, 0.09975681453943201, 0.005356030538678, 0.051777709275484, -0.025019712746143, 0.026209030300378, 0.051027152687311006, -0.093937158584594, -0.003758294973522, -0.101438552141189, -0.044564791023731, 0.023629894480109003, 0.033685818314552, 0.01106484979391, 0.004420348908752, 0.026465930044651004, 0.016441522166132, -0.052261061966419005, 0.046734783798456005, 0.051879588514566005, -0.049946580082178005, 0.09854938834905601, -0.016470905393362, -0.00989029649645, 0.05805080011487, -0.031413275748491, 0.018702495843172, 0.024204686284065, 0.032380696386098, 0.037079498171806, -0.032518379390239, -0.038867872208356004, 0.02461820654571, -0.126981526613235, -0.036779373884201, 0.0028902122285210004, 0.026773346588015, 0.009623867459595, -0.012203714810311002, -0.043106395751237, -0.022703196853399003, -0.030436383560299003, 0.00246283924207, -0.0026081474497910003, -0.069646552205085, 0.018337696790695003, 0.087344050407409, -0.079465627670288, 0.0038623437285420005, -0.01741673797369, 0.033251654356718, 0.010332721285521, -0.077621661126613, -0.041684903204441, -0.027997395023703003, -0.020226942375302003, 0.031603395938873, -0.0034728043247010004, 0.052656669169664, 0.037173066288232005, 0.016124937683343003, 0.047879558056592005, -0.086123041808605, 0.016413874924182, -0.011887249536812, 0.010175081901252, 0.004322326276451001, 0.038469690829515006, -0.001451035146601, -0.03866508603096, -0.028934532776474002, -0.009443681687116, -0.10742028057575201, 0.096154250204563, -0.021038247272372003, -0.09117179363965901, 0.057910688221454, 0.029841374605894002, 0.11421905457973401, 0.04906253144145, 0.048365168273448, 0.057576559484004, 0.010040787048637001, -0.06730324029922401, 0.027118444442749003, -0.062447141855955006, -0.037246972322463004, 0.021275077015161, -3.864047561140591e-33, 0.002751782536506, 0.017870843410491, 0.020882055163383, -0.039418473839759, 0.014285452663898001, -0.050196267664432005, -0.033465530723333005, -0.026670115068554, 0.053204830735921006, 0.015205243602395, 0.018526619300246003, 0.080055452883243, -0.055984985083341, -0.012328303419053001, 0.022818127647042, -0.030604410916566002, 0.047136295586824, 0.020494576543569003, 0.047786511480808, -0.024974662810564003, 0.06571792811155301, 0.11172360926866501, 0.05124919116497, -0.022666994482278, -0.0005965710734010001, 0.044190786778926, 0.052585076540708, 0.033061768859624, -0.047451164573431, 0.019488096237182003, -0.040181469172239005, -0.093874372541904, -0.058489967137575004, 0.048712227493524, 0.0389702655375, -0.012655079364776, -0.023142568767070004, -0.018348893150687003, -0.056256417185068006, 0.078620061278343, -0.014207663945853, -0.07118163257837201, 0.015833815559744002, 0.023205116391181002, -0.068620473146438, 0.08443112671375201, 0.093002952635288, 0.030800761654973002, -0.002255941275507, -0.08081995695829301, 0.0038108311127870004, -0.000760790950153, -0.09846244007349, -0.013940746895968002, 0.006533960811793, -0.009898021817207002, -0.060845151543617006, -0.004171635024249, -0.07341912388801501, 0.12355731427669502, -0.046520642936229005, 0.038801413029432005, -0.032246973365545, 0.001161963213235, -0.10481517761945701, -0.031968828290700003, 0.087326370179653, -0.05869293212890601, 0.068969063460826, -0.050575282424688006, -0.070631235837936, 0.07777145504951401, -0.08920542895793901, -0.030375409871339003, 0.07084383815526901, 0.015125161968171002, -0.07129121571779201, -0.075130075216293, -0.046962276101112005, 0.010517926886677001, -0.063145294785499, -0.06721825897693601, 0.008040887303650001, 0.07817224413156501, 0.058794941753149005, -0.06948616355657501, 0.000800717796664, -0.029590986669063003, -0.017280070111155, -0.041027810424566005, -0.08418531715869901, -0.010425608605146, 0.069525875151157, -0.033266197890043, 0.064536988735198, -2.225811869428944e-34, 0.0014434632612390001, -0.127166077494621, 0.032989386469125005, -0.001215311349369, -0.014917538501322, 0.024059254676103002, 0.023501481860876, 0.074229702353477, -0.035955823957920005, -0.035123910754919004, -0.0032763159833840002, 0.07649592310190201, 0.044402930885553006, -0.015701046213507, -0.01341082714498, -0.011479765176773, -0.00829423032701, 0.025740042328834003, 0.003936049528419, -0.053847815841436004, -0.021442951634526003, -0.014743213541805002, 0.029313193634152003, -0.067494466900825, -0.10832291096448801, 0.067160546779632, -0.009298719465732, 0.026964275166392004, 0.09111892431974401, 0.10785432159900601, 0.091017983853816, -0.079519085586071, -0.016472635790705, 0.038839884102344006, -0.091247476637363, 0.010480347089469001, 0.08261915296316101, 0.031651809811592005, 0.015569114126265, 0.034273561090230005, -0.018331835046410002, -0.019107017666101, 0.071439251303672, 0.035274274647235, -0.029877793043851002, -0.0015479889698320002, -0.033332593739032, 0.040811400860548006, -0.107201598584651, -0.012471375986933, 0.058217238634824, 0.016843896359205, 0.015046498738229, -0.026168711483478, -0.077626578509807, 0.07360090315341901, -0.027639264240860002, -0.031190525740385004, -0.035011921077966, -0.024914227426052003, -0.013853029347956002, -0.035722222179174, 0.04795596376061401, 0.030688492581248002, 0.078364521265029, -0.032490998506546, -0.016827022656798002, -0.134963810443878, -0.041687652468681, -0.056297246366739, 0.098557077348232, -0.046595308929681, -0.043247263878583006, -0.014800726436078002, 0.006642627064138, -0.007790598087012, 0.033057484775781, -0.017852028831839003, 0.047812819480895004, 0.030552629381418003, -0.023072632029652002, 0.024323256686329002, -0.014356952160596001, 0.022826382890343003, -0.010165017098188001, -0.033932223916053, -0.014329809695482, 0.030810330063104, -0.007501335348933, -0.028741592541337003, 0.022830475121736003, 0.049880336970090006, -0.042507216334342006, 0.189380958676338, 0.017313012853264, -2.298970258607369e-8, -0.012983568012714001, -0.07695934921503, -0.088965259492397, -0.048208367079496, 0.0027566475328050003, -0.028270741924643003, -0.05565469339489901, -0.027745692059397004, 0.012987314723432002, 0.040512692183256004, 0.029886417090892, -0.001843065954744, -0.06911962479352901, -0.033349853008985006, -0.020316369831562, 0.002792007522657, -0.040413666516542004, 0.008459530770778, -0.030888132750988003, -0.059366617351770005, 0.044240087270736, 0.015618827193975001, -0.06910648196935601, -0.083204083144664, -0.041586309671401006, -0.095449268817901, -0.046330396085977006, 0.010792059823870001, 0.047997165471315, 0.030184313654899004, 0.045926705002784, 0.05665312334895101, -0.041475482285022, 0.004408541135489, -0.07820027321577, -0.05226465687155701, -0.014864818193018001, -0.070672683417797, 0.028989659622311002, 0.08103745430707901, 0.052903711795806004, 0.008003626950085, 0.06196679174900001, 0.029375124722719, 0.029627392068505003, -0.06803041696548401, 0.040489174425601, 0.094677902758121, 0.034385938197374004, 0.109181761741638, -0.087882257997989, 0.024719838052988, -0.007021662313491, -0.0160275362432, 0.023218827322125, 0.03261075168848, -0.017417954280972002, -0.036235399544239, -0.039607349783182005, 0.011028411798179, -0.072189979255199, -0.026532078161835, 0.081311553716659, 0.013586886227130002 ]
0704.0015
Fermionic superstring loop amplitudes in the pure spinor formalism
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.
[ "hep-th" ]
[ -0.040885522961616, 0.005749852396547001, -0.04469630494713701, -0.075167782604694, -0.05214345082640601, 0.041496433317661, -0.018258290365338003, 0.084202364087104, -0.048134163022041, -0.074421502649784, 0.055798165500164004, 0.050731323659420006, -0.0049115917645390006, -0.022491207346320003, -0.050831623375415004, 0.059272099286317007, -0.050124935805797, 0.07261320948600701, -0.094393916428089, -0.032556347548961, 0.10909701883792801, -0.051277726888656006, 0.06497649848461101, 0.001103309914469, 0.07389358431100801, 0.009861375205218001, 0.010468382388353, -0.024653637781739002, 0.031863860785961005, 0.047517482191324005, 0.031403642147779, 0.002613176358863, -0.034605488181114, -0.009503469802439001, 0.064075119793415, -0.03410006314516, 0.063729904592037, 0.003006642917171, 0.061495773494243004, -0.0030947679188100003, 0.113942489027976, 0.007815567776560001, 0.041910264641046004, -0.040065690875053, 0.021262090653181003, 0.040445905178785005, -0.028401998803019003, 0.021538961678743, -0.007304451428353001, -0.017035944387316003, 0.09360989928245501, 0.036472089588642, -0.021241547539830003, -0.032469388097524005, 0.001016997732222, -0.008999927900731002, 0.005359257571399, -0.05466739833354901, -0.046218238770961005, -0.037458527833223, 0.030805015936493003, -0.031497847288846005, -0.012551338411867001, 0.009942924603819, 0.06899762153625401, 0.017969718202948, -0.08122159540653201, 0.012491522356867001, -0.035031791776418006, 0.027324300259351002, -0.043071970343589006, -0.031661909073591, -0.088637612760066, 0.017119405791163, 0.007829648442566001, -0.027722649276256003, 0.011169518344104, -0.042624372988939, 0.035308867692947006, 0.09252480417490001, -0.013655011542141, -0.085249654948711, 0.038199391216039005, -0.025990180671215002, 0.021000910550355002, 0.04861357808113, -0.033880937844514, 0.066240720450878, -0.04682369530200901, 0.054123252630233, 0.04766795039176901, -0.101264908909797, -0.09570294618606501, -0.041195437312126, 0.018192404881119003, 0.032813221216201005, -0.03632665798068, 0.034149643033742, -0.073922500014305, -0.037976622581481004, 0.05452468246221501, -0.116861775517463, 0.029506502673029, -0.042166844010353005, 0.022020582109689, 0.049570843577384005, 0.041473396122455, 0.06436201930046001, -0.036000777035951004, -0.036001242697238006, 0.007966117002069001, -0.048059247434139, 0.06866049766540501, -0.015018555335700002, -0.021051358431577002, 0.07673660665750501, 0.028551317751407002, 0.09104103595018301, 0.051769822835922005, -0.036034218966960005, 0.042970594018697, 0.083413422107696, 0.014457724988460001, 0.063548028469085, -0.045671369880437004, 0.027452753856778003, -0.14711704850196802, 1.617815058950459e-33, -0.008644602261483001, 0.06823642551898901, 0.068944074213504, 0.000851502001751, -0.07312686741352001, 0.021359832957386003, -0.058546390384435, -0.056911427527666, 0.12180329859256701, 0.040024165064096, -0.015986932441592, -0.024663239717483004, 0.045963130891323006, -0.08154472708702, -0.010368407703936001, -0.06632759422063801, 0.036076661199331006, -0.029928898438811004, 0.079482898116111, 0.008886567316949001, 0.10298822075128501, 0.12812276184558802, -0.005963786039501, 0.019222585484385, 0.018136043101549003, 0.0032472992315880004, -0.051254872232675004, 0.055249340832233006, -0.07365293800830801, 0.002124603604897, 0.019472608342766002, -0.041530415415763, -0.086779035627841, -0.047438841313123, 0.034293621778488, -0.10614194720983501, 0.045110568404197006, -0.024336405098438003, -0.037183821201324005, -0.013069992884993002, -0.045113757252693, -0.06953549385070801, -0.010109124705195, -0.039792701601982006, -0.07880023121833801, 0.022097919136285, 0.06078372150659501, 0.05720555037260001, 0.091336980462074, -0.0013762753224, 0.015526676550507, -0.010347889736294, -0.031110992655158, 0.027871521189808002, 0.062778323888778, 0.006147454492747, 0.029160929843783004, -0.058122768998146, -0.037882421165704006, 0.08328066766262, -0.07319165766239101, 0.052729502320289, 0.026160871610045003, -0.022074922919273002, -0.035669196397066005, -0.068380802869796, 0.058807447552680005, -0.040278285741806, 0.044893380254507, -0.009534897282719001, -0.100805662572383, 0.09470868855714701, -0.0026756464503700002, -0.046877279877662006, 0.08389817178249301, -0.037773557007312004, 0.009220036678016, -0.09362665563821701, -0.006815995555371, 0.052415344864130006, 0.016309738159179, -0.008816238492727, -0.013862271793186002, 0.029184084385633004, 0.039510704576969, 0.002410649787634, -0.062665946781635, -0.08847435563802701, 0.020217828452587003, -0.07946652919054001, -0.030749838799238004, -0.042919959872961, -0.024289920926094003, -0.011554514989256, -0.020193180069327, -4.3564727976176016e-33, 0.018866669386625002, -0.058209270238876, 0.092031605541706, 0.005425695329904, -0.018565993756055003, 0.042291831225156, 0.024722816422581003, -0.026093715801835, 0.0070534646511070005, -0.047151602804660006, 0.026603491976857, 0.027792613953351003, -0.009191843681037001, 0.032333385199308, 0.110893838107585, 0.037354733794927, -0.048922929912805, 0.0018342206021770002, 0.075462661683559, -0.028104742988944, 0.026437165215611003, 0.07336442917585301, -0.013043256476521001, -0.052012965083122004, -0.036343235522508004, -0.035827439278364, 0.047894105315208005, -0.015555511228740002, 0.11849118769168801, 0.075307339429855, 0.06059125438332501, -0.006688967347145001, 0.017264878377318, 0.08238651603460301, -0.11699589341878801, 0.011486622504889, 0.059984408318996006, 0.025557853281497, 0.024978881701827, 0.0061243190430100005, -0.003562309779226, -0.005342407152056, 0.050107661634683005, 0.031584251672029, 0.0024154500570140003, -0.004656260367482, -0.005214686971157001, 0.035986352711915005, -0.08348862081766101, -0.039964541792869006, -0.053566448390483, -0.060951989144086005, 0.014900575391948001, -0.035032477229833006, -0.070967875421047, -0.018841056153178, -0.06647855043411201, -0.018287351354956002, -0.03757420182228, -0.042198583483695006, -0.002686969470232, -0.078221999108791, 0.0018786059226840002, -0.018038539215922002, 0.038619033992290004, -0.029581530019640003, 0.025270560756325004, -0.056604962795972005, -0.069021046161651, -0.017425093799829, 0.037423275411129005, -0.041099749505519007, -0.038794603198766, 0.018255831673741, 0.08019792288541701, 0.022082107141613003, 0.031132403761148, -0.048379845917224, 0.049188006669282004, -0.022478256374597, -0.073045171797275, 0.07635859400033901, -0.069235272705554, -0.055999793112277006, 0.05482188239693601, 0.035245183855295, -0.06034819036722101, 0.089487917721271, 0.030637938529253003, -0.058636792004108006, -0.029241202399134, 0.07058177143335301, 0.044985674321651, 0.12793192267417902, -0.029454102739691002, -3.569386208823744e-8, -0.037167411297559, -0.006933049298822, -0.060650240629911006, -0.040865033864974004, -0.007155453320592001, 0.025277120992541, -0.07824399322271301, -0.070030100643634, 0.021151460707187, 0.032914880663156, -0.005362929310649, -0.031917728483676, -0.13120305538177401, -0.06470238417387, -0.00022536166943600003, -0.036077238619327004, -0.06273659318685501, -0.020005358383059002, 0.02176403440535, 0.0014101254055270001, -0.023769292980432, 0.070192359387874, -0.054445482790470005, -0.095330163836479, -0.055484518408775, 0.008226313628256, 0.031473968178033, 0.035202290862798004, 0.04900482296943601, 0.014055633917450001, 0.048960864543914004, -0.004758853465318001, -0.016587091609835, -0.05068017914891201, -0.056158281862735006, -0.033965244889259005, -0.079332195222377, 0.023683231323957003, 0.128449022769927, 0.1237208917737, 0.004663872532546001, 0.024898229166865002, 0.076965935528278, 0.06207240745425201, -0.010535796172916001, -0.014409113675355, 0.015376540832221001, -0.007202773354947001, 0.0065245912410310004, -0.0008119546691880001, -0.041529648005962004, 0.031058814376592, -0.0672272965312, 0.015853142365813002, -0.006052214186638, 0.040904242545366, 0.011782212182879, 0.053944885730743006, -0.026280863210558003, 0.071387849748134, -0.02473441325128, 0.013369149528443001, -0.075629144906997, 0.023341303691267003 ]
0704.0016
Lifetime of doubly charmed baryons
In this work, we evaluate the lifetimes of the doubly charmed baryons $\Xi_{cc}^{+}$, $\Xi_{cc}^{++}$ and $\Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also included. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
[ "hep-ph" ]
[ -0.12753677368164001, -0.047329951077699, 0.042513266205787006, 0.098003253340721, -0.034018740057945, -0.065036408603191, -0.080124609172344, 0.09019555151462501, 0.032909806817770004, -0.058036148548126006, -0.011139332316815001, 0.018353426828980002, -0.01992442831397, -0.10253332555294001, 0.007385172881186001, 0.021551860496401003, 0.055228926241397004, -0.059409037232398, -0.062458049505949007, 0.021053636446595, -0.051358025521039005, -0.10829972475767101, -0.0040920227766030005, 0.019700771197676003, -0.020071521401405, -0.065270021557807, 0.009838176891207001, -0.010158001445233001, 0.057873558253049004, -0.004148568492382001, 0.006724995095282, 0.016298675909638002, 0.030455179512500003, 0.00001926084587466903, -0.007760815788060001, 0.055104386061429006, 0.08515525609254801, -0.065110944211483, -0.015557033009827002, -0.035912565886974, 0.055399388074874004, 0.07988703250885, 0.0072857737541190005, 0.043669834733009005, 0.028838763013482004, -0.068611398339271, 0.004596638958901, -0.08270039409399, -0.12001097202301, 0.068483188748359, -0.02118307352066, 0.072040930390357, 0.035968903452157, 0.049168054014444004, 0.00682631926611, -0.001351100974716, 0.00537315569818, -0.06804838031530301, 0.061870329082012, -0.008747398853302, -0.043271724134683005, 0.0019298829138270001, -0.0030583310872310003, -0.034208826720714, 0.032298106700181003, 0.011746862903237001, -0.050308644771575005, 0.027826150879263004, 0.031232489272952003, 0.117584437131881, -0.035631004720926, -0.038100142031908, -0.08192105591297101, -0.029292769730091, -0.0011990629136560001, 0.005910302978008, 0.051559437066316, -0.021288556978106003, 0.053152307868003006, -0.07638280093669801, -0.049060076475143, -0.050005793571472, -0.013422012329101, -0.051208738237619005, -0.039215054363012, 0.007374128326773001, -0.040879070758819004, 0.024393273517489003, 0.005808638408780001, -0.038140404969453, 0.06444770842790601, 0.025628298521041003, -0.0182511433959, -0.063527844846248, 0.0221400372684, 0.071425549685955, 0.06986148655414501, 0.044364750385284, 0.026968028396368002, 0.075103767216205, 0.071718044579029, 0.005213064607232001, -0.010998678393661001, 0.0050068390555670006, -0.04156332835555, -0.035032831132411006, 0.057083625346422, 0.005510009825229, -0.020605603232979, 0.016583619639277, 0.04250076785683601, -0.050801102072000004, 0.055718943476676004, 0.013942529447376001, -0.008534296415746, -0.013470364734530001, -0.011035565286874001, 0.11813735961914001, 0.086703099310398, -0.022124934941530002, 0.057399783283472006, 0.01897731795907, 0.058208748698234, 0.039953302592039004, -0.041966553777456006, -0.010372164659202, -0.066143564879894, 3.236453698630464e-33, 0.067431218922138, -0.030200494453310002, -0.008735381998121001, -0.001313052722252, -0.054565113037824006, 0.004058613441884001, 0.01492937002331, -0.005499076563864, -0.029045861214399, 0.033178783953189, -0.017356529831886, -0.012091718614101, 0.012746587395668, -0.057823672890663, -0.026625413447618002, -0.023084361106157, -0.038943707942962, 0.004117485135793001, 0.004358868580311001, -0.022927213460206, 0.09087907522916701, 0.007272563874721001, -0.043027322739362, -0.004691883921623, 0.09032632410526201, -0.011452916078269001, -0.013231020420789, 0.0033263976220040004, -0.096158996224403, 0.025100283324718003, 0.021755449473857002, 0.073870487511157, -0.029980802908539002, 0.038958821445703, -0.024321710690855, -0.032937921583652004, -0.027116335928440004, 0.009431415237486, 0.014650900848209001, -0.08851971477270101, 0.001263104029931, 0.006905108690261, -0.037252180278301, -0.056975524872541004, -0.035830203443765, -0.050903629511594, 0.122707217931747, 0.004928661976009, 0.019861835986375, -0.07976610213518101, 0.010392832569777001, -0.03370938822627, -0.005005446728318001, 0.026805561035871003, 0.001285147387534, -0.045237679034471005, 0.070825710892677, -0.039825011044740004, 0.008345385082066, 0.06749054044485, 0.051273394376039005, 0.056519009172916, 0.077606156468391, -0.026352467015385003, 0.004414197988808001, 0.143017143011093, -0.081294208765029, -0.044581659138202, 0.023133644834160003, -0.030319411307573003, 0.019826628267765, 0.047074150294065004, -0.071631237864494, -0.144176810979843, 0.027387082576751, -0.097956158220767, 0.030339378863573, -0.018657542765140003, 0.028356146067380003, 0.046263378113508, -0.0025296821258960003, -0.06941094249486901, -0.053819265216588, 0.028851298615336002, 0.047817058861255, -0.033612970262765, -0.002382806036621, -0.04962297901511101, -0.08238149434328, -0.006117908749729, 0.032904393970966, -0.044913411140441006, 0.05719566345214801, -0.031415089964866, -0.051418263465166, -3.206538469427991e-33, -0.070888400077819, -0.025523670017719, 0.045525252819061, 0.08875554800033501, -0.004108836874365, -0.012926223687827, -0.090985663235187, 0.077941417694091, 0.020409718155860002, -0.029028130695223003, 0.09227059781551301, -0.011557627469301002, -0.056224700063467005, -0.006119951140135, 0.043253436684608, 0.017091576009988, 0.050878427922725004, 0.030146820470690002, -0.024353642016649003, -0.025010379031300004, 0.075761191546916, -0.025428151711821, 0.006018721498548, -0.035183899104595004, 0.017420481890439002, 0.06042170524597101, 0.09247150272130901, -0.04269878938794101, 0.033186297863721, -0.044933978468179, -0.000207968914764, 0.033722598105669, -0.034845650196075, 0.024736512452363003, 0.040511216968297, 0.023635998368263002, 0.001072516082786, 0.040798947215080004, -0.05554649233818001, -0.07460314035415601, 0.033999152481555, 0.121627062559127, -0.006079971790313001, 0.04292298108339301, 0.031037583947181, 0.009027579799294, -0.036364771425724, 0.044848106801509004, 0.013065290637314, -0.016649400815367, 0.030535310506820002, -0.099526040256023, -0.006623999681323001, 0.111104696989059, -0.045316614210605004, 0.081186786293983, 0.025380954146385002, 0.07049045711755701, -0.009772481396794, -0.04372801631689, -0.08907363563776001, -0.05603374168276701, 0.03409781306982, 0.003854961367323, 0.003709660610184, 0.019397763535380003, 0.006462341174483001, 0.080296471714973, 0.010398497804999001, -0.096844978630542, 0.118350848555564, -0.00421561487019, -0.06155810132622701, -0.025569833815097, -0.014839538373053001, 0.086494654417037, 0.063999503850936, -0.051692385226488, 0.031758427619934006, 0.003286998951807, -0.098575808107852, 0.09035668522119501, -0.009455271996557001, -0.040250301361083006, 0.027099382132291003, -0.070123024284839, 0.014667132869362002, 0.052467122673988, 0.011098713614046001, 0.04812129959464, -0.004958719946444001, -0.044744923710823004, 0.033244624733924005, 0.045422993600368, 0.052276309579610006, -4.976244127874452e-8, 0.049349796026945, 0.027380550280213002, -0.058365497738122, 0.024040063843131003, 0.068083010613918, 0.032880272716283, 0.033303916454315005, -0.050962153822183005, -0.07147017121315001, 0.09044964611530301, 0.10590826719999301, 0.028314152732491, -0.036433849483728, -0.07842992246150901, -0.011569426394999001, 0.053604014217853005, 0.023287260904908003, -0.037035576999187005, -0.018650161102414003, 0.0032662067096680004, 0.060156878083944, -0.023868687450885002, 0.12825380265712702, -0.020990692079067, -0.10906890779733601, 0.006071042735129001, -0.061870619654655006, -0.058180749416351006, 0.021064899861812002, -0.027403203770518, -0.009928526356816, -0.003337244037538, 0.007310514803975001, -0.006344657391309001, 0.046889577060937, -0.06134797260165201, -0.11558091640472401, -0.052827358245849006, 0.09699539095163301, 0.08779713511466901, 0.001354684238322, 0.006646960508078, -0.047992456704378, 0.063416868448257, 0.027387334033846, 0.021164147183299002, -0.09140198677778201, 0.0006088243098920001, -0.07237050682306201, 0.083717569708824, -0.044926624745130005, 0.041622262448072, -0.035023044794797, -0.05538535863161, -0.030495332553982003, 0.0037576986942440002, -0.013801015913486002, 0.085827901959419, -0.047157097607851, 0.002718757139518, 0.09494562447071, -0.058029737323522006, -0.040112223476171, 0.001498792786151 ]
0704.0017
Spectroscopic Observations of the Intermediate Polar EX Hydrae in Quiescence
Results from spectroscopic observations of the Intermediate Polar (IP) EX Hya in quiescence during 1991 and 2001 are presented. Spin-modulated radial velocities consistent with an outer disc origin were detected for the first time in an IP. The spin pulsation was modulated with velocities near ~500-600 km/s. These velocities are consistent with those of material circulating at the outer edge of the accretion disc, suggesting corotation of the accretion curtain with material near the Roche lobe radius. Furthermore, spin Doppler tomograms have revealed evidence of the accretion curtain emission extending from velocities of ~500 km/s to ~1000 km/s. These findings have confirmed the theoretical model predictions of King & Wynn (1999), Belle et al. (2002) and Norton et al. (2004) for EX Hya, which predict large accretion curtains that extend to a distance close to the Roche lobe radius in this system. Evidence for overflow stream of material falling onto the magnetosphere was observed, confirming the result of Belle et al. (2005) that disc overflow in EX Hya is present during quiescence as well as outburst. It appears that the hbeta and hgamma spin radial velocities originated from the rotation of the funnel at the outer disc edge, while those of halpha were produced due to the flow of material along the field lines far from the white dwarf (narrow component) and close to the white dwarf (broad-base component), in agreement with the accretion curtain model.
[ "astro-ph" ]
[ -0.037511166185140006, -0.05568865686655, 0.0011241795727980001, -0.03605855628848, 0.079822167754173, -0.023562548682093003, -0.026458946987986003, 0.038142245262861, 0.022774109616875003, -0.004248030483722001, -0.019943574443459, -0.024234434589743004, 0.046473864465951004, -0.024156967177987, 0.053222186863422005, -0.016029814258217, -0.06672155112028101, -0.093585111200809, -0.006061555817723, 0.047667939215898, -0.012199141085147, -0.01439931243658, -0.005635078996419, 0.07157944887876501, -0.037098325788974006, 0.030889367684721003, -0.061670612543821, -0.066042050719261, -0.009974353015422, 0.004104559775441, 0.023092659190297002, 0.04493049159646, -0.062018174678087006, -0.028538895770907003, -0.006397082004696001, 0.046452708542346004, 0.031475365161895, 0.029768554493784002, -0.019021349027752002, -0.042411897331476, -0.018042800948023, -0.029598942026495004, 0.022997580468654, -0.025106826797127002, -0.038871198892593, 0.025464091449975003, 0.06486379355192101, -0.0074717574752860005, -0.021937847137451002, -0.019564989954233003, 0.0008882291149340001, -0.04951684921979901, -0.026047825813293003, 0.008570558391511001, 0.0025439432356500003, 0.001927269971929, -0.010119193233549002, -0.149151563644409, 0.020321642979979, -0.049506139010190006, 0.0035156612284480003, -0.009893850423395, -0.07777449488639801, -0.039709176868200004, -0.033595729619264006, -0.020082300528883, 0.0020550927147260003, -0.019678184762597, 0.019037252292037, 0.026843825355172, -0.00993573013693, 0.05829153209924601, -0.07878235727548501, -0.020214324817061, -0.037609338760375005, 0.039828535169363, -0.008705856278538001, 0.022654946893453, -0.009601466357707, -0.072192408144474, -0.060074687004089, 0.010969450697302001, -0.004311604425311, 0.008681895211338001, -0.03630706295371, 0.020411800593137002, 0.031992934644222, -0.016622370108962, -0.051944695413112, 0.025297192856669003, 0.023444710299372003, 0.032627135515213006, -0.09428458660840901, -0.057976685464382005, 0.06250983476638701, 0.037265785038471, -0.008546458557248001, -0.040060319006443, 0.094719894230365, -0.044391956180334, 0.028442019596695, 0.011790570802986, -0.06777761876583101, 0.042897149920463, -0.023075049743056002, -0.035114027559757004, 0.063313260674476, 0.06319918483495701, 0.05755503475666, 0.057243138551712, -0.052200816571712, -0.073949217796325, -0.020665656775236, -0.045890886336565004, -0.036698583513498, 0.041945219039916, -0.046598620712757007, 0.078320272266864, -0.084734395146369, 0.069376751780509, -0.047500934451818, 0.141194805502891, -0.024399690330028003, 0.060494221746921005, 0.09354829043149901, 0.00233315420337, -0.00005188840077607893, 4.223838463936462e-33, 0.13131609559059101, -0.027546940371394, 0.011472558602690001, 0.11785957217216401, -0.046996071934700005, 0.008657613769173001, -0.031041961163282002, 0.032763145864009004, -0.0027495564427220003, 0.012552362866699002, -0.043427750468254006, 0.018388632684946, 0.020326429978013, -0.11501915752887701, -0.054961763322353, -0.010258412919938, 0.046185128390789004, -0.031972002238035, -0.08701896667480401, -0.018139421939849, -0.039380718022584006, 0.048046585172414, -0.034264571964740004, 0.000543014961294, -0.004943443927913, 0.04493311047554, 0.03089833818376, 0.00136446300894, -0.093838974833488, 0.043166041374206, -0.008575524203479, -0.051272593438625, -0.085617616772651, 0.091628558933734, -0.014961800538003, -0.0017456812784070002, -0.033077619969844, 0.005102248396724, 0.026382749900221002, 0.061111360788345004, 0.074866771697998, -0.041737105697393, 0.009900570847094, 0.046546135097742004, -0.004170327913016, -0.026991013437509002, 0.104757346212863, -0.025020604953169, 0.036228984594345, 0.058795031160116, 0.08916097134351701, 0.033681031316518, -0.09435983747243801, 0.025946471840143003, -0.05817152559757201, -0.007172007113695001, 0.017269207164645, -0.028708321973681002, -0.038203250616788004, 0.04761905223131101, 0.08899761736392901, 0.05092031136155101, 0.010871694423258001, -0.013218910433351001, 0.016198448836803003, 0.054461855441331, -0.041242830455303005, 0.021386364474892002, 0.024153258651494, -0.011918324977159, 0.0039970837533470005, -0.00888701621443, 0.09317994862794801, 0.048993580043315006, 0.055596735328435, 0.0038839902263130004, -0.011262487620115, -0.026618739590048002, 0.08110541105270301, 0.059677045792341, -0.04343068599700901, -0.046645630151033006, 0.046929687261581005, -0.03010756522417, -0.052633177489042005, -0.021648986265063, 0.049479328095912004, 0.003559904405847, 0.019010191783308, -0.007864285260438001, -0.041615918278694, -0.036709886044263, 0.05265337228775, -0.050358034670352006, -0.048791438341140005, -6.76037454075452e-33, -0.021088153123855, -0.012280354276299001, 0.025288112461566002, 0.010363220237195, 0.021288884803652, 0.053048696368932, -0.028989404439926002, 0.15767821669578502, -0.128960981965065, -0.14362908899784002, 0.0664679184556, 0.082261025905609, 0.014159561134874002, -0.022528236731886003, -0.006592239718884001, -0.025139559060335003, -0.001782945590093, -0.05452607944607701, -0.007878967560827, -0.019184848293662002, -0.018214585259556, -0.16596981883049, 0.048694733530282, -0.034235246479511004, 0.065076678991317, 0.028508588671684, 0.077232629060745, -0.038677845150232, 0.035108339041471, 0.066444784402847, -0.004212229512631001, 0.063590846955776, -0.021071262657642, 0.052189242094755006, -0.053267322480678, -0.013019311241805002, 0.004463037475943001, -0.04670675843954, -0.10917802900075901, -0.076213784515857, -0.038575265556573, 0.035385824739933, 0.12232519686222001, -0.058680713176727003, 0.012258112430572001, -0.079637691378593, -0.047183912247419, 0.120941706001758, 0.038223266601562, -0.026610577479004003, -0.06934404373168901, -0.014657046645879001, 0.03656468167901, 0.077581591904163, -0.020255658775568, 0.062586233019828, 0.061305031180381005, 0.0515075661242, 0.038417369127273004, -0.04342471063137, 0.05994639918208101, 0.030600268393754, 0.06797804683446801, -0.04593069106340401, -0.025251755490899003, -0.09363592416048001, 0.121000379323959, 0.05636667460203101, -0.029145266860723003, 0.021213021129369, 0.038017317652702005, -0.012118933722376001, -0.012404083274304001, -0.017677458003163, 0.056212082505226, 0.036936569958925004, 0.071947127580642, -0.1478061825037, -0.058258794248104005, -0.031163459643721, -0.075269132852554, 0.061360646039247006, -0.049814127385616004, -0.045103356242179, 0.049979191273450005, -0.06747643649578, -0.027067186310887004, -0.11100348830223, -0.008027318865060001, -0.059562537819147006, 0.016543291509151, -0.055006522685289, -0.0365338511765, 0.020668908953666, 0.057589050382375, -5.3023693880049905e-8, 0.077152960002422, 0.060239829123020006, -0.02815038524568, 0.08839880675077401, -0.001526917912997, 0.033140800893306004, 0.0027444348670540002, 0.02858854457736, 0.030951747670769, -0.028081290423870003, 0.110522732138633, -0.024142879992723004, 0.096880815923213, -0.041197627782821, -0.030158342793583003, 0.017868589609861003, 0.004442226141691001, -0.10169570893049201, 0.0034126776736220004, 0.027148703113198003, 0.031964186578989, -0.008812422864139, 0.044735569506883004, -0.06440991163253701, 0.0037171384319660003, 0.03511756286025, 0.010397643782198, 0.04880975559353801, -0.067830435931682, -0.119578517973423, -0.016805469989776, -0.013121585361659001, 0.007181236520409, -0.060374457389116, -0.026005959138274002, 0.024381985887885003, -0.004765263292938001, 0.058768451213836004, -0.045729923993349006, 0.058583777397871004, 0.040290631353855, -0.021586548537015002, -0.028894016519188003, -0.010990887880325002, 0.02861064299941, 0.037626907229423, -0.045220736414194, 0.003280553268268, -0.019485432654619002, 0.017391145229339003, 0.027785334736108003, 0.046731129288673005, 0.058896932750940004, 0.000503400166053, -0.046454779803752004, 0.005201676860451, -0.092845849692821, -0.036701649427413004, -0.043406404554843, 0.009556379169225, -0.019771989434957, -0.048728313297033005, -0.08011082559823901, -0.00590861774981 ]
0704.0018
In quest of a generalized Callias index theorem
We give a prescription for how to compute the Callias index, using as regulator an exponential function. We find agreement with old results in all odd dimensions. We show that the problem of computing the dimension of the moduli space of self-dual strings can be formulated as an index problem in even-dimensional (loop-)space. We think that the regulator used in this Letter can be applied to this index problem.
[ "hep-th" ]
[ -0.042365945875644004, 0.04613734036684, -0.015857541933655, 0.032294437289237005, -0.080166809260845, 0.028965806588530003, 0.10899718850851, 0.066542409360408, 0.053270649164915, -0.07561780512332901, 0.10806211829185401, -0.007266771513968001, -0.04412592202425, -0.033434811979532006, -0.054530844092369, 0.032148890197277, -0.112997844815254, -0.0027109188959, -0.024458561092615003, 0.035050734877586004, 0.053482666611671004, 0.08120249211788101, -0.007755396421998, 0.0076425443403420005, -0.023017447441816, 0.069842532277107, 0.008785741403698, 0.097662799060344, 0.073633268475532, 0.016989089548587, 0.000267513678409, 0.056572623550891, -0.013241061940789, 0.0050946604460470005, -0.003402347676455, -0.0026543347630640004, 0.015881167724728, 0.00043197098420900005, 0.026083199307322003, 0.0006016835686750001, 0.024828743189573003, 0.014490076340734001, 0.014412048272788, -0.030062140896916, -0.02821303345263, 0.007701111026108, -0.029288476333022003, 0.073517203330993, -0.042149279266595, -0.070233665406703, 0.023307343944907, 0.045865561813116004, -0.067578412592411, 0.040258452296257005, 0.060346737504005, -0.019323410466313, -0.043796308338642, -0.042440991848707005, 0.037923768162727, 0.021296901628375, 0.082252085208892, 0.023014001548290003, -0.023887800052762, -0.056538458913564, 0.011021183803677, 0.040599323809146, 0.00866166781634, -0.037897493690252006, -0.08311078697443, 0.024681417271494, -0.046378545463085, 0.013012556359171002, -0.062591455876827, 0.005160994362086, -0.03229559212923, 0.046961292624473, -0.046876296401023004, -0.061610456556081, 0.028654217720031003, 0.07812196761369701, 0.005652480758726, -0.06433755159378, 0.063362434506416, -0.013898589648306, 0.031430050730705004, -0.021070312708616, -0.08925493806600501, -0.011026002466678, 0.014439162798225002, 0.020238451659679, -0.001550041604787, -0.06912250816822, 0.023551214486360002, 0.03173092007637, -0.073896937072277, 0.0019969104323530004, 0.0016387766227120002, 0.07669984549283901, 0.025646602734923002, 0.026985196396708003, -0.040080361068248006, -0.085650272667407, -0.0012165767839170001, 0.04470220953226001, 0.00027404242428, 0.06316251307725901, 0.008180539123713, -0.06459607928991301, 0.069629952311515, -0.09016493707895201, 0.0066110412590200006, -0.06980732828378601, 0.030696671456098, -0.015704873949289003, -0.071969449520111, -0.05125965923070901, 0.011365696787834001, 0.055840272456407006, 0.11219593137502601, -0.009395977482199001, 0.023111630231142002, 0.0011065270518880001, 0.01643719151616, 0.018678583204746, 0.020582152530550003, 0.030111048370599, -0.038502778857946, -1.6222813864706074e-33, 0.060373596847057, 0.12388998270034701, 0.026878718286752003, -0.053640466183423004, -0.010817677713930001, 0.012691371142864002, -0.052903372794389, -0.01813949458301, 0.05591949447989401, 0.027321439236402, -0.016160480678081002, 0.05023880675435, 0.052930634468793, -0.014988186769187001, 0.091467291116714, -0.025074379518628002, 0.077879324555397, -0.009460065513849, 0.080308578908443, -0.065067671239376, 0.108615778386592, 0.08580609411001201, 0.05522556602954801, -0.051327597349882, 0.027418009936809002, -0.017762187868356, 0.027812603861093, -0.10303530842065801, -0.0027622068300840004, 0.015434516593813001, -0.061985738575458006, -0.023127865046262002, -0.019458223134279, -0.006538616493344001, 0.101963967084884, 0.009127940051257001, -0.048553835600614006, 0.039802215993404, -0.051757272332906, 0.019684979692101003, -0.039975143969058005, 0.0030895974487060002, 0.050580676645040006, -0.024505648761987003, -0.07874132692813801, 0.066909112036228, 0.037105619907379005, 0.033188838511705, 0.059043303132057, -0.077140003442764, -0.055328622460365004, -0.030735416337847002, -0.07561288774013501, 0.03773283585906, 0.029839938506484004, 0.007216396741569001, -0.048901882022619005, 0.079363040626049, 0.048928197473287006, 0.11666464805603001, -0.031114941462874003, 0.0016046266537150002, 0.030602177605032, 0.035778969526290005, -0.041697584092617, -0.038992837071418006, 0.09217043220996801, -0.11001081019639901, 0.114447079598903, 0.01811396330595, -0.07451191544532701, 0.038116842508316005, 0.03003560937941, -0.081976071000099, -0.015133875422179002, -0.029255144298076, -0.007391231600195, -0.12698118388652802, -0.07118247449398, 0.018780451267957, -0.027495425194501003, -0.02108396589756, 0.09903624653816201, -0.078297689557075, 0.051740378141403004, -0.104868322610855, -0.050558406859636, -0.0184215195477, 0.017862567678093, -0.10066580772399901, -0.042928513139486, -0.046725820749998, -0.023136967793107, -0.086933068931102, -0.015813443809747002, -6.278424611982266e-34, 0.0024804309941820002, -0.13624599575996402, -0.025982402265071, 0.02473509684205, 0.015120219439268001, -0.061844650655984004, -0.005258720833808001, 0.08308316767215701, -0.037274494767189005, -0.051092188805341006, -0.022147459909319003, 0.09567242860794001, 0.06310667842626501, 0.041184242814779004, 0.110461749136447, 0.053356979042291, -0.06296409666538201, 0.012298563495278001, 0.009114053100347, -0.07071904093027101, -0.033786594867706, 0.019009247422218, -0.031281158328056, -0.009548269212245001, -0.056200511753559, -0.017388906329870002, -0.086073711514472, 0.003264916827902, 0.058942012488842004, 0.047068130224943, 0.039568830281496006, -0.082833707332611, 0.0032369182445100004, 0.010038768872618, -0.030777277424931002, -0.012321240268647001, 0.010290288366377002, -0.000446817779447, 0.060516562312841006, 0.112309835851192, -0.042374894022941006, -0.014034411869943001, 0.070086002349853, 0.07330889254808401, 0.020569488406181002, -0.059579484164714, 0.0029187931213520003, 0.0017530348850410002, -0.038579743355512, -0.07629758864641101, 0.002688167151063, -0.0016247946768990001, 0.017508298158645002, 0.019739536568522002, 0.008412443101406, -0.016659677028656002, -0.047584801912307004, -0.045659422874450004, -0.009600915946066001, 0.020982243120670003, 0.044721294194459006, -0.094812430441379, 0.08891265094280201, -0.011104364879429, 0.07906734943389801, -0.044260341674089, -0.04689559713006, -0.151457339525222, -0.019087873399257, -0.023374821990728, 0.017299154773354003, -0.073105782270431, -0.08292518556118, 0.018459847196936, -0.04885708540678001, 0.015081637538969002, 0.035373985767364, -0.007960673421621, 0.028012238442897002, 0.023396166041493003, -0.014731041155755001, 0.061169274151325004, 0.0036201314069330003, 0.038634967058897005, -0.009226699359714001, -0.000663050916045, 0.096034586429595, 0.04446130990982, -0.021045424044132, -0.06717452406883201, 0.033288490027189005, -0.041208535432815004, 0.056190602481365, 0.031466163694858, 0.04437718912959, -3.389276059806434e-8, -0.082814879715442, -0.092039123177528, -0.07907941937446501, 0.014661692082881001, 0.06744872033596, -0.08520070463418901, 0.001080365967936, -0.024369612336158003, -0.0036548159550870004, -0.0039105676114550006, 0.055450540035963, -0.023446919396519002, -0.08100521564483601, -0.021005103364586, -0.002111449604853, 0.0005666924407700001, -0.046260394155979004, 0.090844497084617, -0.026474975049495003, 0.017227599397301, -0.048457197844982, 0.03993834555149001, -0.0036646132357410002, -0.065097749233245, -0.06572613120079, -0.063406527042388, 0.008716497570276, -0.08151219785213401, 0.063680179417133, 0.063623562455177, 0.026292271912097, 0.025509491562843004, 0.017553739249706, 0.008770521730184, -0.110571011900901, 0.0017473837360730002, -0.06053103134036, -0.005592292174696, -0.0016570696607230001, 0.027022635564208003, 0.050117071717977, 0.011240226216614, 0.007786804810166001, 0.034492772072553, 0.096992701292037, -0.015059114433825, 0.055991161614656004, -0.009165070019662, 0.04345928505063, 0.043681871145963, -0.03653647750616, -0.006217096466571001, -0.004077771678566, -0.007213050965219001, 0.028414115309715004, 0.015960747376084, -0.07621356099843901, 0.06362473964691101, 0.021207274869084, 0.017088593915104002, -0.008503482677042, 0.026119528338313002, -0.011813686229288, -0.032828208059072 ]
0704.0019
Approximation for extinction probability of the contact process based on the Gr\"obner basis
In this note we give a new method for getting a series of approximations for the extinction probability of the one-dimensional contact process by using the Gr\"obner basis.
[ "math.PR", "math.AG" ]
[ -0.08951636403799, -0.028764124959707003, 0.09333248436450901, -0.006656119134277, -0.031822185963392, -0.064295351505279, 0.083628870546817, 0.063757471740245, 0.086577266454696, 0.0028301954735070003, 0.021464375779032003, -0.011362601071596002, -0.002652643481269, -0.025911202654242002, -0.033256061375141005, -0.004474244546145, -0.01512673869729, -0.125730872154235, -0.016572413966059, 0.09583493322134001, -0.017472751438617002, 0.08527830988168701, 0.032582264393568004, -0.069477036595344, -0.001100610126741, -0.091860324144363, 0.08386269211769101, 0.005562361329793, 0.054198268800973004, 0.017009623348712002, 0.082030914723873, 0.014462244696915, 0.0032407168764620005, -0.015926560387015003, 0.014173780567944001, 0.041560407727956, -0.025600688531994, 0.004406326450407, -0.027504846453666004, 0.053407598286867, 0.036616068333387, 0.10236853361129701, 0.00393488863483, 0.032316509634256, 0.07129677385091701, -0.015729898586869, -0.028615329414606, -0.05502580478787401, -0.045342463999986, -0.07690143585205, 0.053372021764516005, 0.00256222859025, 0.024206763133406, -0.005462035536766, 0.061635356396436004, -0.044845785945653006, 0.031344220042228005, -0.05643093958497, -0.04900604113936401, 0.0016029059188440002, 0.016686480492353002, 0.041179686784744006, -0.088867790997028, -0.052274655550718, -0.008373883552849001, 0.0036430726759130003, 0.058579802513122003, -0.020019512623548, 0.008723912760615, 0.08502969890832901, -0.130197092890739, 0.015678325667977, -0.145152375102043, -0.028450997546315002, 0.017623845487833002, -0.048740338534116, -0.084003694355487, 0.012204252183437, -0.025082746520638, 0.005384438671171001, 0.023354332894086, -0.06221666932106001, -0.046501286327838, -0.14662529528141002, -0.05969256535172401, 0.026696015149354, 0.019416589289903002, 0.009174592792987001, 0.127720952033996, -0.058407537639141006, -0.035152375698089, -0.034862097352743, -0.068776577711105, 0.020304109901189003, -0.10544039309024801, 0.020069021731615, 0.04431689530611, -0.05586138740181901, 0.072479978203773, 0.010636725462973002, -0.06852138042449901, -0.085267752408981, -0.049207780510187, 0.031789258122444, -0.013132880441844, -0.017673099413514002, -0.011665106751024001, 0.048530921339988, -0.00175079179462, 0.067217618227005, 0.08037997782230301, -0.034870933741331, -0.019811656326055003, 0.175288781523704, -0.075937032699584, -0.06217678636312401, 0.080692194402217, 0.008113015443086001, 0.048721011728048005, -0.015257569961249001, 0.005981083028018, 0.04311728477478, -0.062232334166765005, -0.026846984401345003, -0.052295923233032005, -0.060778267681598004, 0.10152891278266901, -1.6593316827115793e-33, 0.057645551860332, -0.047015413641929, -0.027048218995332003, -0.076780833303928, -0.013482233509421002, 0.019572606310248, -0.039489142596721004, -0.00047578662633800003, 0.0773631259799, -0.025260565802454, -0.042152561247348, -0.014590657316148002, -0.009730200283229, -0.049218419939279, -0.036800343543291, 0.011833324097096, 0.10169372707605301, 0.038443863391876006, -0.04609646275639501, -0.019957829266786003, 0.006936545949429, 0.032883014529943, -0.028245585039258003, 0.012004443444311001, 0.02221911214292, -0.010093179531395, -0.06932322680950101, -0.10656771063804601, 0.02402738854289, -0.026708990335464002, 0.017195811495184, 0.054744586348533006, -0.05304230749607, 0.028887188062071002, 0.040969852358102, 0.00083211105084, -0.006088193040341, 0.030498953536152004, 0.000753983855247, -0.047199659049510005, -0.07182641327381101, -0.016091104596853003, 0.060334414243698, 0.000652827729936, -0.00047020954662000005, -0.05716082453727701, 0.10063694417476601, 0.010046566836535, 0.003777670441195, -0.031274788081645, 0.036494344472885, -0.034969050437211005, -0.018816629424691002, 0.11785893887281401, -0.011092621833086002, 0.0133364405483, 0.050004765391349, -0.018929604440927002, 0.005396347492933, 0.04058060050010601, -0.00044319999869900004, -0.019378624856472, 0.07059217989444701, -0.010468535125255, 0.13102541863918302, 0.008322607725858001, -0.023886311799287, -0.045077815651893005, 0.009991377592086001, 0.027287201955914, 0.0023209035862230003, 0.07025399059057201, 0.0029369806870810002, -0.118334904313087, 0.029053874313831003, -0.047413878142833, 0.06094602122902801, 0.006793736480176, 0.01604781858623, 0.022357095032930003, -0.043948233127593, -0.00010579045920100001, -0.05566993355751, -0.12044467777013701, -0.05414962023496601, 0.013454448431730002, 0.029240814968943003, -0.001968207070603, -0.08629923313856101, 0.011868241243064001, -0.0059090666472910005, -0.015545963309705, -0.024477973580360003, -0.022438764572143003, 0.036372572183609, -9.4346581680088e-34, 0.021764649078249, 0.003765662200748, 0.091054692864418, 0.00963444635272, -0.07236911356449101, 0.013940482400357002, -0.006202735938131001, 0.048024944961071, -0.025668187066912002, -0.058919169008731, -0.05810011178255001, 0.125376984477043, 0.081156946718692, 0.07790141552686601, -0.013560489751398001, 0.01740887761116, 0.07901636511087401, 0.056563850492239005, -0.060822501778602, -0.057339336723089, 0.053248878568410006, -0.016020078212022, -0.007208462338894, -0.060547769069671006, -0.059665020555257006, -0.048325788229703, 0.047537479549646, 0.037805367261171, -0.05641278252005501, -0.04850873723626101, -0.023966515436768, -0.10134686529636301, 0.023777583613991002, 0.035012312233448, -0.002139751799404, 0.032375920563936005, 0.036268733441829, 0.13828159868717102, 0.007822967134416001, -0.036236673593521, 0.057100433856248, -0.0017665873747310002, -0.064518950879573, -0.012034421786665, 0.054353687912225, -0.0032295605633400003, -0.0013677719980470001, -0.003950939048081001, -0.013395876623690002, -0.050710786134004, -0.033748943358659, 0.026073852553963002, -0.068358615040779, 0.019790897145867, -0.008839129470288, 0.064158298075199, 0.04227615520358, -0.048894215375185006, 0.002249175217002, -0.007251535076647, 0.01821637712419, -0.030224500223994002, 0.07386140525341, 0.050726078450679, 0.060195468366146004, 0.048227127641439, -0.08269856870174401, 0.02851996384561, 0.040274322032928, 0.014866922982037001, 0.027537224814295002, 0.11279997229576101, -0.0051770303398370006, -0.042457565665245, -0.006246951408684, -0.015455857850611002, 0.036841113120317, -0.10003627836704201, 0.024825556203722003, 0.010689025744795001, -0.073814399540424, 0.086648739874362, 0.015307916328310002, 0.01692303083837, 0.047710221260786, -0.016573492437601003, 0.020236525684595, -0.078196294605731, 0.05395960062742201, -0.067983768880367, -0.00448643323034, 0.0052390377968540005, 0.10352914780378301, -0.040859419852495006, -0.052153572440147004, -2.875350446629454e-8, 0.071556620299816, 0.0032486629206680004, 0.009957857429981001, 0.008988073095679, 0.12429980188608102, 0.08280774950981101, 0.025426484644412002, -0.023709170520305002, -0.065425477921962, -0.047507245093584005, -0.04824012517929, -0.017087606713175, -0.012426959350705001, 0.039709489792585005, 0.070152625441551, 0.046719372272491004, 0.014615835621953002, -0.011938685551285001, -0.044142067432403, -0.031469903886318006, -0.015704087913036, -0.058863282203674004, 0.03485208377242, 0.041937727481126, -0.039258185774087004, -0.0016872193664310001, -0.013453655876219, -0.025443343445658, -0.031853638589382005, -0.0071830865927040004, -0.052503678947687, -0.021541561931371002, 0.060079485177993004, 0.07312572002410801, 0.003914182540029, 0.015336018055677001, -0.040323108434677006, 0.006914663594216001, 0.014165145345032002, 0.036391615867614004, 0.02788533270359, 0.000285233807517, -0.007780122570693, 0.046800676733255005, 0.102356605231761, 0.114715456962585, -0.027575332671403004, -0.039585076272487, 0.008353032171726001, 0.036329150199890005, -0.009984085336327001, 0.017782393842935, -0.04961812123656201, 0.033317819237709004, -0.020515333861112, -0.010381651110947, -0.05845987796783401, -0.039518740028142006, -0.0033729693386700004, -0.034782864153385, 0.002158081158995, -0.002633613534271, -0.052427202463150004, 0.047737512737512006 ]
0704.0020
Measurement of the Hadronic Form Factor in D0 --> K- e+ nue Decays
The shape of the hadronic form factor f+(q2) in the decay D0 --> K- e+ nue has been measured in a model independent analysis and compared with theoretical calculations. We use 75 fb(-1) of data recorded by the BABAR detector at the PEPII electron-positron collider. The corresponding decay branching fraction, relative to the decay D0 --> K- pi+, has also been measured to be RD = BR(D0 --> K- e+ nue)/BR(D0 --> K- pi+) = 0.927 +/- 0.007 +/- 0.012. From these results, and using the present world average value for BR(D0 --> K- pi+), the normalization of the form factor at q2=0 is determined to be f+(0)=0.727 +/- 0.007 +/- 0.005 +/- 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
[ "hep-ex" ]
[ -0.065129950642585, 0.0034224241971960003, -0.038302738219499005, 0.047321345657110006, 0.0170403663069, -0.019622592255473, -0.087802037596702, 0.145341411232948, 0.034288421273231, 0.026782281696796, 0.004655881784856, -0.07036145776510201, 0.010451229289174, 0.040753562003374, -0.013592446222901, -0.057760462164878006, -0.064159423112869, 0.017224572598934, -0.09389020502567201, 0.020839940756559, -0.11203012615442201, -0.005631491541862, 0.021548425778746, -0.024598760530352003, 0.058470901101827004, -0.008904668502509, 0.031943202018737, -0.04317058250308, 0.078636713325977, -0.050987213850021, 0.027409486472606003, 0.046996228396892006, 0.09743812680244401, -0.008318405598402, 0.056415949016809006, -0.046702068299055, 0.04018672555685, -0.0126374065876, -0.032076153904199003, -0.04863853752613, 0.055162813514471006, 0.053982723504304005, 0.061415143311023004, -0.011090647429227002, 0.08520382642745901, -0.000631852890364, -0.030071217566728002, -0.017670743167400003, -0.041210014373064006, 0.008760770782828001, 0.11432729661464601, 0.047034371644258006, -0.029684266075491003, 0.060552228242158, -0.049794845283031006, -0.002166137099266, 0.038589987903833, -0.063634306192398, -0.008865080773830001, 0.039892770349979005, -0.071305632591247, -0.000663085433188, 0.00432069087401, -0.085223749279975, 0.045096747577190004, 0.038732875138521, -0.053631760179996005, -0.107776887714862, 0.00781565438956, 0.058184780180454004, -0.08338868618011401, -0.032526977360248004, -0.10491890460252701, -0.091471821069717, 0.049465402960777005, -0.046431943774223, -0.024666523560881, 0.029810557141900004, -0.028435023501515003, 0.001586188678629, 0.007492436096072001, -0.04106655344367, 0.021272914484143, -0.063061788678169, -0.026789594441652003, 0.076683662831783, -0.033295635133981004, -0.021239653229713003, 0.02953484840691, 0.01761152409017, -0.023873198777437002, -0.028087234124541, -0.050640765577554, -0.014408497139811, -0.008772534318268, 0.087943203747272, -0.0009340731194240001, 0.10577576607465701, 0.06119902059435801, 0.029522424563765002, 0.031074801459908003, -0.04355289414525, -0.059005111455917005, -0.018659010529518003, -0.0065613505430510005, 0.030541870743036003, 0.052553687244653, 0.050552885979413, 0.026289651170372002, 0.020311538130044, 0.027570810168981, -0.040599837899208006, -0.019055198878049, 0.002861457876861, 0.045848231762647004, -0.015954136848449003, 0.073713794350624, 0.018290610983967, 0.014545311219990002, -0.069312565028667, 0.070551961660385, 0.042515415698289004, 0.013945342041552001, 0.07128400355577401, 0.015412660315632001, 0.015098125673830001, -0.038985218852758005, 2.8822983728918253e-33, 0.036464232951402005, 0.021722326055169, 0.033982146531343, -0.020812921226024003, -0.09706883132457701, 0.032145101577043, -0.10072603821754401, 0.002741696778684, -0.014545759186148002, -0.023154508322477, -0.0645287707448, 0.011365609243512001, 0.0072532347403460005, -0.18197637796401903, -0.052586909383535003, -0.004951511509716001, 0.013629823923110001, 0.032037880271673, 0.008468472398817001, 0.004038023296743, 0.11431370675563801, 0.0006925901398060001, -0.005419282708317001, -0.006879283580929, 0.098259203135967, 0.03938103467226, -0.012953988276422001, 0.049335371702909005, -0.07641609758138601, -0.024034427478909003, -0.018862748518586003, -0.007197314407676, -0.07229009270668, -0.023539943620562002, -0.066036187112331, -0.06286177039146401, -0.034662507474422004, 0.058999869972467006, 0.030823439359664, -0.024084297940135002, -0.0062736817635590005, 0.072653621435165, -0.029532570391893, -0.064852327108383, -0.007854091934859, -0.066274344921112, 0.13494908809661801, 0.036174889653921, 0.054858334362506006, 0.049906849861145006, -0.044181704521179005, -0.035724267363548, -0.019799074158072003, 0.006458446849137001, 0.038524087518453, 0.037904288619756005, 0.12877258658409102, 0.003097533481195, 0.037535920739173, 0.073346950113773, 0.023414675146341, 0.095766924321651, 0.019929805770516, 0.009323420934379, -0.036357816308736, 0.056475568562746006, -0.05907737091183601, 0.039694543927907, -0.011794229038059, -0.005092470906674001, -0.014244056306779001, 0.046791583299636, 0.024887917563319, -0.026382816955447003, 0.069329679012298, -0.09414897859096501, -0.036551047116518, 0.018139664083719, 0.028355859220027, 0.016003483906388002, -0.014014060609042001, -0.010680392384529001, -0.028907852247357, 0.015448561869561001, -0.07031850516796101, -0.03291280567646, -0.016294009983539002, -0.054901834577322006, -0.042138740420341006, -0.044806875288486, -0.047853503376245006, -0.031754340976476, 0.008226981386542001, 0.031148128211498004, -0.005575021263211, -2.7653949086895722e-33, -0.097477249801158, 0.00030264258384700004, -0.033333778381347004, 0.074515275657176, -0.020904080942273, -0.019597813487052, -0.021723097190260002, 0.019708609208464, 0.09054536372423101, 0.004279240965843, 0.11117139458656301, 0.062066301703453, -0.052840571850538004, -0.052913572639226004, 0.075679302215576, 0.007758281659334, -0.010102269239723, 0.07600612193346, 0.044634256511926006, 0.019426451995968, -0.028712963685393004, -0.0018660564674060002, -0.074720792472362, -0.04304714128375001, -0.030592972412705, 0.06164446845650601, 0.042495720088481, -0.05238477513194, 0.047652903944253006, -0.005131465382874001, -0.07193728536367401, 0.009719962254166001, -0.006095241755247001, 0.031076796352863003, -0.030741306021809002, -0.051744349300861005, -0.017767326906323003, 0.035455469042062, -0.009899920783936, -0.11289770156145001, -0.028884392231702003, 0.140508204698562, 0.01425798330456, -0.022908894345164, 0.055215809494256, 0.021393412724137, 0.024869715794920002, 0.036504447460174005, 0.034274335950613, -0.017367223277688002, 0.03487978503108, -0.016108069568872, 0.0055190064013, 0.113481223583221, -0.10439338535070401, 0.090809077024459, 0.013774171471595001, 0.09308591485023401, -0.015799487009644002, -0.04507702589035, -0.053819704800844005, -0.07997794449329301, 0.035005297511816004, 0.018539186567068003, -0.019846025854349, -0.006493797991424, -0.018775183707475003, 0.07701571285724601, -0.015067870728671, -0.052230883389711005, 0.045094970613718005, 0.023496609181165, 0.06095591187477101, 0.061243683099746, -0.019624525681138, -0.038945276290178, 0.071203708648681, -0.06059021875262201, 0.080872133374214, 0.07017348706722201, -0.109726190567016, 0.058123592287302, -0.070365071296691, -0.06787426769733401, 0.017774950712919003, -0.090283013880252, -0.065841555595397, 0.066918149590492, 0.016481198370456, -0.027825528755784004, -0.053670488297939, -0.009482196532189001, -0.04885016381740501, 0.012175537645816002, 0.029357157647609003, -5.392577762108885e-8, -0.000785863609053, -0.050969384610652, -0.11811694502830501, -0.016180181875824002, 0.080724909901618, -0.011208713054656, -0.0038021609652780005, -0.010201735422015001, -0.035706851631402005, 0.0077812126837670005, 0.06904920935630701, 0.039471518248319, -0.066038958728313, -0.066982977092266, -0.004569549579173, 0.069503359496593, 0.022894298657774002, -0.030967772006988, 0.012609635479748001, 0.05630512535572001, 0.05252770334482101, -0.013763601891696, 0.039490230381488, -0.080362729728221, -0.088558197021484, -0.005132970400154001, -0.009670208208262001, 0.040138237178325, -0.030528442934155003, -0.010576298460364, 0.028234541416168, -0.005458480678498001, 0.055263973772525, 0.034003671258687, 0.010189238004386, -0.022486902773380002, 0.017263017594814002, 0.027741704136133003, 0.030090562999248, 0.16826841235160803, 0.010427743196487, -0.018299024552106, -0.022288510575890003, 0.028400916606187, 0.012908115983009002, 0.070454217493534, 0.0076841507107010005, -0.026784282177686, -0.008527508936822, -0.019003670662641, 0.013333549723029001, 0.038298174738883, -0.067710183560848, -0.08673796057701101, -0.042933404445648006, 0.043824058026075, 0.014963747002184, -0.024426849558949002, -0.018991868942975002, -0.030387170612812004, 0.10268646478652901, -0.052380532026290005, 0.006552740931510001, 0.031885370612144005 ]
0704.0021
Molecular Synchronization Waves in Arrays of Allosterically Regulated Enzymes
Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave patterns of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.
[ "nlin.PS", "physics.chem-ph", "q-bio.MN" ]
[ -0.022260319441556, -0.14653597772121402, -0.060153149068355005, -0.042201817035675, -0.047459315508604, -0.040694769471883004, -0.035985026508569, -0.060670416802167004, 0.043789863586425004, -0.058407329022884, 0.020491965115070003, 0.10058642178773801, 0.007233412936329, -0.037316583096981, 0.016187909990549, 0.087327398359775, -0.107159666717052, -0.0054626441560680005, -0.009586058557033001, -0.065883614122867, 0.010656281374394, -0.02570316940546, -0.07548331469297401, 0.001197842764668, 0.015618410892784, 0.028764717280864, 0.033160347491502006, -0.03594621270895, -0.072357721626758, -0.009685312397778001, 0.027684055268764003, -0.04575827717781, 0.018647557124495, -0.016616839915513, 0.012932039797306002, 0.016535032540559002, -0.05415310710668501, -0.01313317939639, 0.005105884280055001, -0.019408738240599, 0.061825715005397006, -0.02109501697123, -0.07633179426193201, -0.030405072495341003, -0.058927748352289006, -0.030023561790585, 0.0005441212560980001, 0.0032906236592680003, -0.047198805958032004, -0.05777271091938001, -0.039627365767955, -0.003904955927282, -0.057472538203001, -0.024000801146030003, 0.018136966973543, 0.027116710320115003, 0.020679293200373, 0.040336836129426006, -0.029648767784237, -0.071874342858791, 0.08744242042303, 0.026217026636004, 0.008656822144985001, 0.0027630110271270004, 0.064370162785053, 0.0025734105147420003, 0.07941065728664301, 0.050308682024478, 0.060446724295616004, 0.010072860866785, -0.054397862404584, -0.0042509837076060005, -0.018496254459023, 0.00856265053153, 0.054195005446672, -0.000599577615503, -0.10564861446619, 0.029452811926603, -0.013103091157972, -0.037212833762168, -0.0037113898433740002, -0.018039925023913002, 0.053987868130207006, -0.07525859028100901, -0.007590664550662001, 0.01170842628926, 0.028942054137587003, 0.005271662026643, 0.092272587120532, -0.06194062158465301, -0.032454010099172, 0.041999649256467, -0.016026441007852003, -0.030390188097953002, -0.031624969094991004, 0.04079369083046901, 0.122091725468635, 0.055351331830024005, 0.04665030166506701, -0.050991505384445, 0.007127226796001001, -0.038973901420831, -0.00039107273914800003, 0.034970328211784, 0.026211395859718004, -0.0017902288818730002, -0.010880152694880001, 0.099343605339527, -0.014053276740014001, 0.054631542414426006, 0.0010586914140730001, 0.075483806431293, 0.10529585927724801, 0.117558144032955, -0.023582903668284003, 0.07601422071456901, 0.017188010737299, -0.038772311061620005, 0.006379187572747001, 0.032482959330081, 0.047196526080369006, -0.020344449207186, 0.005416541360318001, 0.041877482086420004, -0.044009741395711004, 0.10444797575473701, -0.016083443537354, -2.528054196310653e-34, 0.052463617175817004, 0.005898696836084001, -0.0010869458783410002, -0.060432754456996, 0.038278255611658006, -0.024171033874154, -0.039337962865829, -0.012131745927035, -0.07069706916809, 0.082520201802253, -0.013106853701174, 0.055220626294612, 0.013523135334253, 0.012903677299618001, -0.048500854521989004, -0.063996337354183, 0.07156037539243601, 0.031921833753585004, 0.036886200308799, 0.008969216607511, -0.018030302599072002, -0.010264195501804001, -0.10499379038810701, -0.00045917285024100004, -0.082428932189941, 0.063622415065765, -0.026353804394602002, 0.06927392631769101, 0.012923934496939002, 0.010368456132709002, 0.032003417611122, 0.018504263833165002, -0.046281289309263, -0.055522128939628004, 0.11358439922332701, -0.057706810534, 0.018129773437976, 0.013174652121961, -0.012478562071919, -0.022111991420388003, 0.047481503337621, -0.023819029331207, 0.020232897251844, -0.07018365710973701, -0.018362347036600002, 0.022273855283856003, 0.022423697635531002, 0.083198420703411, 0.028923749923706003, 0.01907642558217, -0.01606317795813, -0.035019595175981, 0.08071771264076201, -0.02056960761547, 0.029803976416587004, 0.07824306190013801, 0.020892281085252002, -0.050057932734489004, -0.022909816354513002, 0.07519556581974, -0.052725337445735, -0.00027708776178700004, 0.015851384028792, -0.026094576343894, 0.051443133503198006, 0.051442965865135006, -0.046431586146354, 0.000550570024643, 0.03657428920269, 0.14243055880069702, 0.020245961844921, 0.07857343554496701, -0.092633619904518, -0.015191316604614001, 0.013697588816285002, -0.0034318563994020002, 0.0054756072349840005, 0.031253285706043, -0.0496163405478, 0.04123442992568, -0.010523609817028, -0.052175246179103005, -0.078646555542945, -0.011920783668756001, -0.072842270135879, -0.013369919732213001, -0.05954050272703101, -0.026121182367205002, -0.162768080830574, 0.025920651853084002, 0.016451353207230002, -0.002224095864221, 0.12147773802280401, 0.016374718397855002, 0.0077809621579940005, -3.955172617900304e-33, 0.09439069777727101, -0.07959482818841901, 0.05134757235646201, -0.032053004950284, 0.06751892715692501, 0.131422296166419, -0.019188415259122002, 0.0038783443160350004, 0.0009433120139870001, 0.059035804122686004, 0.036374472081661, -0.023534510284662, -0.05119671300053501, 0.07571734488010401, -0.031830132007598, -0.020306531339883003, 0.09051218628883301, 0.059044685214757, 0.118517003953456, 0.006870249286293001, -0.032176233828067, -0.027323303744196004, 0.047532711178064006, 0.008185875602066, 0.044986627995967005, -0.058669824153184, -0.038275010883808004, 0.055587582290172, 0.007273528259247, 0.008011358790099, -0.037770312279462, -0.035930495709180006, 0.017084814608097, 0.023451281711459, -0.011154131032526, 0.113394491374492, -0.050952371209859, 0.024748103693127, 0.108875513076782, -0.036988932639360005, 0.014859998598694002, -0.020050931721925, -0.039034135639667004, 0.036642242223024, 0.061517622321844004, 0.022343091666698, -0.096281841397285, 0.07234129309654201, -0.061301808804273, -0.045332234352827, 0.011847294867038002, 0.060485731810331005, 0.004118474666029001, -0.06791353970766001, -0.055087074637413004, 0.13373303413391102, 0.033963870257139005, -0.05419297516345901, -0.029615456238389, -0.051005940884351, -0.099008955061435, -0.11856858432292901, 0.011403114534914001, -0.090094067156314, -0.03794976696372, -0.014246319420635001, -0.044851556420326004, -0.063025705516338, 0.10354553163051601, -0.04693309217691401, 0.038839604705572, -0.009436193853616002, -0.061134885996580006, 0.066364884376525, -0.027006505057215004, -0.061389140784740004, -0.028164487332105, -0.12092491239309301, 0.01227409299463, -0.040112890303134, -0.044180452823638, 0.08024879544973301, -0.022089406847953002, -0.09473874419927501, -0.060377575457096, -0.0036310635041440003, 0.026673454791307002, -0.016879934817552, 0.016379179432988, -0.007865305058658, 0.053192522376775006, 0.011110831983387, -0.05417114123702001, 0.039724871516227, 0.026502540335059003, -3.640202450583274e-8, 0.082818739116191, 0.0046648057177660004, 0.063992626965045, 0.039444763213396, 0.051419857889413, 0.06633799523115101, 0.037806518375873004, -0.11489935964345901, 0.047629345208406004, -0.062779352068901, -0.036332827061414004, -0.032622590661048, -0.028065389022231, 0.009792844764888, 0.019224094226956003, -0.0015001269057390001, -0.124758161604404, -0.033344011753797004, -0.041499506682157, -0.009816118516027001, 0.014717926271259, 0.020788129419088003, -0.09215455502271601, 0.05999858677387201, -0.004933859687298, -0.049083780497312005, 0.016463454812765, -0.018753621727228, -0.014671302400529001, 0.005309764761477, 0.015591868199408, -0.016205959022045, 0.034179855138063, 0.067772187292575, -0.063490822911262, -0.07039996236562701, -0.068201147019863, -0.030981065705418004, -0.040982708334922006, -0.024669762700796002, -0.044440396130084006, -0.0067144148051730005, -0.04188971966505, -0.014825407415628001, -0.041221309453248006, 0.037733875215053, 0.010167503729462, -0.033597972244024, 0.066329136490821, 0.034162573516368006, 0.032553322613239004, 0.013306626118719002, -0.037195548415184, -0.05152581632137201, 0.010815027169883001, 0.007935896515846001, -0.020189050585031003, -0.09695316851139, 0.004480075556784, -0.016905697062611, 0.012012783437967, 0.0053443661890920004, 0.0036312083248040005, -0.063036762177944 ]
0704.0022
Stochastic Lie group integrators
We present Lie group integrators for nonlinear stochastic differential equations with non-commutative vector fields whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action, and subsequently pull back the flow to the corresponding Lie algebra via the exponential map. We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the Lie group and then to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. These involve using an underlying ordinary differential integrator to approximate the flow generated by a truncated stochastic exponential Lie series. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Further, we show that some Castell--Gaines methods are uniformly more accurate than the corresponding stochastic Taylor schemes. Lastly we demonstrate our methods by simulating the dynamics of a free rigid body such as a satellite and an autonomous underwater vehicle both perturbed by two independent multiplicative stochastic noise processes.
[ "math.NA" ]
[ -0.07037353515625, -0.024961652234196, 0.034419424831867, 0.004474489949643, -0.024435305967926, -0.05383855849504401, -0.000166196943609, -0.086829774081707, 0.05519762635231001, -0.04677177965641, 0.077157370746135, -0.007714384701102001, -0.06013628095388401, -0.08494582027196801, -0.002695502480491, -0.039488974958658, -0.03904665634036, 0.16053169965744002, -0.0036179644521320002, -0.027058498933911, -0.016006890684366, 0.08549161255359601, 0.030574645847082003, 0.035013277083635004, -0.012204813770949001, -0.047921665012836005, -0.01295462064445, -0.016985263675451, -0.056654445827007, -0.021307483315467002, 0.109228573739528, -0.019634623080492002, -0.11968837678432401, -0.037988673895597, -0.07281968742609, 0.060720868408679005, -0.025593047961592, 0.024298470467329, -0.11403251439332901, 0.017824595794081, -0.010891684330999001, 0.04926838353276201, 0.06655687093734701, 0.052679106593132005, 0.0036882928106930003, -0.06229539960622701, -0.016100285574793, -0.126191437244415, -0.030697261914610002, 0.028723878785967, -0.016014918684959002, 0.070764578878879, 0.006033919285982001, -0.016618613153696, 0.024522369727492003, -0.09538689255714401, -0.022123562172055, 0.022552080452442003, 0.033955518156290006, -0.031310096383094004, 0.07365220040082901, -0.029447903856635003, 0.046965032815933005, 0.033143159002065, -0.12739011645317, 0.0008417828939850001, 0.07969889789819701, 0.04994510859251, 0.033091772347688, 0.034738156944513, -0.042078390717506006, -0.040235921740531005, -0.060485895723104005, 0.009497543796896001, -0.06185896694660101, -0.016429258510470002, 0.019738858565688, -0.0014991587959220002, -0.024857023730874003, 0.050013352185487005, 0.030512979254126004, 0.031964991241693004, 0.05536825954914001, -0.058883599936962, -0.027447499334812, 0.069752819836139, -0.046754449605941, -0.023502161726355, 0.000766970450058, -0.06537193804979301, 0.031140556558966002, -0.0004908823757430001, -0.078375644981861, -0.011312516406178, 0.05719406157732, -0.031051736325025003, -0.024177733808755, 0.031416364014148004, 0.054238669574260004, 0.023017076775431, 0.020526919513940003, -0.07465997338294901, 0.027722643688321003, -0.007418466266244, 0.015424783341586002, -0.07412104308605101, 0.011020930483937002, -0.0031792321242390003, -0.062671847641468, 0.00039927911711800003, -0.017382392659783003, -0.00029230446671100005, 0.0007026073872110001, 0.05756788700819, -0.022056188434362002, -0.033893398940563, 0.0016268434701480002, 0.0008075248333620001, 0.041945174336433, 0.084111839532852, 0.032304104417562006, 0.038156121969223, -0.012666219845414, 0.036557126790285, 0.050558701157569004, 0.059122052043676, 0.06302441656589501, 1.728128591619408e-33, -0.026108231395483003, -0.005623086355626, 0.034162450581789, 0.01291496772319, 0.030289694666862002, -0.06084807217121101, 0.016200834885239, -0.001533829024992, -0.012946176342666002, 0.09417776763439101, -0.07166304439306201, 0.022623687982559003, -0.053978040814399005, -0.002734834793955, -0.021924868226051, -0.08685283362865401, -0.076020576059818, 0.010939714498817001, 0.045800693333148006, -0.056575119495391006, 0.150704115629196, 0.040318895131349, 0.022261815145611003, -0.006447309628129, -0.027157578617334, 0.050241973251104, 0.040749799460172, 0.06739157438278101, 0.048592776060104, 0.031507618725299, 0.0041083018295460004, -0.12932054698467202, -0.020917654037475003, -0.01829183474183, 0.006652750540524, -0.0009309898596250001, -0.037090837955474, -0.02201260626316, -0.045975398272275, -0.052035864442586004, -0.006888713221997001, -0.034115258604288004, -0.028317837044596002, -0.003407798474654, -0.07643526792526201, -0.026471311226487004, -0.006903129164129, 0.058760646730661004, 0.097644731402397, -0.013239601626992002, -0.017913190647959, -0.029530633240938003, -0.012808036990463002, -0.004895377904176001, 0.007992156781256001, 0.0020340776536610003, 0.018447110429406003, 0.001450613839551, -0.005393500439822001, 0.017543429508805, -0.10866837948560701, 0.015507631003856001, -0.028118086978793002, -0.12210861593484801, 0.014452309347689, -0.00351334689185, -0.008732065558433, 0.059758767485618, 0.00703154085204, -0.09616374224424301, -0.008215910755097, -0.020895497873425, -0.080204360187053, 0.006521559786051001, 0.01852736249566, -0.025170778855681003, 0.025949884206056, -0.02105320803821, -0.05771898105740501, 0.021466072648763, -0.07211317121982501, -0.007423053961247, -0.054064139723777, 0.09159345179796201, 0.015076975338160001, -0.015005616471171001, -0.090679869055747, 0.009322260506451002, -0.033295556902885, -0.029695753008127, -0.0728360414505, -0.037467628717422, 0.047151096165180005, 0.035742338746786, 0.023533375933766, -4.277950509666642e-33, -0.00306908134371, -0.031876973807811, 0.080295234918594, 0.088294982910156, 0.07362167537212301, -0.029350284487009003, 0.032442618161439, 0.030621388927102002, 0.102164141833782, -0.045316908508539006, -0.08948868513107301, 0.052277721464633005, -0.024054033681750003, 0.008373101241886, 0.057727962732315, -0.09130759537220001, 0.020568137988448, 0.016418993473052, -0.016222380101680003, 0.008827497251331001, -0.035028193145990004, 0.076785899698734, 0.050753101706504, -0.017250819131731, 0.016218923032283002, 0.036586716771125, -0.017820620909333, 0.092034980654716, -0.039433728903532, -0.006088024936616, 0.038197726011276, -0.115180529654026, -0.029329501092433003, 0.06747522205114301, -0.079215630888938, 0.053392257541418006, 0.013402439653873001, 0.15034647285938202, -0.037960823625326004, 0.08410342782735801, -0.010488549247384, -0.007001067977398001, 0.021385276690125, 0.043062645941972004, 0.07858629524707701, 0.046317484229803, -0.026919420808553002, -0.033472664654254004, -0.021083651110529, 0.061145149171352005, -0.045243583619594005, 0.11303538084030101, -0.031757153570652, 0.011872852221131, -0.029864402487874003, 0.07472654432058301, 0.005007871426641, -0.10636769980192101, -0.031288038939237005, 0.011410872451961, -0.010617696680128, -0.064894951879978, 0.08908019959926601, 0.026747830212116002, -0.029105369001626004, -0.0030455267988140004, -0.073041655123233, -0.07174751907587, 0.027905024588108004, 0.011538140475749002, 0.006434138864278001, -0.034153625369071, -0.11000007390975901, 0.017530435696244, 0.039496310055255, -0.082198649644851, 0.073162257671356, 0.019087562337517003, 0.040805950760841, -0.10591697692871001, 0.055779859423637, 0.015322911553084002, 0.082912065088748, -0.028353599831461, 0.066704839468002, -0.019219901412725, 0.0013039483455940001, -0.10844734311103801, 0.032268110662698, -0.007920866832137, -0.0030996317509560003, -0.017336549237370002, 0.053239006549119006, 0.04105569422245001, -0.107610717415809, -3.966255945897501e-8, -0.008758509531617002, 0.021241405978798002, 0.046195805072784, -0.028011737391352, 0.06586467474699001, -0.005483952816575001, -0.06958575546741401, 0.016906049102544, 0.066835880279541, -0.060279998928308, 0.06528516858816101, 0.028082501143217004, -0.037657417356967, -0.10796954482793801, -0.003587551880627, 0.040794394910335006, -0.06547834724187801, 0.011612066999077, 0.005949937738478001, -0.021158823743462, 0.054431200027465, 0.016076792031526, -0.058100771158933, 0.049428414553403, 0.062277734279632006, 0.010620071552693, -0.068071380257606, -0.0031196991913020004, 0.06639392673969201, 0.059062916785478, -0.005344687495380001, 0.039562337100505, 0.016926901414990002, 0.10833226889371801, 0.005169221200048001, -0.039721570909023, 0.014061201363801, 0.047947410494089, -0.034012619405984004, 0.029364638030529, 0.01076045166701, 0.04423073679208701, 0.040301829576492004, -0.011476845480501001, -0.011038373224437, 0.070046193897724, 0.00020969190518300003, -0.018651774153113, 0.051463801413774005, 0.12045845389366101, 0.034038171172142, -0.017200073227286002, -0.092390783131122, 0.084276258945465, -0.010229337029159001, -0.016876349225640002, 0.01851930655539, -0.10086054354906, 0.017767472192645, -0.035915710031986, -0.06621601432561801, 0.012936120852828002, -0.013530712574720001, 0.000619792030192 ]
0704.0023
ALMA as the ideal probe of the solar chromosphere
The very nature of the solar chromosphere, its structuring and dynamics, remains far from being properly understood, in spite of intensive research. Here we point out the potential of chromospheric observations at millimeter wavelengths to resolve this long-standing problem. Computations carried out with a sophisticated dynamic model of the solar chromosphere due to Carlsson and Stein demonstrate that millimeter emission is extremely sensitive to dynamic processes in the chromosphere and the appropriate wavelengths to look for dynamic signatures are in the range 0.8-5.0 mm. The model also suggests that high resolution observations at mm wavelengths, as will be provided by ALMA, will have the unique property of reacting to both the hot and the cool gas, and thus will have the potential of distinguishing between rival models of the solar atmosphere. Thus, initial results obtained from the observations of the quiet Sun at 3.5 mm with the BIMA array (resolution of 12 arcsec) reveal significant oscillations with amplitudes of 50-150 K and frequencies of 1.5-8 mHz with a tendency toward short-period oscillations in internetwork and longer periods in network regions. However higher spatial resolution, such as that provided by ALMA, is required for a clean separation between the features within the solar atmosphere and for an adequate comparison with the output of the comprehensive dynamic simulations.
[ "astro-ph" ]
[ -0.022165991365909, 0.013022687286138, 0.031784877181053, 0.07270411401987001, -0.053343560546636005, -0.041069209575653, -0.032992579042911, -0.017636755481362003, 0.047767877578735005, -0.040214978158473004, -0.08669249713420801, -0.05136401951313, -0.006311892531812, -0.0951624289155, 0.08704173564910801, 0.010244281962513, 0.069238483905792, -0.046124164015054, 0.057103689759969004, 0.003478330560028, -0.028835278004407, -0.002289287280291, -0.07954619824886301, 0.003913225606083, 0.057150948792696006, 0.02102711610496, -0.08322705328464501, -0.014914769679307001, -0.021774217486381003, 0.014326393604278, 0.013155371882021, 0.09107451885938601, 0.058595944195985, 0.023377913981676, 0.035046402364969004, 0.024754336103796, 0.06740374863147701, -0.052353750914335, -0.028007166460156004, 0.075813673436641, 0.022867152467370002, -0.04632981494069, -0.032957058399915, -0.009131203405559, -0.042603403329849, -0.04427511617541301, 0.069441378116607, 0.049859669059515006, -0.06483710557222301, 0.031577683985233, -0.023518318310379, 0.015300028026103002, -0.032227993011474006, 0.032238140702247, 0.009845595806837, 0.046672124415636, -0.014273786917328002, 0.010762467980384001, 0.099845141172409, 0.039955504238605, -0.06498588621616301, -0.010305079631507001, -0.103094898164272, 0.029240211471915002, 0.038553975522518005, -0.007968094199895, 0.014023181982338002, -0.007548862136900001, 0.085284374654293, -0.030343798920512, -0.040609259158372005, 0.056369226425886, -0.085955075919628, -0.048258941620588004, -0.0070979190059, 0.080813005566596, 0.085775069892406, -0.017710294574499002, 0.087564624845981, -0.050716519355773, 0.0037299878895280004, -0.020466698333621, -0.062306772917509, -0.037782460451126, -0.045709311962127006, 0.05147498473525, -0.016796505078673002, 0.050622459501028005, -0.008733115158975001, -0.06370410323143, -0.018761849030852002, -0.055470131337642004, -0.065757289528846, -0.009295057505369, 0.043306604027748004, 0.07240756601095201, 0.10399780422449101, -0.04958761855959801, 0.10095639526844001, 0.023726932704448003, 0.08008453249931301, 0.0020838635973630002, -0.037992510944604006, 0.049732714891433, -0.0022829105146220004, 0.036957237869501, 0.038167111575603006, 0.086325481534004, -0.06963899731636, 0.015741361305117, -0.04623569175601001, 0.038729395717382, -0.010947504080832001, -0.030334860086441002, 0.056842911988496, 0.036361746490001005, -0.008010711520910001, 0.053877338767051, -0.080400258302688, 0.027757328003644003, -0.044423423707485005, -0.006802112795412001, -0.0025461127515880003, 0.10900893062353101, 0.041917502880096005, 0.011048384010791001, -0.0043665636330840005, 3.1055260358099246e-33, 0.049575198441743004, 0.07762055844068501, -0.020272750407457, 0.001952692517079, -0.013910161331295, 0.039159279316663, -0.059983726590871006, 0.069651111960411, -0.060187183320522, 0.022045126184821, -0.0179178789258, 0.10662157833576201, 0.080105364322662, 0.019043341279029003, 0.033546473830938, 0.015122650191187002, 0.029315846040844, 0.031593136489391, -0.030028272420167004, 0.035169493407011004, -0.09793411195278101, 0.0066456105560060005, 0.003402217058464, -0.047267101705074005, -0.038083508610725, 0.06350205838680201, 0.080528788268566, 0.032932002097368004, -0.024267770349979, 0.004489335697144, 0.037192519754171004, -0.04998450726270601, 0.0073982286266980005, 0.045892536640167, 0.028596144169569, -0.082623407244682, -0.06320308893918901, 0.044252611696720005, -0.10508527606725601, -0.040223885327577, -0.029945440590381, 0.043519198894500004, 0.00008336595783475788, 0.06796039640903401, 0.047026462852954004, -0.03796798735857, 0.043662007898092006, -0.030081341043114003, -0.031180264428257002, 0.04742934927344301, -0.019914569333195003, 0.05051042139530101, -0.036199368536472, 0.012250323779881, 0.07847836613655, 0.042665384709835004, 0.097525432705879, -0.07170181721448801, -0.070556968450546, 0.065574139356613, 0.014782753773033001, -0.012284534983336001, 0.031120827421545004, 0.029107566922903002, 0.043994776904582006, 0.037056140601634, -0.05972733721137, 0.008965682238340001, -0.013740822672843002, 0.006632363889366001, 0.074065431952476, 0.031693510711193, 0.11058130860328601, -0.018470248207449, 0.008880321867763, -0.052931457757949, 0.042901135981082, 0.005849486216902001, -0.056033551692962, 0.069901771843433, -0.02266726642847, -0.10505206137895501, 0.10980366170406301, -0.067221067845821, -0.10461883246898601, -0.045336324721574006, -0.044677298516035004, -0.021410284563899002, -0.040064398199319, -0.06069685146212501, 0.012350651435554002, 0.010766703635454001, 0.008126685395836001, 0.0038924443069840004, -0.057792507112026006, -3.9656980677859644e-33, 0.015025078319013, 0.049402799457311006, -0.038185432553291, -0.029381545260548002, -0.060592178255319006, 0.049577668309211, -0.014082130044698, 0.07071936130523601, -0.09134019911289201, -0.050552163273096, 0.055189162492752006, -0.0061046238988630005, -0.030112655833363002, -0.079410575330257, 0.004385947249829001, -0.060352541506290006, 0.07003352046012801, -0.015305514447391002, -0.011728706769645, 0.049257099628448, -0.024489870294928003, -0.007949758321046, -0.010174505412578002, -0.004275052342563, 0.001623471966013, 0.011686731129884002, 0.052486721426248, -0.065534129738807, -0.048168435692787004, 0.059959452599287005, -0.099995911121368, 0.017307216301560003, 0.000687436840962, 0.043199628591537004, 0.079090021550655, 0.08398796617984701, 0.042339507490396, -0.010369876399636001, -0.030347110703587, -0.020982775837183002, -0.054665934294462, 0.080671802163124, -0.021937593817710002, -0.13865120708942402, 0.026602640748023, 0.019626520574092, -0.011674808338284002, 0.12124197185039501, -0.027733081951737, 0.006575702223926, 0.018268499523401, -0.044254712760448005, -0.025983586907386003, 0.046520601958036006, 0.00000491279888592544, 0.0030526835471390004, -0.01516527403146, 0.07386898249387701, 0.06933605670928901, 0.009341933764517, 0.039400141686201005, -0.10930685698986001, 0.034252274781465, -0.040094301104545, 0.026837727054953003, -0.059381373226642005, -0.024547062814235, 0.00582518056035, -0.008105868473649, 0.052483100444078, -0.028066502884030002, -0.10734191536903301, -0.048392999917268004, 0.024639546871185, 0.001238617929629, 0.019713778048753003, -0.01061278488487, -0.109989829361438, -0.07348057627677901, 0.012201119214296001, -0.08496881276369, 0.045953854918479003, -0.019372833892703, 0.026549214497208002, 0.044607259333133004, -0.022037032991647002, -0.050637643784284, -0.08271829783916401, -0.05461050570011101, 0.06181839108467101, -0.001537428935989, 0.031782884150743006, -0.057511553168296, -0.012410665862262001, 0.033934220671653005, -5.406496939031058e-8, 0.032229945063591, 0.026471246033906003, -0.01690674573183, 0.031468570232391004, 0.039979148656129004, 0.024161387234926, -0.025186989456415003, -0.096155673265457, 0.0061840438283970005, 0.027248451486229, 0.054947137832641005, -0.05395471304655, 0.016642944887280003, -0.010457383468747, -0.004803704097867001, -0.018083604052662003, 0.005781163461506001, -0.12474688142538001, -0.0070690833963450005, 0.022711358964443002, 0.053658951073884006, 0.043815311044454006, 0.0169248431921, 0.02244758978486, 0.086224175989627, 0.032346874475479, 0.000568178889807, 0.10490508377552, 0.012261543422937001, 0.031191388145089004, -0.0014383876696220002, -0.030154891312122, -0.010080630891025, -0.09641004353761601, -0.10517431050539001, 0.056875139474868004, -0.047121591866016006, 0.063667550683021, -0.008978092111647, 0.031816944479942, -0.05705503001809101, 0.009891111403703001, -0.053397025913, 0.019638199359178002, 0.001493542338721, 0.009651673026382, 0.043210867792367005, -0.06842780113220201, -0.012846558354794, 0.019996536895632, -0.012609602883458, -0.031928092241287, -0.002047915477305, -0.186100751161575, -0.03188594803214, -0.020767042413353, -0.06211697310209201, -0.077527105808258, 0.013013975694775, 0.05139057338237701, 0.013491902500391001, 0.011748976074159001, -0.11477255821228001, -0.092005275189876 ]
End of preview. Expand in Data Studio

No dataset card yet

Downloads last month
10