Datasets:
The dataset viewer is not available for this dataset.
Error code: ConfigNamesError Exception: BadZipFile Message: zipfiles that span multiple disks are not supported Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response config_names = get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 164, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1729, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1686, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1071, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 593, in infer_module_for_data_files split_modules = { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 594, in <dictcomp> split: infer_module_for_data_files_list(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 535, in infer_module_for_data_files_list return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 563, in infer_module_for_data_files_list_in_archives for f in xglob(extracted, recursive=True, download_config=download_config)[ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/utils/file_utils.py", line 1012, in xglob fs, *_ = url_to_fs(urlpath, **storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 395, in url_to_fs fs = filesystem(protocol, **inkwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/registry.py", line 293, in filesystem return cls(**storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 80, in __call__ obj = super().__call__(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/implementations/zip.py", line 62, in __init__ self.zip = zipfile.ZipFile( File "/usr/local/lib/python3.9/zipfile.py", line 1266, in __init__ self._RealGetContents() File "/usr/local/lib/python3.9/zipfile.py", line 1329, in _RealGetContents endrec = _EndRecData(fp) File "/usr/local/lib/python3.9/zipfile.py", line 286, in _EndRecData return _EndRecData64(fpin, -sizeEndCentDir, endrec) File "/usr/local/lib/python3.9/zipfile.py", line 232, in _EndRecData64 raise BadZipFile("zipfiles that span multiple disks are not supported") zipfile.BadZipFile: zipfiles that span multiple disks are not supported
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Remote Sensing Dataset: Substation Dataset
Description
This dataset is curated by TransitionZero and sourced from publicly available data repositories, including OpenSreetMap (OSMF) and Copernicus Sentinel data. The dataset consists of Sentinel-2 images from 27k+ locations; the task is to segment power-substations, which appear in the majority of locations in the dataset. Most locations have 4-5 images taken at different timepoints (i.e., revisits) and each image is of dimension 228x228 pixels. Each image has 13 spectral bands and each band has been linearly interpolated to a spatial resolution of 10m. Lastly, there is one ground truth mask for each location.
Key Features
- Source: OpenSreetMap (OSMF) and Copernicus Sentinel data
- Resolution: 10m per pixel
- Bands: 13 Sentinel-2 Bands
- Size: Approximately 70GB
We utilize this dataset in this project. In this work, we focus on an applied research question of relevance to climate change mitigation -- power substation segmentation -- that is representative of applied uses of pre-trained models more generally. Through extensive tests of different multi-temporal input schemes across diverse model architectures, we find that fusing representations from multiple revisits in the model latent space is superior to other methods of using revisits, including as a form of data augmentation. We also find that a SWIN Transformer-based architecture performs better than U-nets and ViT-based models.
license: apache-2.0
- Downloads last month
- 41