text
stringlengths
31
361k
type
stringclasses
6 values
start
int64
125
418k
end
int64
325
418k
depth
int64
0
8
filepath
stringclasses
103 values
parent_class
stringclasses
106 values
if hyperparameters is not None: model_card += "\n## Training procedure\n" model_card += "\n### Training hyperparameters\n" model_card += "\nThe following hyperparameters were used during training:\n\n" model_card += hyperparameters model_card += "\n"
if_statement
4,353
4,643
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if plot_model and os.path.exists(f"{repo_dir}/model.png"): model_card += "\n ## Model Plot\n" model_card += "\n<details>" model_card += "\n<summary>View Model Plot</summary>\n" path_to_plot = "./model.png" model_card += f"\n![Model Image]({path_to_plot})\n" model_card += "\n</details>"
if_statement
4,648
4,982
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
def save_pretrained_keras( model, save_directory: Union[str, Path], config: Optional[Dict[str, Any]] = None, include_optimizer: bool = False, plot_model: bool = True, tags: Optional[Union[list, str]] = None, **model_save_kwargs, ): """ Saves a Keras model to save_directory in SavedModel format. Use this if you're using the Functional or Sequential APIs. Args: model (`Keras.Model`): The [Keras model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) you'd like to save. The model must be compiled and built. save_directory (`str` or `Path`): Specify directory in which you want to save the Keras model. config (`dict`, *optional*): Configuration object to be saved alongside the model weights. include_optimizer(`bool`, *optional*, defaults to `False`): Whether or not to include optimizer in serialization. plot_model (`bool`, *optional*, defaults to `True`): Setting this to `True` will plot the model and put it in the model card. Requires graphviz and pydot to be installed. tags (Union[`str`,`list`], *optional*): List of tags that are related to model or string of a single tag. See example tags [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). model_save_kwargs(`dict`, *optional*): model_save_kwargs will be passed to [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). """ if keras is None: raise ImportError("Called a Tensorflow-specific function but could not import it.") if not model.built: raise ValueError("Model should be built before trying to save") save_directory = Path(save_directory) save_directory.mkdir(parents=True, exist_ok=True) # saving config if config: if not isinstance(config, dict): raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") with (save_directory / constants.CONFIG_NAME).open("w") as f: json.dump(config, f) metadata = {} if isinstance(tags, list): metadata["tags"] = tags elif isinstance(tags, str): metadata["tags"] = [tags] task_name = model_save_kwargs.pop("task_name", None) if task_name is not None: warnings.warn( "`task_name` input argument is deprecated. Pass `tags` instead.", FutureWarning, ) if "tags" in metadata: metadata["tags"].append(task_name) else: metadata["tags"] = [task_name] if model.history is not None: if model.history.history != {}: path = save_directory / "history.json" if path.exists(): warnings.warn( "`history.json` file already exists, it will be overwritten by the history of this version.", UserWarning, ) with path.open("w", encoding="utf-8") as f: json.dump(model.history.history, f, indent=2, sort_keys=True) _create_model_card(model, save_directory, plot_model, metadata) keras.models.save_model(model, save_directory, include_optimizer=include_optimizer, **model_save_kwargs)
function_definition
5,050
8,454
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if keras is None: raise ImportError("Called a Tensorflow-specific function but could not import it.")
if_statement
6,681
6,790
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if not model.built: raise ValueError("Model should be built before trying to save")
if_statement
6,796
6,887
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if config: if not isinstance(config, dict): raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'") with (save_directory / constants.CONFIG_NAME).open("w") as f: json.dump(config, f)
if_statement
7,010
7,281
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if not isinstance(config, dict): raise RuntimeError(f"Provided config to save_pretrained_keras should be a dict. Got: '{type(config)}'")
if_statement
7,029
7,177
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if isinstance(tags, list): metadata["tags"] = tags elif isinstance(tags, str): metadata["tags"] = [tags]
if_statement
7,305
7,429
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if task_name is not None: warnings.warn( "`task_name` input argument is deprecated. Pass `tags` instead.", FutureWarning, ) if "tags" in metadata: metadata["tags"].append(task_name) else: metadata["tags"] = [task_name]
if_statement
7,492
7,790
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if "tags" in metadata: metadata["tags"].append(task_name) else: metadata["tags"] = [task_name]
if_statement
7,664
7,790
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if model.history is not None: if model.history.history != {}: path = save_directory / "history.json" if path.exists(): warnings.warn( "`history.json` file already exists, it will be overwritten by the history of this version.", UserWarning, ) with path.open("w", encoding="utf-8") as f: json.dump(model.history.history, f, indent=2, sort_keys=True)
if_statement
7,796
8,276
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if model.history.history != {}: path = save_directory / "history.json" if path.exists(): warnings.warn( "`history.json` file already exists, it will be overwritten by the history of this version.", UserWarning, ) with path.open("w", encoding="utf-8") as f: json.dump(model.history.history, f, indent=2, sort_keys=True)
if_statement
7,834
8,276
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if path.exists(): warnings.warn( "`history.json` file already exists, it will be overwritten by the history of this version.", UserWarning, )
if_statement
7,929
8,142
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
def from_pretrained_keras(*args, **kwargs) -> "KerasModelHubMixin": r""" Instantiate a pretrained Keras model from a pre-trained model from the Hub. The model is expected to be in `SavedModel` format. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - You can add `revision` by appending `@` at the end of model_id simply like this: `dbmdz/bert-base-german-cased@main` Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. - A path to a `directory` containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - `None` if you are both providing the configuration and state dictionary (resp. with keyword arguments `config` and `state_dict`). force_download (`bool`, *optional*, defaults to `False`): Whether to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `transformers-cli login` (stored in `~/.huggingface`). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. local_files_only(`bool`, *optional*, defaults to `False`): Whether to only look at local files (i.e., do not try to download the model). model_kwargs (`Dict`, *optional*): model_kwargs will be passed to the model during initialization <Tip> Passing `token=True` is required when you want to use a private model. </Tip> """ return KerasModelHubMixin.from_pretrained(*args, **kwargs)
function_definition
8,457
11,375
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
def push_to_hub_keras( model, repo_id: str, *, config: Optional[dict] = None, commit_message: str = "Push Keras model using huggingface_hub.", private: Optional[bool] = None, api_endpoint: Optional[str] = None, token: Optional[str] = None, branch: Optional[str] = None, create_pr: Optional[bool] = None, allow_patterns: Optional[Union[List[str], str]] = None, ignore_patterns: Optional[Union[List[str], str]] = None, delete_patterns: Optional[Union[List[str], str]] = None, log_dir: Optional[str] = None, include_optimizer: bool = False, tags: Optional[Union[list, str]] = None, plot_model: bool = True, **model_save_kwargs, ): """ Upload model checkpoint to the Hub. Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more details. Args: model (`Keras.Model`): The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the Hub. The model must be compiled and built. repo_id (`str`): ID of the repository to push to (example: `"username/my-model"`). commit_message (`str`, *optional*, defaults to "Add Keras model"): Message to commit while pushing. private (`bool`, *optional*): Whether the repository created should be private. If `None` (default), the repo will be public unless the organization's default is private. api_endpoint (`str`, *optional*): The API endpoint to use when pushing the model to the hub. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. If not set, will use the token set when logging in with `huggingface-cli login` (stored in `~/.huggingface`). branch (`str`, *optional*): The git branch on which to push the model. This defaults to the default branch as specified in your repository, which defaults to `"main"`. create_pr (`boolean`, *optional*): Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. config (`dict`, *optional*): Configuration object to be saved alongside the model weights. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are pushed. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not pushed. delete_patterns (`List[str]` or `str`, *optional*): If provided, remote files matching any of the patterns will be deleted from the repo. log_dir (`str`, *optional*): TensorBoard logging directory to be pushed. The Hub automatically hosts and displays a TensorBoard instance if log files are included in the repository. include_optimizer (`bool`, *optional*, defaults to `False`): Whether or not to include optimizer during serialization. tags (Union[`list`, `str`], *optional*): List of tags that are related to model or string of a single tag. See example tags [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). plot_model (`bool`, *optional*, defaults to `True`): Setting this to `True` will plot the model and put it in the model card. Requires graphviz and pydot to be installed. model_save_kwargs(`dict`, *optional*): model_save_kwargs will be passed to [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). Returns: The url of the commit of your model in the given repository. """ api = HfApi(endpoint=api_endpoint) repo_id = api.create_repo(repo_id=repo_id, token=token, private=private, exist_ok=True).repo_id # Push the files to the repo in a single commit with SoftTemporaryDirectory() as tmp: saved_path = Path(tmp) / repo_id save_pretrained_keras( model, saved_path, config=config, include_optimizer=include_optimizer, tags=tags, plot_model=plot_model, **model_save_kwargs, ) # If `log_dir` provided, delete remote logs and upload new ones if log_dir is not None: delete_patterns = ( [] if delete_patterns is None else ( [delete_patterns] # convert `delete_patterns` to a list if isinstance(delete_patterns, str) else delete_patterns ) ) delete_patterns.append("logs/*") copytree(log_dir, saved_path / "logs") return api.upload_folder( repo_type="model", repo_id=repo_id, folder_path=saved_path, commit_message=commit_message, token=token, revision=branch, create_pr=create_pr, allow_patterns=allow_patterns, ignore_patterns=ignore_patterns, delete_patterns=delete_patterns, )
function_definition
11,425
16,890
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
if log_dir is not None: delete_patterns = ( [] if delete_patterns is None else ( [delete_patterns] # convert `delete_patterns` to a list if isinstance(delete_patterns, str) else delete_patterns ) ) delete_patterns.append("logs/*") copytree(log_dir, saved_path / "logs")
if_statement
16,044
16,486
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
class KerasModelHubMixin(ModelHubMixin): """ Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to Keras models. ```python >>> import tensorflow as tf >>> from huggingface_hub import KerasModelHubMixin >>> class MyModel(tf.keras.Model, KerasModelHubMixin): ... def __init__(self, **kwargs): ... super().__init__() ... self.config = kwargs.pop("config", None) ... self.dummy_inputs = ... ... self.layer = ... ... def call(self, *args): ... return ... >>> # Initialize and compile the model as you normally would >>> model = MyModel() >>> model.compile(...) >>> # Build the graph by training it or passing dummy inputs >>> _ = model(model.dummy_inputs) >>> # Save model weights to local directory >>> model.save_pretrained("my-awesome-model") >>> # Push model weights to the Hub >>> model.push_to_hub("my-awesome-model") >>> # Download and initialize weights from the Hub >>> model = MyModel.from_pretrained("username/super-cool-model") ``` """ def _save_pretrained(self, save_directory): save_pretrained_keras(self, save_directory) @classmethod def _from_pretrained( cls, model_id, revision, cache_dir, force_download, proxies, resume_download, local_files_only, token, config: Optional[Dict[str, Any]] = None, **model_kwargs, ): """Here we just call [`from_pretrained_keras`] function so both the mixin and functional APIs stay in sync. TODO - Some args above aren't used since we are calling snapshot_download instead of hf_hub_download. """ if keras is None: raise ImportError("Called a TensorFlow-specific function but could not import it.") # Root is either a local filepath matching model_id or a cached snapshot if not os.path.isdir(model_id): storage_folder = snapshot_download( repo_id=model_id, revision=revision, cache_dir=cache_dir, library_name="keras", library_version=get_tf_version(), ) else: storage_folder = model_id # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... model = keras.models.load_model(storage_folder) # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. model.config = config return model
class_definition
16,893
19,573
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
null
def _save_pretrained(self, save_directory): save_pretrained_keras(self, save_directory)
function_definition
18,039
18,134
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
KerasModelHubMixin
def _from_pretrained( cls, model_id, revision, cache_dir, force_download, proxies, resume_download, local_files_only, token, config: Optional[Dict[str, Any]] = None, **model_kwargs, ): """Here we just call [`from_pretrained_keras`] function so both the mixin and functional APIs stay in sync. TODO - Some args above aren't used since we are calling snapshot_download instead of hf_hub_download. """ if keras is None: raise ImportError("Called a TensorFlow-specific function but could not import it.") # Root is either a local filepath matching model_id or a cached snapshot if not os.path.isdir(model_id): storage_folder = snapshot_download( repo_id=model_id, revision=revision, cache_dir=cache_dir, library_name="keras", library_version=get_tf_version(), ) else: storage_folder = model_id # TODO: change this in a future PR. We are not returning a KerasModelHubMixin instance here... model = keras.models.load_model(storage_folder) # For now, we add a new attribute, config, to store the config loaded from the hub/a local dir. model.config = config return model
function_definition
18,157
19,573
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
KerasModelHubMixin
if keras is None: raise ImportError("Called a TensorFlow-specific function but could not import it.")
if_statement
18,713
18,826
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
KerasModelHubMixin
if not os.path.isdir(model_id): storage_folder = snapshot_download( repo_id=model_id, revision=revision, cache_dir=cache_dir, library_name="keras", library_version=get_tf_version(), ) else: storage_folder = model_id
if_statement
18,917
19,256
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/keras_mixin.py
KerasModelHubMixin
def _is_true(value: Optional[str]) -> bool: if value is None: return False return value.upper() in ENV_VARS_TRUE_VALUES
function_definition
239
374
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/constants.py
null
if value is None: return False
if_statement
287
325
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/constants.py
null
def _as_int(value: Optional[str]) -> Optional[int]: if value is None: return None return int(value)
function_definition
377
492
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/constants.py
null
if value is None: return None
if_statement
433
470
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/constants.py
null
if _staging_mode: # In staging mode, we use a different cache to ensure we don't mix up production and staging data or tokens _staging_home = os.path.join(os.path.expanduser("~"), ".cache", "huggingface_staging") HUGGINGFACE_HUB_CACHE = os.path.join(_staging_home, "hub") _OLD_HF_TOKEN_PATH = os.path.join(_staging_home, "_old_token") HF_TOKEN_PATH = os.path.join(_staging_home, "token")
if_statement
4,911
5,318
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/constants.py
null
class _FileToUpload: """Temporary dataclass to store info about files to upload. Not meant to be used directly.""" local_path: Path path_in_repo: str size_limit: int last_modified: float
class_definition
461
668
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
class CommitScheduler: """ Scheduler to upload a local folder to the Hub at regular intervals (e.g. push to hub every 5 minutes). The recommended way to use the scheduler is to use it as a context manager. This ensures that the scheduler is properly stopped and the last commit is triggered when the script ends. The scheduler can also be stopped manually with the `stop` method. Checkout the [upload guide](https://huggingface.co/docs/huggingface_hub/guides/upload#scheduled-uploads) to learn more about how to use it. Args: repo_id (`str`): The id of the repo to commit to. folder_path (`str` or `Path`): Path to the local folder to upload regularly. every (`int` or `float`, *optional*): The number of minutes between each commit. Defaults to 5 minutes. path_in_repo (`str`, *optional*): Relative path of the directory in the repo, for example: `"checkpoints/"`. Defaults to the root folder of the repository. repo_type (`str`, *optional*): The type of the repo to commit to. Defaults to `model`. revision (`str`, *optional*): The revision of the repo to commit to. Defaults to `main`. private (`bool`, *optional*): Whether to make the repo private. If `None` (default), the repo will be public unless the organization's default is private. This value is ignored if the repo already exists. token (`str`, *optional*): The token to use to commit to the repo. Defaults to the token saved on the machine. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are uploaded. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not uploaded. squash_history (`bool`, *optional*): Whether to squash the history of the repo after each commit. Defaults to `False`. Squashing commits is useful to avoid degraded performances on the repo when it grows too large. hf_api (`HfApi`, *optional*): The [`HfApi`] client to use to commit to the Hub. Can be set with custom settings (user agent, token,...). Example: ```py >>> from pathlib import Path >>> from huggingface_hub import CommitScheduler # Scheduler uploads every 10 minutes >>> csv_path = Path("watched_folder/data.csv") >>> CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path=csv_path.parent, every=10) >>> with csv_path.open("a") as f: ... f.write("first line") # Some time later (...) >>> with csv_path.open("a") as f: ... f.write("second line") ``` Example using a context manager: ```py >>> from pathlib import Path >>> from huggingface_hub import CommitScheduler >>> with CommitScheduler(repo_id="test_scheduler", repo_type="dataset", folder_path="watched_folder", every=10) as scheduler: ... csv_path = Path("watched_folder/data.csv") ... with csv_path.open("a") as f: ... f.write("first line") ... (...) ... with csv_path.open("a") as f: ... f.write("second line") # Scheduler is now stopped and last commit have been triggered ``` """ def __init__( self, *, repo_id: str, folder_path: Union[str, Path], every: Union[int, float] = 5, path_in_repo: Optional[str] = None, repo_type: Optional[str] = None, revision: Optional[str] = None, private: Optional[bool] = None, token: Optional[str] = None, allow_patterns: Optional[Union[List[str], str]] = None, ignore_patterns: Optional[Union[List[str], str]] = None, squash_history: bool = False, hf_api: Optional["HfApi"] = None, ) -> None: self.api = hf_api or HfApi(token=token) # Folder self.folder_path = Path(folder_path).expanduser().resolve() self.path_in_repo = path_in_repo or "" self.allow_patterns = allow_patterns if ignore_patterns is None: ignore_patterns = [] elif isinstance(ignore_patterns, str): ignore_patterns = [ignore_patterns] self.ignore_patterns = ignore_patterns + DEFAULT_IGNORE_PATTERNS if self.folder_path.is_file(): raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.") self.folder_path.mkdir(parents=True, exist_ok=True) # Repository repo_url = self.api.create_repo(repo_id=repo_id, private=private, repo_type=repo_type, exist_ok=True) self.repo_id = repo_url.repo_id self.repo_type = repo_type self.revision = revision self.token = token # Keep track of already uploaded files self.last_uploaded: Dict[Path, float] = {} # key is local path, value is timestamp # Scheduler if not every > 0: raise ValueError(f"'every' must be a positive integer, not '{every}'.") self.lock = Lock() self.every = every self.squash_history = squash_history logger.info(f"Scheduled job to push '{self.folder_path}' to '{self.repo_id}' every {self.every} minutes.") self._scheduler_thread = Thread(target=self._run_scheduler, daemon=True) self._scheduler_thread.start() atexit.register(self._push_to_hub) self.__stopped = False def stop(self) -> None: """Stop the scheduler. A stopped scheduler cannot be restarted. Mostly for tests purposes. """ self.__stopped = True def __enter__(self) -> "CommitScheduler": return self def __exit__(self, exc_type, exc_value, traceback) -> None: # Upload last changes before exiting self.trigger().result() self.stop() return def _run_scheduler(self) -> None: """Dumb thread waiting between each scheduled push to Hub.""" while True: self.last_future = self.trigger() time.sleep(self.every * 60) if self.__stopped: break def trigger(self) -> Future: """Trigger a `push_to_hub` and return a future. This method is automatically called every `every` minutes. You can also call it manually to trigger a commit immediately, without waiting for the next scheduled commit. """ return self.api.run_as_future(self._push_to_hub) def _push_to_hub(self) -> Optional[CommitInfo]: if self.__stopped: # If stopped, already scheduled commits are ignored return None logger.info("(Background) scheduled commit triggered.") try: value = self.push_to_hub() if self.squash_history: logger.info("(Background) squashing repo history.") self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) return value except Exception as e: logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced raise def push_to_hub(self) -> Optional[CommitInfo]: """ Push folder to the Hub and return the commit info. <Tip warning={true}> This method is not meant to be called directly. It is run in the background by the scheduler, respecting a queue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrency issues. </Tip> The default behavior of `push_to_hub` is to assume an append-only folder. It lists all files in the folder and uploads only changed files. If no changes are found, the method returns without committing anything. If you want to change this behavior, you can inherit from [`CommitScheduler`] and override this method. This can be useful for example to compress data together in a single file before committing. For more details and examples, check out our [integration guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). """ # Check files to upload (with lock) with self.lock: logger.debug("Listing files to upload for scheduled commit.") # List files from folder (taken from `_prepare_upload_folder_additions`) relpath_to_abspath = { path.relative_to(self.folder_path).as_posix(): path for path in sorted(self.folder_path.glob("**/*")) # sorted to be deterministic if path.is_file() } prefix = f"{self.path_in_repo.strip('/')}/" if self.path_in_repo else "" # Filter with pattern + filter out unchanged files + retrieve current file size files_to_upload: List[_FileToUpload] = [] for relpath in filter_repo_objects( relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns ): local_path = relpath_to_abspath[relpath] stat = local_path.stat() if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: files_to_upload.append( _FileToUpload( local_path=local_path, path_in_repo=prefix + relpath, size_limit=stat.st_size, last_modified=stat.st_mtime, ) ) # Return if nothing to upload if len(files_to_upload) == 0: logger.debug("Dropping schedule commit: no changed file to upload.") return None # Convert `_FileToUpload` as `CommitOperationAdd` (=> compute file shas + limit to file size) logger.debug("Removing unchanged files since previous scheduled commit.") add_operations = [ CommitOperationAdd( # Cap the file to its current size, even if the user append data to it while a scheduled commit is happening path_or_fileobj=PartialFileIO(file_to_upload.local_path, size_limit=file_to_upload.size_limit), path_in_repo=file_to_upload.path_in_repo, ) for file_to_upload in files_to_upload ] # Upload files (append mode expected - no need for lock) logger.debug("Uploading files for scheduled commit.") commit_info = self.api.create_commit( repo_id=self.repo_id, repo_type=self.repo_type, operations=add_operations, commit_message="Scheduled Commit", revision=self.revision, ) # Successful commit: keep track of the latest "last_modified" for each file for file in files_to_upload: self.last_uploaded[file.local_path] = file.last_modified return commit_info
class_definition
671
11,802
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
def __init__( self, *, repo_id: str, folder_path: Union[str, Path], every: Union[int, float] = 5, path_in_repo: Optional[str] = None, repo_type: Optional[str] = None, revision: Optional[str] = None, private: Optional[bool] = None, token: Optional[str] = None, allow_patterns: Optional[Union[List[str], str]] = None, ignore_patterns: Optional[Union[List[str], str]] = None, squash_history: bool = False, hf_api: Optional["HfApi"] = None, ) -> None: self.api = hf_api or HfApi(token=token) # Folder self.folder_path = Path(folder_path).expanduser().resolve() self.path_in_repo = path_in_repo or "" self.allow_patterns = allow_patterns if ignore_patterns is None: ignore_patterns = [] elif isinstance(ignore_patterns, str): ignore_patterns = [ignore_patterns] self.ignore_patterns = ignore_patterns + DEFAULT_IGNORE_PATTERNS if self.folder_path.is_file(): raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.") self.folder_path.mkdir(parents=True, exist_ok=True) # Repository repo_url = self.api.create_repo(repo_id=repo_id, private=private, repo_type=repo_type, exist_ok=True) self.repo_id = repo_url.repo_id self.repo_type = repo_type self.revision = revision self.token = token # Keep track of already uploaded files self.last_uploaded: Dict[Path, float] = {} # key is local path, value is timestamp # Scheduler if not every > 0: raise ValueError(f"'every' must be a positive integer, not '{every}'.") self.lock = Lock() self.every = every self.squash_history = squash_history logger.info(f"Scheduled job to push '{self.folder_path}' to '{self.repo_id}' every {self.every} minutes.") self._scheduler_thread = Thread(target=self._run_scheduler, daemon=True) self._scheduler_thread.start() atexit.register(self._push_to_hub) self.__stopped = False
function_definition
4,041
6,218
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if ignore_patterns is None: ignore_patterns = [] elif isinstance(ignore_patterns, str): ignore_patterns = [ignore_patterns]
if_statement
4,840
4,995
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if self.folder_path.is_file(): raise ValueError(f"'folder_path' must be a directory, not a file: '{self.folder_path}'.")
if_statement
5,078
5,210
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if not every > 0: raise ValueError(f"'every' must be a positive integer, not '{every}'.")
if_statement
5,707
5,808
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def stop(self) -> None: """Stop the scheduler. A stopped scheduler cannot be restarted. Mostly for tests purposes. """ self.__stopped = True
function_definition
6,224
6,397
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def __enter__(self) -> "CommitScheduler": return self
function_definition
6,403
6,464
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def __exit__(self, exc_type, exc_value, traceback) -> None: # Upload last changes before exiting self.trigger().result() self.stop() return
function_definition
6,470
6,641
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def _run_scheduler(self) -> None: """Dumb thread waiting between each scheduled push to Hub.""" while True: self.last_future = self.trigger() time.sleep(self.every * 60) if self.__stopped: break
function_definition
6,647
6,909
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
while True: self.last_future = self.trigger() time.sleep(self.every * 60) if self.__stopped: break
while_statement
6,759
6,909
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if self.__stopped: break
if_statement
6,869
6,909
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def trigger(self) -> Future: """Trigger a `push_to_hub` and return a future. This method is automatically called every `every` minutes. You can also call it manually to trigger a commit immediately, without waiting for the next scheduled commit. """ return self.api.run_as_future(self._push_to_hub)
function_definition
6,915
7,254
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def _push_to_hub(self) -> Optional[CommitInfo]: if self.__stopped: # If stopped, already scheduled commits are ignored return None logger.info("(Background) scheduled commit triggered.") try: value = self.push_to_hub() if self.squash_history: logger.info("(Background) squashing repo history.") self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) return value except Exception as e: logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced raise
function_definition
7,260
7,934
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if self.__stopped: # If stopped, already scheduled commits are ignored return None
if_statement
7,316
7,411
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
try: value = self.push_to_hub() if self.squash_history: logger.info("(Background) squashing repo history.") self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision) return value except Exception as e: logger.error(f"Error while pushing to Hub: {e}") # Depending on the setup, error might be silenced raise
try_statement
7,485
7,934
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if self.squash_history: logger.info("(Background) squashing repo history.") self.api.super_squash_history(repo_id=self.repo_id, repo_type=self.repo_type, branch=self.revision)
if_statement
7,541
7,748
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
def push_to_hub(self) -> Optional[CommitInfo]: """ Push folder to the Hub and return the commit info. <Tip warning={true}> This method is not meant to be called directly. It is run in the background by the scheduler, respecting a queue mechanism to avoid concurrent commits. Making a direct call to the method might lead to concurrency issues. </Tip> The default behavior of `push_to_hub` is to assume an append-only folder. It lists all files in the folder and uploads only changed files. If no changes are found, the method returns without committing anything. If you want to change this behavior, you can inherit from [`CommitScheduler`] and override this method. This can be useful for example to compress data together in a single file before committing. For more details and examples, check out our [integration guide](https://huggingface.co/docs/huggingface_hub/main/en/guides/upload#scheduled-uploads). """ # Check files to upload (with lock) with self.lock: logger.debug("Listing files to upload for scheduled commit.") # List files from folder (taken from `_prepare_upload_folder_additions`) relpath_to_abspath = { path.relative_to(self.folder_path).as_posix(): path for path in sorted(self.folder_path.glob("**/*")) # sorted to be deterministic if path.is_file() } prefix = f"{self.path_in_repo.strip('/')}/" if self.path_in_repo else "" # Filter with pattern + filter out unchanged files + retrieve current file size files_to_upload: List[_FileToUpload] = [] for relpath in filter_repo_objects( relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns ): local_path = relpath_to_abspath[relpath] stat = local_path.stat() if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: files_to_upload.append( _FileToUpload( local_path=local_path, path_in_repo=prefix + relpath, size_limit=stat.st_size, last_modified=stat.st_mtime, ) ) # Return if nothing to upload if len(files_to_upload) == 0: logger.debug("Dropping schedule commit: no changed file to upload.") return None # Convert `_FileToUpload` as `CommitOperationAdd` (=> compute file shas + limit to file size) logger.debug("Removing unchanged files since previous scheduled commit.") add_operations = [ CommitOperationAdd( # Cap the file to its current size, even if the user append data to it while a scheduled commit is happening path_or_fileobj=PartialFileIO(file_to_upload.local_path, size_limit=file_to_upload.size_limit), path_in_repo=file_to_upload.path_in_repo, ) for file_to_upload in files_to_upload ] # Upload files (append mode expected - no need for lock) logger.debug("Uploading files for scheduled commit.") commit_info = self.api.create_commit( repo_id=self.repo_id, repo_type=self.repo_type, operations=add_operations, commit_message="Scheduled Commit", revision=self.revision, ) # Successful commit: keep track of the latest "last_modified" for each file for file in files_to_upload: self.last_uploaded[file.local_path] = file.last_modified return commit_info
function_definition
7,940
11,802
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
for relpath in filter_repo_objects( relpath_to_abspath.keys(), allow_patterns=self.allow_patterns, ignore_patterns=self.ignore_patterns ): local_path = relpath_to_abspath[relpath] stat = local_path.stat() if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: files_to_upload.append( _FileToUpload( local_path=local_path, path_in_repo=prefix + relpath, size_limit=stat.st_size, last_modified=stat.st_mtime, ) )
for_statement
9,682
10,411
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if self.last_uploaded.get(local_path) is None or self.last_uploaded[local_path] != stat.st_mtime: files_to_upload.append( _FileToUpload( local_path=local_path, path_in_repo=prefix + relpath, size_limit=stat.st_size, last_modified=stat.st_mtime, ) )
if_statement
9,963
10,411
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
if len(files_to_upload) == 0: logger.debug("Dropping schedule commit: no changed file to upload.") return None
if_statement
10,459
10,593
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
for file in files_to_upload: self.last_uploaded[file.local_path] = file.last_modified
for_statement
11,678
11,775
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
CommitScheduler
class PartialFileIO(BytesIO): """A file-like object that reads only the first part of a file. Useful to upload a file to the Hub when the user might still be appending data to it. Only the first part of the file is uploaded (i.e. the part that was available when the filesystem was first scanned). In practice, only used internally by the CommitScheduler to regularly push a folder to the Hub with minimal disturbance for the user. The object is passed to `CommitOperationAdd`. Only supports `read`, `tell` and `seek` methods. Args: file_path (`str` or `Path`): Path to the file to read. size_limit (`int`): The maximum number of bytes to read from the file. If the file is larger than this, only the first part will be read (and uploaded). """ def __init__(self, file_path: Union[str, Path], size_limit: int) -> None: self._file_path = Path(file_path) self._file = self._file_path.open("rb") self._size_limit = min(size_limit, os.fstat(self._file.fileno()).st_size) def __del__(self) -> None: self._file.close() return super().__del__() def __repr__(self) -> str: return f"<PartialFileIO file_path={self._file_path} size_limit={self._size_limit}>" def __len__(self) -> int: return self._size_limit def __getattribute__(self, name: str): if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported return super().__getattribute__(name) raise NotImplementedError(f"PartialFileIO does not support '{name}'.") def tell(self) -> int: """Return the current file position.""" return self._file.tell() def seek(self, __offset: int, __whence: int = SEEK_SET) -> int: """Change the stream position to the given offset. Behavior is the same as a regular file, except that the position is capped to the size limit. """ if __whence == SEEK_END: # SEEK_END => set from the truncated end __offset = len(self) + __offset __whence = SEEK_SET pos = self._file.seek(__offset, __whence) if pos > self._size_limit: return self._file.seek(self._size_limit) return pos def read(self, __size: Optional[int] = -1) -> bytes: """Read at most `__size` bytes from the file. Behavior is the same as a regular file, except that it is capped to the size limit. """ current = self._file.tell() if __size is None or __size < 0: # Read until file limit truncated_size = self._size_limit - current else: # Read until file limit or __size truncated_size = min(__size, self._size_limit - current) return self._file.read(truncated_size)
class_definition
11,805
14,678
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
null
def __init__(self, file_path: Union[str, Path], size_limit: int) -> None: self._file_path = Path(file_path) self._file = self._file_path.open("rb") self._size_limit = min(size_limit, os.fstat(self._file.fileno()).st_size)
function_definition
12,643
12,888
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def __del__(self) -> None: self._file.close() return super().__del__()
function_definition
12,894
12,980
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def __repr__(self) -> str: return f"<PartialFileIO file_path={self._file_path} size_limit={self._size_limit}>"
function_definition
12,986
13,104
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def __len__(self) -> int: return self._size_limit
function_definition
13,110
13,167
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def __getattribute__(self, name: str): if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported return super().__getattribute__(name) raise NotImplementedError(f"PartialFileIO does not support '{name}'.")
function_definition
13,173
13,444
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
if name.startswith("_") or name in ("read", "tell", "seek"): # only 3 public methods supported return super().__getattribute__(name)
if_statement
13,220
13,365
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def tell(self) -> int: """Return the current file position.""" return self._file.tell()
function_definition
13,450
13,553
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def seek(self, __offset: int, __whence: int = SEEK_SET) -> int: """Change the stream position to the given offset. Behavior is the same as a regular file, except that the position is capped to the size limit. """ if __whence == SEEK_END: # SEEK_END => set from the truncated end __offset = len(self) + __offset __whence = SEEK_SET pos = self._file.seek(__offset, __whence) if pos > self._size_limit: return self._file.seek(self._size_limit) return pos
function_definition
13,559
14,116
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
if __whence == SEEK_END: # SEEK_END => set from the truncated end __offset = len(self) + __offset __whence = SEEK_SET
if_statement
13,805
13,958
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
if pos > self._size_limit: return self._file.seek(self._size_limit)
if_statement
14,018
14,097
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def read(self, __size: Optional[int] = -1) -> bytes: """Read at most `__size` bytes from the file. Behavior is the same as a regular file, except that it is capped to the size limit. """ current = self._file.tell() if __size is None or __size < 0: # Read until file limit truncated_size = self._size_limit - current else: # Read until file limit or __size truncated_size = min(__size, self._size_limit - current) return self._file.read(truncated_size)
function_definition
14,122
14,678
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
if __size is None or __size < 0: # Read until file limit truncated_size = self._size_limit - current else: # Read until file limit or __size truncated_size = min(__size, self._size_limit - current)
if_statement
14,378
14,631
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_commit_scheduler.py
PartialFileIO
def _attach(package_name, submodules=None, submod_attrs=None): """Attach lazily loaded submodules, functions, or other attributes. Typically, modules import submodules and attributes as follows: ```py import mysubmodule import anothersubmodule from .foo import someattr ``` The idea is to replace a package's `__getattr__`, `__dir__`, and `__all__`, such that all imports work exactly the way they would with normal imports, except that the import occurs upon first use. The typical way to call this function, replacing the above imports, is: ```python __getattr__, __dir__, __all__ = lazy.attach( __name__, ['mysubmodule', 'anothersubmodule'], {'foo': ['someattr']} ) ``` This functionality requires Python 3.7 or higher. Args: package_name (`str`): Typically use `__name__`. submodules (`set`): List of submodules to attach. submod_attrs (`dict`): Dictionary of submodule -> list of attributes / functions. These attributes are imported as they are used. Returns: __getattr__, __dir__, __all__ """ if submod_attrs is None: submod_attrs = {} if submodules is None: submodules = set() else: submodules = set(submodules) attr_to_modules = {attr: mod for mod, attrs in submod_attrs.items() for attr in attrs} __all__ = list(submodules | attr_to_modules.keys()) def __getattr__(name): if name in submodules: try: return importlib.import_module(f"{package_name}.{name}") except Exception as e: print(f"Error importing {package_name}.{name}: {e}") raise elif name in attr_to_modules: submod_path = f"{package_name}.{attr_to_modules[name]}" try: submod = importlib.import_module(submod_path) except Exception as e: print(f"Error importing {submod_path}: {e}") raise attr = getattr(submod, name) # If the attribute lives in a file (module) with the same # name as the attribute, ensure that the attribute and *not* # the module is accessible on the package. if name == attr_to_modules[name]: pkg = sys.modules[package_name] pkg.__dict__[name] = attr return attr else: raise AttributeError(f"No {package_name} attribute {name}") def __dir__(): return __all__ return __getattr__, __dir__, list(__all__)
function_definition
15,651
18,301
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if submod_attrs is None: submod_attrs = {}
if_statement
16,844
16,894
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if submodules is None: submodules = set() else: submodules = set(submodules)
if_statement
16,900
16,996
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
def __getattr__(name): if name in submodules: try: return importlib.import_module(f"{package_name}.{name}") except Exception as e: print(f"Error importing {package_name}.{name}: {e}") raise elif name in attr_to_modules: submod_path = f"{package_name}.{attr_to_modules[name]}" try: submod = importlib.import_module(submod_path) except Exception as e: print(f"Error importing {submod_path}: {e}") raise attr = getattr(submod, name) # If the attribute lives in a file (module) with the same # name as the attribute, ensure that the attribute and *not* # the module is accessible on the package. if name == attr_to_modules[name]: pkg = sys.modules[package_name] pkg.__dict__[name] = attr return attr else: raise AttributeError(f"No {package_name} attribute {name}")
function_definition
17,151
18,210
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if name in submodules: try: return importlib.import_module(f"{package_name}.{name}") except Exception as e: print(f"Error importing {package_name}.{name}: {e}") raise elif name in attr_to_modules: submod_path = f"{package_name}.{attr_to_modules[name]}" try: submod = importlib.import_module(submod_path) except Exception as e: print(f"Error importing {submod_path}: {e}") raise attr = getattr(submod, name) # If the attribute lives in a file (module) with the same # name as the attribute, ensure that the attribute and *not* # the module is accessible on the package. if name == attr_to_modules[name]: pkg = sys.modules[package_name] pkg.__dict__[name] = attr return attr else: raise AttributeError(f"No {package_name} attribute {name}")
if_statement
17,182
18,210
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
try: return importlib.import_module(f"{package_name}.{name}") except Exception as e: print(f"Error importing {package_name}.{name}: {e}") raise
try_statement
17,217
17,420
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
try: submod = importlib.import_module(submod_path) except Exception as e: print(f"Error importing {submod_path}: {e}") raise
try_statement
17,539
17,723
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if name == attr_to_modules[name]: pkg = sys.modules[package_name] pkg.__dict__[name] = attr
if_statement
17,976
18,099
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
def __dir__(): return __all__
function_definition
18,216
18,253
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if os.environ.get("EAGER_IMPORT", ""): for attr in __all__: __getattr__(attr)
if_statement
18,398
18,487
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
for attr in __all__: __getattr__(attr)
for_statement
18,441
18,487
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
if TYPE_CHECKING: # pragma: no cover from ._commit_scheduler import CommitScheduler # noqa: F401 from ._inference_endpoints import ( InferenceEndpoint, # noqa: F401 InferenceEndpointError, # noqa: F401 InferenceEndpointStatus, # noqa: F401 InferenceEndpointTimeoutError, # noqa: F401 InferenceEndpointType, # noqa: F401 ) from ._login import ( auth_list, # noqa: F401 auth_switch, # noqa: F401 interpreter_login, # noqa: F401 login, # noqa: F401 logout, # noqa: F401 notebook_login, # noqa: F401 ) from ._snapshot_download import snapshot_download # noqa: F401 from ._space_api import ( SpaceHardware, # noqa: F401 SpaceRuntime, # noqa: F401 SpaceStage, # noqa: F401 SpaceStorage, # noqa: F401 SpaceVariable, # noqa: F401 ) from ._tensorboard_logger import HFSummaryWriter # noqa: F401 from ._webhooks_payload import ( WebhookPayload, # noqa: F401 WebhookPayloadComment, # noqa: F401 WebhookPayloadDiscussion, # noqa: F401 WebhookPayloadDiscussionChanges, # noqa: F401 WebhookPayloadEvent, # noqa: F401 WebhookPayloadMovedTo, # noqa: F401 WebhookPayloadRepo, # noqa: F401 WebhookPayloadUrl, # noqa: F401 WebhookPayloadWebhook, # noqa: F401 ) from ._webhooks_server import ( WebhooksServer, # noqa: F401 webhook_endpoint, # noqa: F401 ) from .community import ( Discussion, # noqa: F401 DiscussionComment, # noqa: F401 DiscussionCommit, # noqa: F401 DiscussionEvent, # noqa: F401 DiscussionStatusChange, # noqa: F401 DiscussionTitleChange, # noqa: F401 DiscussionWithDetails, # noqa: F401 ) from .constants import ( CONFIG_NAME, # noqa: F401 FLAX_WEIGHTS_NAME, # noqa: F401 HUGGINGFACE_CO_URL_HOME, # noqa: F401 HUGGINGFACE_CO_URL_TEMPLATE, # noqa: F401 PYTORCH_WEIGHTS_NAME, # noqa: F401 REPO_TYPE_DATASET, # noqa: F401 REPO_TYPE_MODEL, # noqa: F401 REPO_TYPE_SPACE, # noqa: F401 TF2_WEIGHTS_NAME, # noqa: F401 TF_WEIGHTS_NAME, # noqa: F401 ) from .fastai_utils import ( _save_pretrained_fastai, # noqa: F401 from_pretrained_fastai, # noqa: F401 push_to_hub_fastai, # noqa: F401 ) from .file_download import ( _CACHED_NO_EXIST, # noqa: F401 HfFileMetadata, # noqa: F401 get_hf_file_metadata, # noqa: F401 hf_hub_download, # noqa: F401 hf_hub_url, # noqa: F401 try_to_load_from_cache, # noqa: F401 ) from .hf_api import ( Collection, # noqa: F401 CollectionItem, # noqa: F401 CommitInfo, # noqa: F401 CommitOperation, # noqa: F401 CommitOperationAdd, # noqa: F401 CommitOperationCopy, # noqa: F401 CommitOperationDelete, # noqa: F401 DatasetInfo, # noqa: F401 GitCommitInfo, # noqa: F401 GitRefInfo, # noqa: F401 GitRefs, # noqa: F401 HfApi, # noqa: F401 ModelInfo, # noqa: F401 RepoUrl, # noqa: F401 SpaceInfo, # noqa: F401 User, # noqa: F401 UserLikes, # noqa: F401 WebhookInfo, # noqa: F401 WebhookWatchedItem, # noqa: F401 accept_access_request, # noqa: F401 add_collection_item, # noqa: F401 add_space_secret, # noqa: F401 add_space_variable, # noqa: F401 auth_check, # noqa: F401 cancel_access_request, # noqa: F401 change_discussion_status, # noqa: F401 comment_discussion, # noqa: F401 create_branch, # noqa: F401 create_collection, # noqa: F401 create_commit, # noqa: F401 create_discussion, # noqa: F401 create_inference_endpoint, # noqa: F401 create_pull_request, # noqa: F401 create_repo, # noqa: F401 create_tag, # noqa: F401 create_webhook, # noqa: F401 dataset_info, # noqa: F401 delete_branch, # noqa: F401 delete_collection, # noqa: F401 delete_collection_item, # noqa: F401 delete_file, # noqa: F401 delete_folder, # noqa: F401 delete_inference_endpoint, # noqa: F401 delete_repo, # noqa: F401 delete_space_secret, # noqa: F401 delete_space_storage, # noqa: F401 delete_space_variable, # noqa: F401 delete_tag, # noqa: F401 delete_webhook, # noqa: F401 disable_webhook, # noqa: F401 duplicate_space, # noqa: F401 edit_discussion_comment, # noqa: F401 enable_webhook, # noqa: F401 file_exists, # noqa: F401 get_collection, # noqa: F401 get_dataset_tags, # noqa: F401 get_discussion_details, # noqa: F401 get_full_repo_name, # noqa: F401 get_inference_endpoint, # noqa: F401 get_model_tags, # noqa: F401 get_paths_info, # noqa: F401 get_repo_discussions, # noqa: F401 get_safetensors_metadata, # noqa: F401 get_space_runtime, # noqa: F401 get_space_variables, # noqa: F401 get_token_permission, # noqa: F401 get_user_overview, # noqa: F401 get_webhook, # noqa: F401 grant_access, # noqa: F401 like, # noqa: F401 list_accepted_access_requests, # noqa: F401 list_collections, # noqa: F401 list_datasets, # noqa: F401 list_inference_endpoints, # noqa: F401 list_liked_repos, # noqa: F401 list_models, # noqa: F401 list_organization_members, # noqa: F401 list_papers, # noqa: F401 list_pending_access_requests, # noqa: F401 list_rejected_access_requests, # noqa: F401 list_repo_commits, # noqa: F401 list_repo_files, # noqa: F401 list_repo_likers, # noqa: F401 list_repo_refs, # noqa: F401 list_repo_tree, # noqa: F401 list_spaces, # noqa: F401 list_user_followers, # noqa: F401 list_user_following, # noqa: F401 list_webhooks, # noqa: F401 merge_pull_request, # noqa: F401 model_info, # noqa: F401 move_repo, # noqa: F401 paper_info, # noqa: F401 parse_safetensors_file_metadata, # noqa: F401 pause_inference_endpoint, # noqa: F401 pause_space, # noqa: F401 preupload_lfs_files, # noqa: F401 reject_access_request, # noqa: F401 rename_discussion, # noqa: F401 repo_exists, # noqa: F401 repo_info, # noqa: F401 repo_type_and_id_from_hf_id, # noqa: F401 request_space_hardware, # noqa: F401 request_space_storage, # noqa: F401 restart_space, # noqa: F401 resume_inference_endpoint, # noqa: F401 revision_exists, # noqa: F401 run_as_future, # noqa: F401 scale_to_zero_inference_endpoint, # noqa: F401 set_space_sleep_time, # noqa: F401 space_info, # noqa: F401 super_squash_history, # noqa: F401 unlike, # noqa: F401 update_collection_item, # noqa: F401 update_collection_metadata, # noqa: F401 update_inference_endpoint, # noqa: F401 update_repo_settings, # noqa: F401 update_repo_visibility, # noqa: F401 update_webhook, # noqa: F401 upload_file, # noqa: F401 upload_folder, # noqa: F401 upload_large_folder, # noqa: F401 whoami, # noqa: F401 ) from .hf_file_system import ( HfFileSystem, # noqa: F401 HfFileSystemFile, # noqa: F401 HfFileSystemResolvedPath, # noqa: F401 HfFileSystemStreamFile, # noqa: F401 ) from .hub_mixin import ( ModelHubMixin, # noqa: F401 PyTorchModelHubMixin, # noqa: F401 ) from .inference._client import ( InferenceClient, # noqa: F401 InferenceTimeoutError, # noqa: F401 ) from .inference._generated._async_client import AsyncInferenceClient # noqa: F401 from .inference._generated.types import ( AudioClassificationInput, # noqa: F401 AudioClassificationOutputElement, # noqa: F401 AudioClassificationOutputTransform, # noqa: F401 AudioClassificationParameters, # noqa: F401 AudioToAudioInput, # noqa: F401 AudioToAudioOutputElement, # noqa: F401 AutomaticSpeechRecognitionEarlyStoppingEnum, # noqa: F401 AutomaticSpeechRecognitionGenerationParameters, # noqa: F401 AutomaticSpeechRecognitionInput, # noqa: F401 AutomaticSpeechRecognitionOutput, # noqa: F401 AutomaticSpeechRecognitionOutputChunk, # noqa: F401 AutomaticSpeechRecognitionParameters, # noqa: F401 ChatCompletionInput, # noqa: F401 ChatCompletionInputFunctionDefinition, # noqa: F401 ChatCompletionInputFunctionName, # noqa: F401 ChatCompletionInputGrammarType, # noqa: F401 ChatCompletionInputGrammarTypeType, # noqa: F401 ChatCompletionInputMessage, # noqa: F401 ChatCompletionInputMessageChunk, # noqa: F401 ChatCompletionInputMessageChunkType, # noqa: F401 ChatCompletionInputStreamOptions, # noqa: F401 ChatCompletionInputTool, # noqa: F401 ChatCompletionInputToolChoiceClass, # noqa: F401 ChatCompletionInputToolChoiceEnum, # noqa: F401 ChatCompletionInputURL, # noqa: F401 ChatCompletionOutput, # noqa: F401 ChatCompletionOutputComplete, # noqa: F401 ChatCompletionOutputFunctionDefinition, # noqa: F401 ChatCompletionOutputLogprob, # noqa: F401 ChatCompletionOutputLogprobs, # noqa: F401 ChatCompletionOutputMessage, # noqa: F401 ChatCompletionOutputToolCall, # noqa: F401 ChatCompletionOutputTopLogprob, # noqa: F401 ChatCompletionOutputUsage, # noqa: F401 ChatCompletionStreamOutput, # noqa: F401 ChatCompletionStreamOutputChoice, # noqa: F401 ChatCompletionStreamOutputDelta, # noqa: F401 ChatCompletionStreamOutputDeltaToolCall, # noqa: F401 ChatCompletionStreamOutputFunction, # noqa: F401 ChatCompletionStreamOutputLogprob, # noqa: F401 ChatCompletionStreamOutputLogprobs, # noqa: F401 ChatCompletionStreamOutputTopLogprob, # noqa: F401 ChatCompletionStreamOutputUsage, # noqa: F401 DepthEstimationInput, # noqa: F401 DepthEstimationOutput, # noqa: F401 DocumentQuestionAnsweringInput, # noqa: F401 DocumentQuestionAnsweringInputData, # noqa: F401 DocumentQuestionAnsweringOutputElement, # noqa: F401 DocumentQuestionAnsweringParameters, # noqa: F401 FeatureExtractionInput, # noqa: F401 FeatureExtractionInputTruncationDirection, # noqa: F401 FillMaskInput, # noqa: F401 FillMaskOutputElement, # noqa: F401 FillMaskParameters, # noqa: F401 ImageClassificationInput, # noqa: F401 ImageClassificationOutputElement, # noqa: F401 ImageClassificationOutputTransform, # noqa: F401 ImageClassificationParameters, # noqa: F401 ImageSegmentationInput, # noqa: F401 ImageSegmentationOutputElement, # noqa: F401 ImageSegmentationParameters, # noqa: F401 ImageSegmentationSubtask, # noqa: F401 ImageToImageInput, # noqa: F401 ImageToImageOutput, # noqa: F401 ImageToImageParameters, # noqa: F401 ImageToImageTargetSize, # noqa: F401 ImageToTextEarlyStoppingEnum, # noqa: F401 ImageToTextGenerationParameters, # noqa: F401 ImageToTextInput, # noqa: F401 ImageToTextOutput, # noqa: F401 ImageToTextParameters, # noqa: F401 ObjectDetectionBoundingBox, # noqa: F401 ObjectDetectionInput, # noqa: F401 ObjectDetectionOutputElement, # noqa: F401 ObjectDetectionParameters, # noqa: F401 Padding, # noqa: F401 QuestionAnsweringInput, # noqa: F401 QuestionAnsweringInputData, # noqa: F401 QuestionAnsweringOutputElement, # noqa: F401 QuestionAnsweringParameters, # noqa: F401 SentenceSimilarityInput, # noqa: F401 SentenceSimilarityInputData, # noqa: F401 SummarizationInput, # noqa: F401 SummarizationOutput, # noqa: F401 SummarizationParameters, # noqa: F401 SummarizationTruncationStrategy, # noqa: F401 TableQuestionAnsweringInput, # noqa: F401 TableQuestionAnsweringInputData, # noqa: F401 TableQuestionAnsweringOutputElement, # noqa: F401 TableQuestionAnsweringParameters, # noqa: F401 Text2TextGenerationInput, # noqa: F401 Text2TextGenerationOutput, # noqa: F401 Text2TextGenerationParameters, # noqa: F401 Text2TextGenerationTruncationStrategy, # noqa: F401 TextClassificationInput, # noqa: F401 TextClassificationOutputElement, # noqa: F401 TextClassificationOutputTransform, # noqa: F401 TextClassificationParameters, # noqa: F401 TextGenerationInput, # noqa: F401 TextGenerationInputGenerateParameters, # noqa: F401 TextGenerationInputGrammarType, # noqa: F401 TextGenerationOutput, # noqa: F401 TextGenerationOutputBestOfSequence, # noqa: F401 TextGenerationOutputDetails, # noqa: F401 TextGenerationOutputFinishReason, # noqa: F401 TextGenerationOutputPrefillToken, # noqa: F401 TextGenerationOutputToken, # noqa: F401 TextGenerationStreamOutput, # noqa: F401 TextGenerationStreamOutputStreamDetails, # noqa: F401 TextGenerationStreamOutputToken, # noqa: F401 TextToAudioEarlyStoppingEnum, # noqa: F401 TextToAudioGenerationParameters, # noqa: F401 TextToAudioInput, # noqa: F401 TextToAudioOutput, # noqa: F401 TextToAudioParameters, # noqa: F401 TextToImageInput, # noqa: F401 TextToImageOutput, # noqa: F401 TextToImageParameters, # noqa: F401 TextToImageTargetSize, # noqa: F401 TextToSpeechEarlyStoppingEnum, # noqa: F401 TextToSpeechGenerationParameters, # noqa: F401 TextToSpeechInput, # noqa: F401 TextToSpeechOutput, # noqa: F401 TextToSpeechParameters, # noqa: F401 TokenClassificationAggregationStrategy, # noqa: F401 TokenClassificationInput, # noqa: F401 TokenClassificationOutputElement, # noqa: F401 TokenClassificationParameters, # noqa: F401 TranslationInput, # noqa: F401 TranslationOutput, # noqa: F401 TranslationParameters, # noqa: F401 TranslationTruncationStrategy, # noqa: F401 TypeEnum, # noqa: F401 VideoClassificationInput, # noqa: F401 VideoClassificationOutputElement, # noqa: F401 VideoClassificationOutputTransform, # noqa: F401 VideoClassificationParameters, # noqa: F401 VisualQuestionAnsweringInput, # noqa: F401 VisualQuestionAnsweringInputData, # noqa: F401 VisualQuestionAnsweringOutputElement, # noqa: F401 VisualQuestionAnsweringParameters, # noqa: F401 ZeroShotClassificationInput, # noqa: F401 ZeroShotClassificationOutputElement, # noqa: F401 ZeroShotClassificationParameters, # noqa: F401 ZeroShotImageClassificationInput, # noqa: F401 ZeroShotImageClassificationOutputElement, # noqa: F401 ZeroShotImageClassificationParameters, # noqa: F401 ZeroShotObjectDetectionBoundingBox, # noqa: F401 ZeroShotObjectDetectionInput, # noqa: F401 ZeroShotObjectDetectionOutputElement, # noqa: F401 ZeroShotObjectDetectionParameters, # noqa: F401 ) from .inference_api import InferenceApi # noqa: F401 from .keras_mixin import ( KerasModelHubMixin, # noqa: F401 from_pretrained_keras, # noqa: F401 push_to_hub_keras, # noqa: F401 save_pretrained_keras, # noqa: F401 ) from .repocard import ( DatasetCard, # noqa: F401 ModelCard, # noqa: F401 RepoCard, # noqa: F401 SpaceCard, # noqa: F401 metadata_eval_result, # noqa: F401 metadata_load, # noqa: F401 metadata_save, # noqa: F401 metadata_update, # noqa: F401 ) from .repocard_data import ( CardData, # noqa: F401 DatasetCardData, # noqa: F401 EvalResult, # noqa: F401 ModelCardData, # noqa: F401 SpaceCardData, # noqa: F401 ) from .repository import Repository # noqa: F401 from .serialization import ( StateDictSplit, # noqa: F401 get_tf_storage_size, # noqa: F401 get_torch_storage_id, # noqa: F401 get_torch_storage_size, # noqa: F401 load_state_dict_from_file, # noqa: F401 load_torch_model, # noqa: F401 save_torch_model, # noqa: F401 save_torch_state_dict, # noqa: F401 split_state_dict_into_shards_factory, # noqa: F401 split_tf_state_dict_into_shards, # noqa: F401 split_torch_state_dict_into_shards, # noqa: F401 ) from .serialization._dduf import ( DDUFEntry, # noqa: F401 export_entries_as_dduf, # noqa: F401 export_folder_as_dduf, # noqa: F401 read_dduf_file, # noqa: F401 ) from .utils import ( CachedFileInfo, # noqa: F401 CachedRepoInfo, # noqa: F401 CachedRevisionInfo, # noqa: F401 CacheNotFound, # noqa: F401 CorruptedCacheException, # noqa: F401 DeleteCacheStrategy, # noqa: F401 HFCacheInfo, # noqa: F401 HfFolder, # noqa: F401 cached_assets_path, # noqa: F401 configure_http_backend, # noqa: F401 dump_environment_info, # noqa: F401 get_session, # noqa: F401 get_token, # noqa: F401 logging, # noqa: F401 scan_cache_dir, # noqa: F401 )
if_statement
18,838
37,217
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/__init__.py
null
class LocalDownloadFilePaths: """ Paths to the files related to a download process in a local dir. Returned by [`get_local_download_paths`]. Attributes: file_path (`Path`): Path where the file will be saved. lock_path (`Path`): Path to the lock file used to ensure atomicity when reading/writing metadata. metadata_path (`Path`): Path to the metadata file. """ file_path: Path lock_path: Path metadata_path: Path def incomplete_path(self, etag: str) -> Path: """Return the path where a file will be temporarily downloaded before being moved to `file_path`.""" return self.metadata_path.with_suffix(f".{etag}.incomplete")
class_definition
1,891
2,627
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
def incomplete_path(self, etag: str) -> Path: """Return the path where a file will be temporarily downloaded before being moved to `file_path`.""" return self.metadata_path.with_suffix(f".{etag}.incomplete")
function_definition
2,404
2,627
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
LocalDownloadFilePaths
class LocalUploadFilePaths: """ Paths to the files related to an upload process in a local dir. Returned by [`get_local_upload_paths`]. Attributes: path_in_repo (`str`): Path of the file in the repo. file_path (`Path`): Path where the file will be saved. lock_path (`Path`): Path to the lock file used to ensure atomicity when reading/writing metadata. metadata_path (`Path`): Path to the metadata file. """ path_in_repo: str file_path: Path lock_path: Path metadata_path: Path
class_definition
2,654
3,250
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
class LocalDownloadFileMetadata: """ Metadata about a file in the local directory related to a download process. Attributes: filename (`str`): Path of the file in the repo. commit_hash (`str`): Commit hash of the file in the repo. etag (`str`): ETag of the file in the repo. Used to check if the file has changed. For LFS files, this is the sha256 of the file. For regular files, it corresponds to the git hash. timestamp (`int`): Unix timestamp of when the metadata was saved i.e. when the metadata was accurate. """ filename: str commit_hash: str etag: str timestamp: float
class_definition
3,264
3,965
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
class LocalUploadFileMetadata: """ Metadata about a file in the local directory related to an upload process. """ size: int # Default values correspond to "we don't know yet" timestamp: Optional[float] = None should_ignore: Optional[bool] = None sha256: Optional[str] = None upload_mode: Optional[str] = None is_uploaded: bool = False is_committed: bool = False def save(self, paths: LocalUploadFilePaths) -> None: """Save the metadata to disk.""" with WeakFileLock(paths.lock_path): with paths.metadata_path.open("w") as f: new_timestamp = time.time() f.write(str(new_timestamp) + "\n") f.write(str(self.size)) # never None f.write("\n") if self.should_ignore is not None: f.write(str(int(self.should_ignore))) f.write("\n") if self.sha256 is not None: f.write(self.sha256) f.write("\n") if self.upload_mode is not None: f.write(self.upload_mode) f.write("\n") f.write(str(int(self.is_uploaded)) + "\n") f.write(str(int(self.is_committed)) + "\n") self.timestamp = new_timestamp
class_definition
3,979
5,308
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
def save(self, paths: LocalUploadFilePaths) -> None: """Save the metadata to disk.""" with WeakFileLock(paths.lock_path): with paths.metadata_path.open("w") as f: new_timestamp = time.time() f.write(str(new_timestamp) + "\n") f.write(str(self.size)) # never None f.write("\n") if self.should_ignore is not None: f.write(str(int(self.should_ignore))) f.write("\n") if self.sha256 is not None: f.write(self.sha256) f.write("\n") if self.upload_mode is not None: f.write(self.upload_mode) f.write("\n") f.write(str(int(self.is_uploaded)) + "\n") f.write(str(int(self.is_committed)) + "\n") self.timestamp = new_timestamp
function_definition
4,392
5,308
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
LocalUploadFileMetadata
if self.should_ignore is not None: f.write(str(int(self.should_ignore)))
if_statement
4,780
4,872
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
LocalUploadFileMetadata
if self.sha256 is not None: f.write(self.sha256)
if_statement
4,920
4,988
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
LocalUploadFileMetadata
if self.upload_mode is not None: f.write(self.upload_mode)
if_statement
5,036
5,114
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
LocalUploadFileMetadata
def get_local_download_paths(local_dir: Path, filename: str) -> LocalDownloadFilePaths: """Compute paths to the files related to a download process. Folders containing the paths are all guaranteed to exist. Args: local_dir (`Path`): Path to the local directory in which files are downloaded. filename (`str`): Path of the file in the repo. Return: [`LocalDownloadFilePaths`]: the paths to the files (file_path, lock_path, metadata_path, incomplete_path). """ # filename is the path in the Hub repository (separated by '/') # make sure to have a cross platform transcription sanitized_filename = os.path.join(*filename.split("/")) if os.name == "nt": if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." ) file_path = local_dir / sanitized_filename metadata_path = _huggingface_dir(local_dir) / "download" / f"{sanitized_filename}.metadata" lock_path = metadata_path.with_suffix(".lock") # Some Windows versions do not allow for paths longer than 255 characters. # In this case, we must specify it as an extended path by using the "\\?\" prefix if os.name == "nt": if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path)) file_path.parent.mkdir(parents=True, exist_ok=True) metadata_path.parent.mkdir(parents=True, exist_ok=True) return LocalDownloadFilePaths(file_path=file_path, lock_path=lock_path, metadata_path=metadata_path)
function_definition
5,311
7,258
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if os.name == "nt": if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." )
if_statement
6,028
6,342
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." )
if_statement
6,056
6,342
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if os.name == "nt": if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path))
if_statement
6,707
7,036
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path))
if_statement
6,735
7,036
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
def get_local_upload_paths(local_dir: Path, filename: str) -> LocalUploadFilePaths: """Compute paths to the files related to an upload process. Folders containing the paths are all guaranteed to exist. Args: local_dir (`Path`): Path to the local directory that is uploaded. filename (`str`): Path of the file in the repo. Return: [`LocalUploadFilePaths`]: the paths to the files (file_path, lock_path, metadata_path). """ # filename is the path in the Hub repository (separated by '/') # make sure to have a cross platform transcription sanitized_filename = os.path.join(*filename.split("/")) if os.name == "nt": if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." ) file_path = local_dir / sanitized_filename metadata_path = _huggingface_dir(local_dir) / "upload" / f"{sanitized_filename}.metadata" lock_path = metadata_path.with_suffix(".lock") # Some Windows versions do not allow for paths longer than 255 characters. # In this case, we must specify it as an extended path by using the "\\?\" prefix if os.name == "nt": if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path)) file_path.parent.mkdir(parents=True, exist_ok=True) metadata_path.parent.mkdir(parents=True, exist_ok=True) return LocalUploadFilePaths( path_in_repo=filename, file_path=file_path, lock_path=lock_path, metadata_path=metadata_path )
function_definition
7,261
9,204
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if os.name == "nt": if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." )
if_statement
7,941
8,255
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if sanitized_filename.startswith("..\\") or "\\..\\" in sanitized_filename: raise ValueError( f"Invalid filename: cannot handle filename '{sanitized_filename}' on Windows. Please ask the repository" " owner to rename this file." )
if_statement
7,969
8,255
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if os.name == "nt": if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path))
if_statement
8,618
8,947
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if not str(local_dir).startswith("\\\\?\\") and len(os.path.abspath(lock_path)) > 255: file_path = Path("\\\\?\\" + os.path.abspath(file_path)) lock_path = Path("\\\\?\\" + os.path.abspath(lock_path)) metadata_path = Path("\\\\?\\" + os.path.abspath(metadata_path))
if_statement
8,646
8,947
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
def read_download_metadata(local_dir: Path, filename: str) -> Optional[LocalDownloadFileMetadata]: """Read metadata about a file in the local directory related to a download process. Args: local_dir (`Path`): Path to the local directory in which files are downloaded. filename (`str`): Path of the file in the repo. Return: `[LocalDownloadFileMetadata]` or `None`: the metadata if it exists, `None` otherwise. """ paths = get_local_download_paths(local_dir, filename) with WeakFileLock(paths.lock_path): if paths.metadata_path.exists(): try: with paths.metadata_path.open() as f: commit_hash = f.readline().strip() etag = f.readline().strip() timestamp = float(f.readline().strip()) metadata = LocalDownloadFileMetadata( filename=filename, commit_hash=commit_hash, etag=etag, timestamp=timestamp, ) except Exception as e: # remove the metadata file if it is corrupted / not the right format logger.warning( f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." ) try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") try: # check if the file exists and hasn't been modified since the metadata was saved stat = paths.file_path.stat() if ( stat.st_mtime - 1 <= metadata.timestamp ): # allow 1s difference as stat.st_mtime might not be precise return metadata logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") except FileNotFoundError: # file does not exist => metadata is outdated return None return None
function_definition
9,207
11,408
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if paths.metadata_path.exists(): try: with paths.metadata_path.open() as f: commit_hash = f.readline().strip() etag = f.readline().strip() timestamp = float(f.readline().strip()) metadata = LocalDownloadFileMetadata( filename=filename, commit_hash=commit_hash, etag=etag, timestamp=timestamp, ) except Exception as e: # remove the metadata file if it is corrupted / not the right format logger.warning( f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." ) try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") try: # check if the file exists and hasn't been modified since the metadata was saved stat = paths.file_path.stat() if ( stat.st_mtime - 1 <= metadata.timestamp ): # allow 1s difference as stat.st_mtime might not be precise return metadata logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") except FileNotFoundError: # file does not exist => metadata is outdated return None
if_statement
9,793
11,392
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
try: with paths.metadata_path.open() as f: commit_hash = f.readline().strip() etag = f.readline().strip() timestamp = float(f.readline().strip()) metadata = LocalDownloadFileMetadata( filename=filename, commit_hash=commit_hash, etag=etag, timestamp=timestamp, ) except Exception as e: # remove the metadata file if it is corrupted / not the right format logger.warning( f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." ) try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}")
try_statement
9,838
10,806
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}")
try_statement
10,607
10,806
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
try: # check if the file exists and hasn't been modified since the metadata was saved stat = paths.file_path.stat() if ( stat.st_mtime - 1 <= metadata.timestamp ): # allow 1s difference as stat.st_mtime might not be precise return metadata logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") except FileNotFoundError: # file does not exist => metadata is outdated return None
try_statement
10,820
11,392
2
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if ( stat.st_mtime - 1 <= metadata.timestamp ): # allow 1s difference as stat.st_mtime might not be precise return metadata
if_statement
10,984
11,164
3
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
def read_upload_metadata(local_dir: Path, filename: str) -> LocalUploadFileMetadata: """Read metadata about a file in the local directory related to an upload process. TODO: factorize logic with `read_download_metadata`. Args: local_dir (`Path`): Path to the local directory in which files are downloaded. filename (`str`): Path of the file in the repo. Return: `[LocalUploadFileMetadata]` or `None`: the metadata if it exists, `None` otherwise. """ paths = get_local_upload_paths(local_dir, filename) with WeakFileLock(paths.lock_path): if paths.metadata_path.exists(): try: with paths.metadata_path.open() as f: timestamp = float(f.readline().strip()) size = int(f.readline().strip()) # never None _should_ignore = f.readline().strip() should_ignore = None if _should_ignore == "" else bool(int(_should_ignore)) _sha256 = f.readline().strip() sha256 = None if _sha256 == "" else _sha256 _upload_mode = f.readline().strip() upload_mode = None if _upload_mode == "" else _upload_mode if upload_mode not in (None, "regular", "lfs"): raise ValueError(f"Invalid upload mode in metadata {paths.path_in_repo}: {upload_mode}") is_uploaded = bool(int(f.readline().strip())) is_committed = bool(int(f.readline().strip())) metadata = LocalUploadFileMetadata( timestamp=timestamp, size=size, should_ignore=should_ignore, sha256=sha256, upload_mode=upload_mode, is_uploaded=is_uploaded, is_committed=is_committed, ) except Exception as e: # remove the metadata file if it is corrupted / not the right format logger.warning( f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." ) try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") # TODO: can we do better? if ( metadata.timestamp is not None and metadata.is_uploaded # file was uploaded and not metadata.is_committed # but not committed and time.time() - metadata.timestamp > 20 * 3600 # and it's been more than 20 hours ): # => we consider it as garbage-collected by S3 metadata.is_uploaded = False # check if the file exists and hasn't been modified since the metadata was saved try: if metadata.timestamp is not None and paths.file_path.stat().st_mtime <= metadata.timestamp: return metadata logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") except FileNotFoundError: # file does not exist => metadata is outdated pass # empty metadata => we don't know anything expect its size return LocalUploadFileMetadata(size=paths.file_path.stat().st_size)
function_definition
11,411
14,938
0
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null
if paths.metadata_path.exists(): try: with paths.metadata_path.open() as f: timestamp = float(f.readline().strip()) size = int(f.readline().strip()) # never None _should_ignore = f.readline().strip() should_ignore = None if _should_ignore == "" else bool(int(_should_ignore)) _sha256 = f.readline().strip() sha256 = None if _sha256 == "" else _sha256 _upload_mode = f.readline().strip() upload_mode = None if _upload_mode == "" else _upload_mode if upload_mode not in (None, "regular", "lfs"): raise ValueError(f"Invalid upload mode in metadata {paths.path_in_repo}: {upload_mode}") is_uploaded = bool(int(f.readline().strip())) is_committed = bool(int(f.readline().strip())) metadata = LocalUploadFileMetadata( timestamp=timestamp, size=size, should_ignore=should_ignore, sha256=sha256, upload_mode=upload_mode, is_uploaded=is_uploaded, is_committed=is_committed, ) except Exception as e: # remove the metadata file if it is corrupted / not the right format logger.warning( f"Invalid metadata file {paths.metadata_path}: {e}. Removing it from disk and continue." ) try: paths.metadata_path.unlink() except Exception as e: logger.warning(f"Could not remove corrupted metadata file {paths.metadata_path}: {e}") # TODO: can we do better? if ( metadata.timestamp is not None and metadata.is_uploaded # file was uploaded and not metadata.is_committed # but not committed and time.time() - metadata.timestamp > 20 * 3600 # and it's been more than 20 hours ): # => we consider it as garbage-collected by S3 metadata.is_uploaded = False # check if the file exists and hasn't been modified since the metadata was saved try: if metadata.timestamp is not None and paths.file_path.stat().st_mtime <= metadata.timestamp: return metadata logger.info(f"Ignored metadata for '{filename}' (outdated). Will re-compute hash.") except FileNotFoundError: # file does not exist => metadata is outdated pass
if_statement
12,036
14,802
1
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/src/huggingface_hub/_local_folder.py
null