source
stringclasses
470 values
url
stringlengths
49
167
file_type
stringclasses
1 value
chunk
stringlengths
1
512
chunk_id
stringlengths
5
9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
use_cuda_fp16 (`bool`, *optional*, defaults to `False`): Whether or not to use optimized cuda kernel for fp16 model. Need to have model in fp16. model_seqlen (`int`, *optional*): The maximum sequence length that the model can take. block_name_to_quantize (`str`, *optional*): The transformers block name to quantize. If None, we will infer the block name using common patterns (e.g. model.layers) module_name_preceding_first_block (`List[str]`, *optional*):
468_7_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
module_name_preceding_first_block (`List[str]`, *optional*): The layers that are preceding the first Transformer block. batch_size (`int`, *optional*, defaults to 1): The batch size used when processing the dataset pad_token_id (`int`, *optional*): The pad token id. Needed to prepare the dataset when `batch_size` > 1. use_exllama (`bool`, *optional*): Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. max_input_length (`int`, *optional*):
468_7_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
Whether to use exllama backend. Defaults to `True` if unset. Only works with `bits` = 4. max_input_length (`int`, *optional*): The maximum input length. This is needed to initialize a buffer that depends on the maximum expected input length. It is specific to the exllama backend with act-order. exllama_config (`Dict[str, Any]`, *optional*): The exllama config. You can specify the version of the exllama kernel through the `version` key. Defaults to `{"version": 1}` if unset.
468_7_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
to `{"version": 1}` if unset. cache_block_outputs (`bool`, *optional*, defaults to `True`): Whether to cache block outputs to reuse as inputs for the succeeding block. modules_in_block_to_quantize (`List[List[str]]`, *optional*): List of list of module names to quantize in the specified block. This argument is useful to exclude certain linear modules from being quantized.
468_7_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
The block to quantize can be specified by setting `block_name_to_quantize`. We will quantize each list sequentially. If not set, we will quantize all linear layers. Example: `modules_in_block_to_quantize =[["self_attn.k_proj", "self_attn.v_proj", "self_attn.q_proj"], ["self_attn.o_proj"]]`. In this example, we will first quantize the q,k,v layers simultaneously since they are independent. Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get
468_7_9
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#gptqconfig
.md
Then, we will quantize `self_attn.o_proj` layer with the q,k,v layers quantized. This way, we will get better results since it reflects the real input `self_attn.o_proj` will get when the model is quantized.
468_7_10
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using `bitsandbytes`. This replaces `load_in_8bit` or `load_in_4bit`therefore both options are mutually exclusive. Currently only supports `LLM.int8()`, `FP4`, and `NF4` quantization. If more methods are added to `bitsandbytes`, then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`):
468_8_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
then more arguments will be added to this class. Args: load_in_8bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 8-bit quantization with LLM.int8(). load_in_4bit (`bool`, *optional*, defaults to `False`): This flag is used to enable 4-bit quantization by replacing the Linear layers with FP4/NF4 layers from `bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0):
468_8_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
`bitsandbytes`. llm_int8_threshold (`float`, *optional*, defaults to 6.0): This corresponds to the outlier threshold for outlier detection as described in `LLM.int8() : 8-bit Matrix Multiplication for Transformers at Scale` paper: https://arxiv.org/abs/2208.07339 Any hidden states value that is above this threshold will be considered an outlier and the operation on those values will be done in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but
468_8_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
in fp16. Values are usually normally distributed, that is, most values are in the range [-3.5, 3.5], but there are some exceptional systematic outliers that are very differently distributed for large models. These outliers are often in the interval [-60, -6] or [6, 60]. Int8 quantization works well for values of magnitude ~5, but beyond that, there is a significant performance penalty. A good default threshold is 6, but a lower threshold might be needed for more unstable models (small models, fine-tuning).
468_8_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
but a lower threshold might be needed for more unstable models (small models, fine-tuning). llm_int8_skip_modules (`List[str]`, *optional*): An explicit list of the modules that we do not want to convert in 8-bit. This is useful for models such as Jukebox that has several heads in different places and not necessarily at the last position. For example for `CausalLM` models, the last `lm_head` is kept in its original `dtype`. llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`):
468_8_4
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
llm_int8_enable_fp32_cpu_offload (`bool`, *optional*, defaults to `False`): This flag is used for advanced use cases and users that are aware of this feature. If you want to split your model in different parts and run some parts in int8 on GPU and some parts in fp32 on CPU, you can use this flag. This is useful for offloading large models such as `google/flan-t5-xxl`. Note that the int8 operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`):
468_8_5
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
operations will not be run on CPU. llm_int8_has_fp16_weight (`bool`, *optional*, defaults to `False`): This flag runs LLM.int8() with 16-bit main weights. This is useful for fine-tuning as the weights do not have to be converted back and forth for the backward pass. bnb_4bit_compute_dtype (`torch.dtype` or str, *optional*, defaults to `torch.float32`): This sets the computational type which might be different than the input type. For example, inputs might be
468_8_6
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
This sets the computational type which might be different than the input type. For example, inputs might be fp32, but computation can be set to bf16 for speedups. bnb_4bit_quant_type (`str`, *optional*, defaults to `"fp4"`): This sets the quantization data type in the bnb.nn.Linear4Bit layers. Options are FP4 and NF4 data types which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`):
468_8_7
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitsandbytesconfig
.md
which are specified by `fp4` or `nf4`. bnb_4bit_use_double_quant (`bool`, *optional*, defaults to `False`): This flag is used for nested quantization where the quantization constants from the first quantization are quantized again. bnb_4bit_quant_storage (`torch.dtype` or str, *optional*, defaults to `torch.uint8`): This sets the storage type to pack the quanitzed 4-bit prarams. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object.
468_8_8
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hfquantizer
.md
quantizers.base.HfQuantizer Abstract class of the HuggingFace quantizer. Supports for now quantizing HF transformers models for inference and/or quantization. This class is used only for transformers.PreTrainedModel.from_pretrained and cannot be easily used outside the scope of that method yet. Attributes quantization_config (`transformers.utils.quantization_config.QuantizationConfigMixin`): The quantization config that defines the quantization parameters of your model that you want to quantize.
468_9_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hfquantizer
.md
The quantization config that defines the quantization parameters of your model that you want to quantize. modules_to_not_convert (`List[str]`, *optional*): The list of module names to not convert when quantizing the model. required_packages (`List[str]`, *optional*): The list of required pip packages to install prior to using the quantizer requires_calibration (`bool`): Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`):
468_9_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hfquantizer
.md
Whether the quantization method requires to calibrate the model before using it. requires_parameters_quantization (`bool`): Whether the quantization method requires to create a new Parameter. For example, for bitsandbytes, it is required to create a new xxxParameter in order to properly quantize the model.
468_9_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#higgsconfig
.md
HiggsConfig is a configuration class for quantization using the HIGGS method. Args: bits (int, *optional*, defaults to 4): Number of bits to use for quantization. Can be 2, 3 or 4. Default is 4. p (int, *optional*, defaults to 2): Quantization grid dimension. 1 and 2 are supported. 2 is always better in practice. Default is 2. modules_to_not_convert (`list`, *optional*, default to ["lm_head"]): List of linear layers that should not be quantized. hadamard_size (int, *optional*, defaults to 512):
468_10_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#higgsconfig
.md
List of linear layers that should not be quantized. hadamard_size (int, *optional*, defaults to 512): Hadamard size for the HIGGS method. Default is 512. Input dimension of matrices is padded to this value. Decreasing this below 512 will reduce the quality of the quantization. group_size (int, *optional*, defaults to 256): Group size for the HIGGS method. Can be 64, 128 or 256. Decreasing it barely affects the performance. Default is 256. Must be a divisor of hadamard_size.
468_10_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hqqconfig
.md
This is wrapper around hqq's BaseQuantizeConfig. Args: nbits (`int`, *optional*, defaults to 4): Number of bits. Supported values are (8, 4, 3, 2, 1). group_size (`int`, *optional*, defaults to 64): Group-size value. Supported values are any value that is divisble by weight.shape[axis]). view_as_float (`bool`, *optional*, defaults to `False`): View the quantized weight as float (used in distributed training) if set to `True`. axis (`Optional[int]`, *optional*):
468_11_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hqqconfig
.md
View the quantized weight as float (used in distributed training) if set to `True`. axis (`Optional[int]`, *optional*): Axis along which grouping is performed. Supported values are 0 or 1. dynamic_config (dict, *optional*): Parameters for dynamic configuration. The key is the name tag of the layer and the value is a quantization config. If set, each layer specified by its id will use its dedicated quantization configuration. skip_modules (`List[str]`, *optional*, defaults to `['lm_head']`):
468_11_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#hqqconfig
.md
skip_modules (`List[str]`, *optional*, defaults to `['lm_head']`): List of `nn.Linear` layers to skip. kwargs (`Dict[str, Any]`, *optional*): Additional parameters from which to initialize the configuration object.
468_11_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#fbgemmfp8config
.md
This is a wrapper class about all possible attributes and features that you can play with a model that has been loaded using fbgemm fp8 quantization. Args: activation_scale_ub (`float`, *optional*, defaults to 1200.0): The activation scale upper bound. This is used when quantizing the input activation. modules_to_not_convert (`list`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have
468_12_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#fbgemmfp8config
.md
The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision.
468_12_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#compressedtensorsconfig
.md
This is a wrapper class that handles compressed-tensors quantization config options. It is a wrapper around `compressed_tensors.QuantizationConfig` Args: config_groups (`typing.Dict[str, typing.Union[ForwardRef('QuantizationScheme'), typing.List[str]]]`, *optional*): dictionary mapping group name to a quantization scheme definition format (`str`, *optional*, defaults to `"dense"`): format the model is represented as. Set `run_compressed` True to execute model as the compressed format if not `dense`
468_13_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#compressedtensorsconfig
.md
format the model is represented as. Set `run_compressed` True to execute model as the compressed format if not `dense` quantization_status (`QuantizationStatus`, *optional*, defaults to `"initialized"`): status of model in the quantization lifecycle, ie 'initialized', 'calibration', 'frozen' kv_cache_scheme (`typing.Union[QuantizationArgs, NoneType]`, *optional*): specifies quantization of the kv cache. If None, kv cache is not quantized.
468_13_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#compressedtensorsconfig
.md
specifies quantization of the kv cache. If None, kv cache is not quantized. global_compression_ratio (`typing.Union[float, NoneType]`, *optional*): 0-1 float percentage of model compression ignore (`typing.Union[typing.List[str], NoneType]`, *optional*): layer names or types to not quantize, supports regex prefixed by 're:' sparsity_config (`typing.Dict[str, typing.Any]`, *optional*): configuration for sparsity compression quant_method (`str`, *optional*, defaults to `"compressed-tensors"`):
468_13_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#compressedtensorsconfig
.md
configuration for sparsity compression quant_method (`str`, *optional*, defaults to `"compressed-tensors"`): do not override, should be compressed-tensors run_compressed (`bool`, *optional*, defaults to `True`): alter submodules (usually linear) in order to emulate compressed model execution if True, otherwise use default submodule
468_13_3
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#torchaoconfig
.md
This is a config class for torchao quantization/sparsity techniques. Args: quant_type (`str`): The type of quantization we want to use, currently supporting: `int4_weight_only`, `int8_weight_only` and `int8_dynamic_activation_int8_weight`. modules_to_not_convert (`list`, *optional*, default to `None`): The list of modules to not quantize, useful for quantizing models that explicitly require to have some modules left in their original precision. kwargs (`Dict[str, Any]`, *optional*):
468_14_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#torchaoconfig
.md
some modules left in their original precision. kwargs (`Dict[str, Any]`, *optional*): The keyword arguments for the chosen type of quantization, for example, int4_weight_only quantization supports two keyword arguments `group_size` and `inner_k_tiles` currently. More API examples and documentation of arguments can be found in https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques Example: ```python
468_14_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#torchaoconfig
.md
https://github.com/pytorch/ao/tree/main/torchao/quantization#other-available-quantization-techniques Example: ```python quantization_config = TorchAoConfig("int4_weight_only", group_size=32) # int4_weight_only quant is only working with *torch.bfloat16* dtype right now model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", torch_dtype=torch.bfloat16, quantization_config=quantization_config) ```
468_14_2
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/quantization.md
https://huggingface.co/docs/transformers/en/main_classes/quantization/#bitnetconfig
.md
BitNetConfig(modules_to_not_convert: Optional[List] = None, **kwargs)
468_15_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/
.md
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
469_0_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/
.md
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
469_0_1
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#exporting--transformers-models-to-onnx
.md
🤗 Transformers provides a `transformers.onnx` package that enables you to convert model checkpoints to an ONNX graph by leveraging configuration objects. See the [guide](../serialization) on exporting 🤗 Transformers models for more details.
469_1_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#onnx-configurations
.md
We provide three abstract classes that you should inherit from, depending on the type of model architecture you wish to export: * Encoder-based models inherit from [`~onnx.config.OnnxConfig`] * Decoder-based models inherit from [`~onnx.config.OnnxConfigWithPast`] * Encoder-decoder models inherit from [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
469_2_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#onnxconfig
.md
onnx.config.OnnxConfig Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format.
469_3_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#onnxconfigwithpast
.md
onnx.config.OnnxConfig Base class for ONNX exportable model describing metadata on how to export the model through the ONNX format. WithPast
469_4_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#onnxseq2seqconfigwithpast
.md
onnx.config.OnnxSeq2SeqConfigWithPast
469_5_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#onnx-features
.md
Each ONNX configuration is associated with a set of _features_ that enable you to export models for different types of topologies or tasks.
469_6_0
/Users/nielsrogge/Documents/python_projecten/transformers/docs/source/en/main_classes/onnx.md
https://huggingface.co/docs/transformers/en/main_classes/onnx/#featuresmanager
.md
onnx.features.FeaturesManager
469_7_0