metadata
dataset_info:
- config_name: corpus
features:
- name: corpus-id
dtype: string
- name: image
dtype: image
splits:
- name: train
num_bytes: 290540525
num_examples: 741
download_size: 269549927
dataset_size: 290540525
- config_name: qrels
features:
- name: query-id
dtype: string
- name: corpus-id
dtype: string
- name: score
dtype: int32
splits:
- name: train
num_bytes: 84334
num_examples: 1879
download_size: 25863
dataset_size: 84334
- config_name: queries
features:
- name: query-id
dtype: string
- name: query
dtype: string
- name: answer
sequence: string
- name: options
sequence: string
- name: is_numerical
dtype: int32
splits:
- name: train
num_bytes: 225532
num_examples: 1879
download_size: 112662
dataset_size: 225532
configs:
- config_name: corpus
data_files:
- split: train
path: corpus/train-*
- config_name: qrels
data_files:
- split: train
path: qrels/train-*
- config_name: queries
data_files:
- split: train
path: queries/train-*
Dataset Description
This is a VQA dataset based on Industrial Documents from MP-DocVQA dataset from MP-DocVQA.
Load the dataset
from datasets import load_dataset
import csv
def load_beir_qrels(qrels_file):
qrels = {}
with open(qrels_file) as f:
tsvreader = csv.DictReader(f, delimiter="\t")
for row in tsvreader:
qid = row["query-id"]
pid = row["corpus-id"]
rel = int(row["score"])
if qid in qrels:
qrels[qid][pid] = rel
else:
qrels[qid] = {pid: rel}
return qrels
corpus_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="corpus", split="train")
queries_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="queries", split="train")
qrels_path = "xxxx" # path to qrels file which can be found under qrels folder in the repo.
qrels = load_beir_qrels(qrels_path)