lx
upload data
bb99a32
metadata
dataset_info:
  - config_name: corpus
    features:
      - name: corpus-id
        dtype: string
      - name: image
        dtype: image
    splits:
      - name: train
        num_bytes: 290540525
        num_examples: 741
    download_size: 269549927
    dataset_size: 290540525
  - config_name: qrels
    features:
      - name: query-id
        dtype: string
      - name: corpus-id
        dtype: string
      - name: score
        dtype: int32
    splits:
      - name: train
        num_bytes: 84334
        num_examples: 1879
    download_size: 25863
    dataset_size: 84334
  - config_name: queries
    features:
      - name: query-id
        dtype: string
      - name: query
        dtype: string
      - name: answer
        sequence: string
      - name: options
        sequence: string
      - name: is_numerical
        dtype: int32
    splits:
      - name: train
        num_bytes: 225532
        num_examples: 1879
    download_size: 112662
    dataset_size: 225532
configs:
  - config_name: corpus
    data_files:
      - split: train
        path: corpus/train-*
  - config_name: qrels
    data_files:
      - split: train
        path: qrels/train-*
  - config_name: queries
    data_files:
      - split: train
        path: queries/train-*

Dataset Description

This is a VQA dataset based on Industrial Documents from MP-DocVQA dataset from MP-DocVQA.

Load the dataset

from datasets import load_dataset
import csv

def load_beir_qrels(qrels_file):
    qrels = {}
    with open(qrels_file) as f:
        tsvreader = csv.DictReader(f, delimiter="\t")
        for row in tsvreader:
            qid = row["query-id"]
            pid = row["corpus-id"]
            rel = int(row["score"])
            if qid in qrels:
                qrels[qid][pid] = rel
            else:
                qrels[qid] = {pid: rel}
    return qrels

corpus_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="corpus", split="train")
queries_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="queries", split="train")

qrels_path = "xxxx" # path to qrels file which can be found under qrels folder in the repo.
qrels = load_beir_qrels(qrels_path)