Dataset Viewer

The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider removing the loading script and relying on automated data support (you can use convert_to_parquet from the datasets library). If this is not possible, please open a discussion for direct help.

Meter2800

Dataset for music time signature/ meter (rhythm) classification, combining tracks from GTZAN, MAG, OWN, and FMA.

Dataset Description

Meter2800 is a curated collection of 2,800 .wav music audio samples, each annotated with meter (and optionally alt_meter). It supports both:

  • 4-class classification (e.g., 4 genres),
  • 2-class classification (binary meter labeling).

Split into train/val/test sets with clear metadata in CSV.

Intended for music information retrieval tasks like rhythmic / structural analysis and genre prediction.

Supported Tasks and Usage

Load the dataset via the datasets library with automatic audio decoding:

from datasets import load_dataset, Audio

meter2800 = load_dataset("pianistprogrammer/meter2800", name="4_classes")

The output should look like this

DatasetDict({
    train: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 1680
    })
    validation: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 420
    })
    test: Dataset({
        features: ['filename', 'audio', 'label', 'meter', 'alt_meter'],
        num_rows: 700
    })
})
meter2800["train"][0]

A sample of the training set

{'filename': 'MAG/00553.wav',
 'audio': {'path': '/root/.cache/huggingface/datasets/downloads/extracted/.             73a5809e655e59c99bd79d00033b98b254ca3689f2b9e2c2eba55fe3894b7622/MAG/00553.wav',
  'array': array([ 2.87892180e-06, -1.07296364e-05, -3.22661945e-05, ...,
         -2.06501483e-13, -5.44009282e-15,  1.38777878e-14]),
  'sampling_rate': 16000},
 'label': 'three',
 'meter': '3',
 'alt_meter': '6'
 }

Each entry in the dataset contains:

  • filename: Path to the audio file.
  • label: Genre label (multi-class or binary, depending on split).
  • meter: Primary meter annotation (e.g., 4/4, 3/4).
  • alt_meter: Optional alternative meter annotation.
  • audio: Audio data as a NumPy array and its sampling rate.

The dataset is organized into the following splits:

  • train_4, val_4, test_4: For 4-class meter classification.
  • train_2, val_2, test_2: For 2-class (binary) meter classification.

All splits are provided as CSV files referencing the audio files in the corresponding folders (GTZAN/, MAG/, OWN/, FMA/).

Example row in a CSV file:


| filename                | label   | meter | alt_meter | 
|-------------------------|---------|-------|-----------|
| GTZAN/blues.00000.wav   | three   |   3   |    6      |


Meter2800/
β”œβ”€β”€ data.tar.gz // contains the audio data
β”œβ”€β”€ data_train_4_classes.csv
β”œβ”€β”€ data_val_4_classes.csv
β”œβ”€β”€ data_test_4_classes.csv
β”œβ”€β”€ data_train_2_classes.csv
β”œβ”€β”€ data_val_2_classes.csv
β”œβ”€β”€ data_test_2_classes.csv
└── README.md


@misc{meter2800_dataset,
  author       = {PianistProgrammer},
  title        = {{Meter2800}: A Dataset for Music time signature detection / Meter Classification},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/pianistprogrammer/meter2800}
}

license: "CC0 1.0 Public Domain"
Downloads last month
4