blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
08d7689b6c4504e000dc6751bfb5ced9ab6e45e4 | 449d555969bfd7befe906877abab098c6e63a0e8 | /764/CH22/EX22.3.a/data22_3.sci | 972ec92775b76c544b171fd29be7597df3d8ec6d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 551 | sci | data22_3.sci |
//(Cylinders and Pressure Vessels) Example 22.3
//Force exerted by the piston rod F (kN)
F = 10
//Friction force due to piston packing as a percentage of operating force frac(%)
frac = 10
//Pressure inside the cylinder Pi (MPa)
Pi = 10
//Ultimate tensile strength of the cylinder material Sut (N/mm2)
Sut = 200
//Factor of safety fs
fs = 5
//Check the behavior of the material
behavior = 'brittle'
//Change the behavior to 'ductile' if the material is ductile and uncomment the
//next line specifying the poisson's ratio
//mu = 0.26
|
04947b05d465a8d31d5055233b50631f170778a9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1862/CH11/EX11.8/C11P8.sce | dc6a64ee79eb27145ab0cffc30492ca9bddf2c5d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 398 | sce | C11P8.sce |
clear
clc
//to find spring compression
// GIVEN::
//mass of body
m = 3.63//in kg
//speed of block
v = 1.22//in m/s
//force constant for spring
k = 135//in
// SOLUTION:
//using work-energy principle
//spring compression
d = v*sqrt(m/k)//in meters
d1 = d*10^2//in
printf ("\n\n Spring compression d = \n\n %.3f m",d);
printf ("\n\n Spring compression d = \n\n %.1f cm",d1);
|
fd3b195dc2d25017fd1f816c07db2c1b6c4a171d | 449d555969bfd7befe906877abab098c6e63a0e8 | /3821/CH11/EX11.22/Example11_22.sce | e77ed0512f11011335a0157e4fde1911dddd1938 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 627 | sce | Example11_22.sce | ///Chapter No 11 Steam Boilers
////Example 11.22 Page No 256
///Find Efficeincy of chimney draught
///Input data
clc;
clear;
H=45; //Chimney height in m
Tg=370+273; //Temperature of flue gases in degree celsius
T1=150+273; //Temperature of flue gases in degree celsius
ma=25; //Mass of the flue gas formed in Kg/kg of a cosl fired
Ta=35+273; //The boiler temperature in degree celsius
Cp=1.004; //fuel gas
//Calculation
//Efficeincy of chimney draught in %
A=(H*(((Tg/Ta)*(ma/(ma+1)))-1))/(Cp*(Tg-T1))*100;
//Output
printf('Efficeincy of chimney draught= %f percent \n',A);
|
3b638fa273e9d8721fd505ab14aa30231970e058 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1223/CH14/EX14.2/Ex14_2.sce | dec5a58f08c05fc3304c0c959d08c9ab5f3d9d21 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 146 | sce | Ex14_2.sce | clear;
clc;
//Example 14.2
R2=10000;
Ri=10000;
Aol=10^5;
Rif=1/(1/Ri+(1+Aol)/R2);
printf('\nclosed loop input resistance =%.2fOhm\n',Rif)
|
c9934853cc87182ae8036d0e3760a4d2eef2e76b | 8712e7b4614b1ab648f19bcce8ca17e378876546 | /Scilab Com Interface Grafica/Engine/Quiescent.sce | 3fe06320e2ad09754afe53f540f9c38e21cc4eee | [] | no_license | Diogo-Rossi/Mestrado-Diogo-Rossi | d0d476d878c729c44778ea8f364c50c5464fc751 | d544d3bce094931eb96a6031aaa1ae1a833d2b04 | refs/heads/master | 2022-08-26T22:28:04.339221 | 2022-07-11T00:25:21 | 2022-07-11T00:25:21 | 236,889,761 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 3,053 | sce | Quiescent.sce |
Dt(2) = Dt(1);
for i=2:3
// Atualização do instante de tempo
t(i) = t(i-1) + Dt(i-1);
// Vetor de Carga efetiva incremental, dado pela equação XXX
p(:,i) = Carregamento(n,nc,opC,desC,t0,t1,w1,F,t(i));
Dp = p(:,i) - p(:,i-1);
Dp_ = Dp + ...
+ M*((1/(Beta*Dt(i-1)))*V(:,i-1) + (1/(2*Beta))*A(:,i-1) ) ...
+ C*((Gama/Beta)*V(:,i-1) + (Gama/(2*Beta)-1)*Dt(i-1)*A(:,i-1));
// Incremento no deslocamento, encontrado ao resolver a equação XXX
Du = k_\Dp_;
// Incremento na Velocidade, obtido com a equação XXX
Dv = (Gama/(Beta*Dt(i-1)))*Du + (1-Gama/(2*Beta))*Dt(i-1)*A(:,i-1) ...
-(Gama/Beta)*V(:,i-1);
// Deslocamento e velocidade no final do passo, equações XXX e XXX
D(:,i) = D(:,i-1) + Du;
V(:,i) = V(:,i-1) + Dv;
// Aceleração no final do passo, equação XXX
A(:,i) = M\( p(:,i) - C*V(:,i) - K*D(:,i));
// Algoritmo de Hulbert & Jang
Da = A(:,i) - A(:,i-1); // Incremento na Aceleração
e(:,i) = (Dt(i-1)^2)*(Beta-1/6)*Da; // Erro local, Eq. XXX
sclfac(i) = max(norm(Du),0.9*sclfac(i-1)); // Fator de escala, Eq. XXX
RL(i) = norm(e(:,i))/sclfac(i); // Erro local normalizado, Eq. XXX
end
while RL(3)>tol
// Algoritmo de Hulbert & Jang para redução do passo
fdec = (tol/RL(3))^(1/pdec); // Fator de redução, eq. XXX
Dt(2) = fdec*Dt(2); // Redução do incremento, eq. XXX
Dt(2) = max(Dt(2),Dtmin); // Dt limitado a um valor mínimo
k_ = K + (1/(Beta*Dt(2)^2))*M + (Gama/(Beta*Dt(2)))*C;
// Atualização do instante de tempo
t(3) = t(2) + Dt(2);
// Vetor de Carga efetiva incremental, dado pela equação XXX
p(:,3) = Carregamento(n,nc,opC,desC,t0,t1,w1,F,t(3));
Dp = p(:,3) - p(:,2);
Dp_ = Dp + ...
+ M*((1/(Beta*Dt(2)))*V(:,2) + (1/(2*Beta))*A(:,2) ) ...
+ C*((Gama/Beta)*V(:,2) + (Gama/(2*Beta)-1)*Dt(2)*A(:,2));
// Incremento no deslocamento, encontrado ao resolver a equação XXX
Du = k_\Dp_;
// Incremento na Velocidade, obtido com a equação XXX
Dv = (Gama/(Beta*Dt(2)))*Du + (1-Gama/(2*Beta))*Dt(2)*A(:,2) ...
-(Gama/Beta)*V(:,2);
// Deslocamento e velocidade no final do passo, equações XXX e XXX
D(:,3) = D(:,2) + Du;
V(:,3) = V(:,2) + Dv;
// Aceleração no final do passo, equação XXX
A(:,3) = M\( p(:,3) - C*V(:,3) - K*D(:,3));
// Atualização do passo de tempo - algoritmo de Hulbert & Jang
Da = A(:,3) - A(:,2); // Incremento na Aceleração
e(:,3) = (Dt(2)^2)*(Beta-1/6)*Da; // Erro local, Eq. XXX
RL(3) = norm(e(:,3))/sclfac(3); // Erro local normalizado, Eq. XXX
end
if lb*tol<=RL(3) && RL(3)<=tol // Verificação da condição XXX
Dt(3) = Dt(2);
count = 0;
elseif RL(3)<lb*tol
Dt(3) = Dt(2);
count = count + 1;
end
|
45447b65015859f1685f150c269e099d315baaca | 449d555969bfd7befe906877abab098c6e63a0e8 | /213/CH8/EX8.1/8_1.sce | 6c763fb7d414cdd439592f6c40aa2b529cc4a8f9 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,291 | sce | 8_1.sce | //To find linear and agular velocity and acceleration
clc
//Given:
NBO=300 //rpm
OB=150/1000,BA=600/1000 //m
//Solution:
//Refer Fig. 8.4
//Calculating the angular velocity of BO
omegaBO=2*%pi*NBO/60 //rad/s
//Calculating the linear velocity of B with respect to O
vBO=omegaBO*OB //m/s
vB=vBO
//By measurement from the velocity diagram, Fig. 8.4(b),
vAB=3.4,vD=4.1 //m/s
//Calculating the radial component of the acceleration of B with respect of O
arBO=vBO^2/OB //m/s^2
aB=arBO
//Calculating the radisla component of the accaleration of A with respect to B
arAB=vAB^2/BA //m/s^2
//By measurement from the acceleration diagram, Fig. 8.4(c),
aD=117,adashAB=103 //m/s^2
//Calculating the angular velocity of the connecting rod
omegaAB=vAB/BA //rad/s^2
//Calculating the angular acceleration of the connecting rod
alphaAB=adashAB/BA //rad/s^2
//Results:
printf("\n\n The linear velocity of the midpoint of the connecting rod, vD = %.1f m/s.\n",vD)
printf(" The linear acceleration of the midpoint of the connecting rod, aD = %d m/s^2.\n",aD)
printf(" The angular velocity of the connecting rod, omegaAB = %.2f rad/s, anticlockwise about B.\n",omegaAB)
printf(" The angular acceleration of the connecting rod, alphaAB = %.2f rad/s^2, clockwise about B.\n\n",alphaAB) |
b2ecd308e05c1762eac6657cffe175d433bb9267 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2705/CH8/EX8.24/Ex8_24.sce | 42ac180f368c34c24d51a825190e6233a3768731 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,224 | sce | Ex8_24.sce | clear;
clc;
disp('Example 8.24');
// aim : To determine
// the mass of air supplied/kg of fuel burnt
// given values
// gas composition in the fuel
C = 84;// %age mass composition of Carbon in the fuel
H2 = 14;// %age mass composition of H2 in the fuel
O2f = 2;// %age mass composition of O2 in the fuel
// exhaust gas composition
CO2 = 8.85;// %age composition of CO2 by volume
CO = 1.2// %age composition of CO by volume
O2 = 6.8;// %age composition of O2 by volume
N2 = 83.15;// %age composition of N2 by volume
mC = 12;// moleculer mass of CO2,[kg/kmol]
mH2 = 2;// moleculer mass of H2, [kg/kmol]
mO2 = 32;// moleculer mass of O2, [kg/kmol]
mN2 = 28;// moleculer mass of N2, [kg/kmol]
// solution
// combustion equation by no. of moles
// 84/12 C + 14/2 H2 +2/32 O2 + a O2+79.3/20.7*a N2 = b CO2 + d CO2+ eO2 + f N2 +g H2
// equating coefficient and given condition
b = 6.16;// [mol]
a = 15.14;// [mol]
d = .836;// [mol]
f = 69.3*d;// [mol]
// so fuel side combustion equation is
// 84/12 C + 14/2 H2 +2/32 O2 + 15.14 O2 +85.5 N2
mair = ( a*mO2 +f*mN2)/100;// mass of air/kg fuel, [kg]
mprintf('\n The mass of air supplied per kg of fuel is = %f kg\n',mair);
// End
|
a715b81fda54653b65f3356942088bbc2d946a0c | 449d555969bfd7befe906877abab098c6e63a0e8 | /2561/CH4/EX4.12/Ex4_12.sce | 6cc6a24fa13d174fc685672f3f08cb0ac876323a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 696 | sce | Ex4_12.sce | //Ex4_12 Refer fig 4.9(a)and fig 4.9(b)
clc
VDD=(5)
disp("VDD= "+string(VDD)+" volts") // Drain voltage supply
RL1=125*10^(3)
disp("RL1= "+string(RL1)+ " ohm") //Load resistance
RL2=200*10^(3)
disp("RL2= "+string(RL2)+ " ohm") //Load resistance
IDON1=34.88*10^(-6)
disp("IDON1 ="+string(IDON1)+" A")//Drain current for load line 1 from fig.
IDON2=22.5*10^(-6)
disp("IDON2 ="+string(IDON2)+" A")//Drain current for load line 2 from fig.
VDON1=VDD-IDON1*RL1
disp("VDON1=VDD-IDON1*RL1= "+string(VDON1)+" volts") // output voltage at drain terminal for IDON1
VDON2=VDD-IDON2*RL2
disp("VDON2=VDD-IDON2*RL2= "+string(VDON2)+" volts") // output voltage at drain terminal for IDON2
|
b8dde5600bc3e2ef464c9e01de678a00b25f3f13 | fd6e45f66c41ad779a3d47c3bf8ebfa140d3d657 | /P3 - Non-linear equations /Métodos/3- regula falsi CHECK.sci | b7a8f4dc84300c27c86488964684ca6884a6308e | [] | no_license | jere1882/Numerical-Analysis-Assignments | 7f474e2020d010f9f9c3dceff5e48c03b0d38652 | 1074f92ca93d0a402259f92a0f61f105f25e5230 | refs/heads/master | 2021-09-06T20:00:36.411386 | 2018-02-10T18:04:38 | 2018-02-10T18:04:38 | 121,039,769 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 1,020 | sci | 3- regula falsi CHECK.sci | function y=fea(x)
y=(%e)^x+2 - x^3
endfunction
//REGULA FALSI: Combinación del método de la secante y el método de la bisección
function c=reg_falsi(f,a,b,delta,epsilon,maxit)
// f función
// a y b aproximaciones iniciales tales que f(a)f(b)<0
// maxit: cantidad máxima de iteraciones permitida
// epsilon: tolerancia para la imágen
// delta: diferencia entre dos aproximaciones sucesivas
if f(a)*f(b)>0 then
disp("par (a,b) no válido")
else
c=a;
for i=1:maxit
c_ant=c
c = (a*f(b)-f(a)*b)/(f(b)-f(a)) // SALE DE LA ECUACION DE LA RECTA QUE PASA POR (a,f(a)) , (b,f(b)), al despejar el punto (c,0) !
if f(a)*f(c)<0 then
b=c
else
a=c
end
if abs(f(c))<epsilon then disp ("termina por epsilon"), break end
if abs(c_ant - c)<delta then disp ("termina por delta"), break end
end
end
endfunction
|
ca9c60990a6d59d338a906edc3368c80ec6cd6c8 | 676ffceabdfe022b6381807def2ea401302430ac | /solvers/IncNavierStokesSolver/Tests/ChanFlow_V8P7_Avg.tst | 4db4aeac99138d0013a38c0430f54197c2da0947 | [
"MIT"
] | permissive | mathLab/ITHACA-SEM | 3adf7a49567040398d758f4ee258276fee80065e | 065a269e3f18f2fc9d9f4abd9d47abba14d0933b | refs/heads/master | 2022-07-06T23:42:51.869689 | 2022-06-21T13:27:18 | 2022-06-21T13:27:18 | 136,485,665 | 10 | 5 | MIT | 2019-05-15T08:31:40 | 2018-06-07T14:01:54 | Makefile | UTF-8 | Scilab | false | false | 876 | tst | ChanFlow_V8P7_Avg.tst | <?xml version="1.0" encoding="utf-8"?>
<test>
<description>Channel Flow Vel P=8 Pre P=7 dumping average field </description>
<executable>IncNavierStokesSolver</executable>
<parameters>ChanFlow_V8P7_Avg.xml</parameters>
<files>
<file description="Session File">ChanFlow_V8P7_Avg.xml</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="u" tolerance="1e-12">4.08607e-16</value>
<value variable="v" tolerance="1e-12">1.54276e-16</value>
<value variable="p" tolerance="1e-12">1.1993e-14</value>
</metric>
<metric type="Linf" id="2">
<value variable="u" tolerance="1e-12">6.43929e-15</value>
<value variable="v" tolerance="1e-12">6.36813e-16</value>
<value variable="p" tolerance="1e-12">4.86278e-14</value>
</metric>
</metrics>
</test>
|
c09de016a81c35a141cc415f8789d0e15a41af92 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3630/CH3/EX3.15/Ex3_15.sce | b790f9ddd5bc99881f5bc9149ef843eee6f250a0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 254 | sce | Ex3_15.sce | clc;
//ex3.15
IL=0.02; //Ampere
t=[0.0167 0.00833]; //seceond
c=0.0005; // Farad
Vr1=(IL*t(1,1))/c; //peakvolt
Vr2=(IL*t(1,2))/c; //peakvolt
disp('mVpp',Vr1*1000,"Vr1=");
disp('mVpp',Vr2*1000,"Vr2="); ////The answers vary due to round off error
|
2fc85db411df120bb75e68649e2e192b2420d253 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2084/CH18/EX18.7/18_7.sce | 86d816a46e5bd54c35ae771828e137b9043183e3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 792 | sce | 18_7.sce | //developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 18.7
//calculation of the size of the image of an object placed at a distance from the spherical concave surface
//given data
u=-40; //object distance(in cm)
R=-20; //radius of curvature of the spherical concave surface(in cm)
mu1=1; //refractive index of the medium in which object is kept
mu2=1.33; //refractive index of the medium of spherical concave surface
h1=1; //size of the object(in cm)
//calculation
v=mu2/((mu2-mu1)/R+(mu1/u)); //formula for refraction at spherical surface
h2=(mu1*v*h1)/(mu2*u); //formula for lateral magnification
if(h2>0)
disp(h2,'image is erect and is of size(in cm)');
else
disp(h2,'image is inverted and is of size(in cm)');
end
|
02d6fece1d828fd2e37970ba82f24df7b28ff42c | fd4b1f9f2f7fc4cac772482125a749e51c444ca1 | /Metodo del descenso y potencia.sci | 38fc2439a7620eba057b71ce0ebe55a8880e8c23 | [] | no_license | barufa/Metodos_Numericos | db0cb98dbf81654ec14f73cb34b84ba7c98ac52a | 012d08e8de6e971a38a32c9768f463ca58a07839 | refs/heads/master | 2020-03-15T22:49:33.054047 | 2018-09-03T13:18:24 | 2018-09-03T13:18:24 | 132,380,939 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 1,080 | sci | Metodo del descenso y potencia.sci | function x = descenso(A,b,x0,iter,e)
i=1
x=x0'
x0=x
v=b'-A*x
t=(v'*v)/(v'*(A*v))
x=x+t*v
while i<=iter & (norm(x-x0,'inf'))>=e
x0=x
v=b'-A*x
t=(v'*v)/(v'*(A*v))
x=x+t*v
i=i+1
end
endfunction
function [v,r] = potencia(A,v,iter,e)
k=1
v=v'
t=v
y=A*v
r=(y(1))/(v(1))
v=y/norm(y,'inf')
while k<=iter-1 & (norm(v-t,'inf'))>=e
t=v
y=A*v
v=y/norm(y,'inf')
k=k+1
end
r=y(1)/v(1)
endfunction
function S = resolver(A,n,v)
S = zeros(n,1)
S(n)=v(n)/A(n,n)
for i = 1:n-1
s=0
e=n-i
for j= e+1:n
s=s+A(e,j)*S(j)
end
S(e)=(v(e)-s)/A(e,e)
end
endfunction
function [x,r]=inverso(A,x,n,iter,e)
[P,L,A]=gauss_escalable(A,n)
k=1
x=inv(L)*(P*x')
t=x
x=resolver(A,n,x)
while k<=iter & (norm(x-t,'inf'))>=e
t=x
x=resolver(A,n,x)
k=k+1
end
endfunction
function [x,r] = inverso2(A,x,iter,e)
[x,r]=potencia(inv(A),x,iter,e)
r=(r^(-1))
endfunction
|
9050362e40d680307d29f1b0a340ca666089ed17 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3556/CH14/EX14.14/Ex14_14.sce | 8b5decc0fc9e13ea456fbbd9f506886cdf3d06a4 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,140 | sce | Ex14_14.sce | clc
// Fundamental of Electric Circuit
// Charles K. Alexander and Matthew N.O Sadiku
// Mc Graw Hill of New York
// 5th Edition
// Part 2 : AC Circuits
// Chapter 14 : Frequency Response
// Example 14 - 14
clear; clc; close;
//
// Given data
L1 = 1.8480;
L2 = 0.7650;
C1 = 0.7650;
C2 = 1.8480;
R = 1.0000;
R1 = 10.0000 * 10^3;
f_cutoff = 50.0000 * 10^3;
wc = 1.0000;
wc1 = 2*%pi*f_cutoff;
//
// Calculations Frequency Scale Factor
Kf = wc1/wc
// Calculations Magnitude Scale Factor
Km = R1/R
// Calculation L11 and L21
L11 = (Km/Kf)*L1;
L21 = (Km/Kf)*L2;
// Calculation C11 and C21
C11 = C1/(Km*Kf);
C21 = C2/(Km*Kf);
//
disp("Example 14-14 Solution : ");
printf(" \n L11 = Inductance of Induktor 1 = %.3f miliHenry",L11*10^3)
printf(" \n L21 = Inductance of Induktor 2 = %.3f miliHenry",L21*10^3)
printf(" \n C11 = Capacitance of Capacitor 1 = %.3f pikoFarad",C11*10^12)
printf(" \n C21 = Capacitance of Capacitor 2 = %.3f pikoFarad",C21*10^12)
|
a3fa544f91d1dd8445b15b95f35c9ef99b063894 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1949/CH6/EX6.10/Ex6_10.sce | 7811498203881cc6fea477393ba6c75e07e6d118 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 496 | sce | Ex6_10.sce | //Chapter-6,Example 6_10,Page 6-30
clc()
//Given Values:
B=2.5 //Magnetic field in tesla
u0=4*%pi*10^-7 //Permeability in free space
i0=0.7 //current in the core
ri=11*10^-2 //inner radii of core
ro=12*10^-2 //outer radii of core
//Calculations:
r=(ri+ro)/2 //Average radii of core
n=3000/(2*%pi*r) //Number of turns
//We know, B=u0*ur*n*i0 .Thus,
ur=B/(u0*n*i0)
printf('Relative Permeability of medium is =%.2f \n',ur)
|
99f9e5294b774f36fb64d4df2d82b282fac46a4e | 449d555969bfd7befe906877abab098c6e63a0e8 | /1223/CH6/EX6.6/Ex6_6.sce | fe3a60be03b84b415fc0bb49374916680b63cc83 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 338 | sce | Ex6_6.sce | clear;
clc;
//Example 6.6
Vtn=0.8;
Kn=1;//(mA/V^2)
Idq=0.5;
Vdd=5;
Rd=7;//(Kohm)
Vgsq=sqrt(Idq/Kn)+Vtn;
printf('\nVgsq=%.2f V\n',Vgsq)
Vs=-Vgsq
Vdsq=Vdd-Idq*Rd-Vs;
printf('\nVdsq=%.2f V\n',Vdsq)
g_m=2*Kn*(Vgsq-Vtn);
printf('\ntransconductance=%.3f mA/V\n',g_m)
Av=-g_m*Rd;
printf('\nsmall signal voltage gain=%.2f\n',Av)
|
9bc54b9838b23b0012ca9ffeb173c8ac00a26842 | 872b5ff8852c926ca1261037de07449db7ac51db | /area-02/vandermonde-interpolacao.sce | 8704693679b025dab9299160fe90cf583dcaa3a7 | [] | no_license | BerdaSantos/numeric-calculus | 20e4c50d9f66f8582e89533a5101f597df6665ec | 0698409e7fa4158d6f7dd7e4d60f8a38538b3335 | refs/heads/master | 2020-05-14T18:07:02.017600 | 2018-11-23T01:50:38 | 2018-11-23T01:50:38 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 759 | sce | vandermonde-interpolacao.sce | clear
x=[2 3]' // 4 pontos -> curva com 4-1 pontos (tinha 4 pontos, botei 2 do meio pq pediu)
y=[7 10]'
n=length(x); // size(x,1)
plot(x,y,'ro-'),xgrid // Faz grafico dos pontos
// Monta a matriz de Vandermonde
for i=1:n
for j=1:n
V(i,j)= x(i)^(j-1);
end
end
// a: coefiecientes do polinomio que da forma ao polinomio de interpolacao
a = inv(V)*y // ao inves de resolver por LU
p = 0// init no polinomio p
X = 2.8 // Valor de x em 1 ponto pra interpolar
//X = 5:0.1:8 // 0.5, 0.6, ..., 6.5
for k=1:n
p = p + a(k)*X.^(k-1); // X.: todos pontos
end
// grafico do polinomio de grau n-1 que passa por todos pontos de x
plot(X,p,'b.-')
// numero_condicionamento = norm(V,1)*norm(inv(V),1)
// >>>Valor no ponto de interpoolacao e' o p<<<
|
83195505bba5b69c075c3cc3fcf2619bf2d36a79 | 449d555969bfd7befe906877abab098c6e63a0e8 | /905/CH4/EX4.4/4_4.sce | 42167a9cc20551511734a3c077837c20ce623479 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 4,300 | sce | 4_4.sce | clear;
clc;
// Illustration 4.4
// Page: 237
printf('Illustration 4.4 - Page: 237\n\n');
// solution
//*****Data*****//
// a-ethanol b- gas(CO2 rich vapor) c-liquid water
P = 110; // [kPa]
T = 303; // [K]
R = 8.314;
Vb = 180; // [kmole/h]
xab = 0.02; // [molar composition of ethanol in gas]
Vc = 151.5; // [kmole/h]
d = 0.97; // [ethanol absorbed]
Ma = 46; // [gram/mole]
Mb = 44; // [gram/mole]
Mc = 18; // [gram/mole]
g = 9.8; // [square m/s]
//*****//
// For Inlet gas
Mg = (1-xab)*Mb+xab*Ma; // [gram/mole]
V = Vb*Mg/3600; // [kg/h]
rowg = P*Mg/(R*T); // [kg/cubic m]
Qg = V/rowg; // [cubic m/s]
// For exiting liquid
b = Vb*xab*Ma*d; // [ethanol absorbed in kg/h]
L = (Vc*Mc+b)/3600; // [kg/s]
rowl = 986; // [kg/cubic m]
X = (L/V)*(sqrt(rowg/rowl));
// From equation 4.8
Yflood = exp(-(3.5021+1.028*log(X)+0.11093*(log(X))^2));
printf('Illustration 4.4(a) - Page: 237\n\n');
// Solution(a)
// For 50 mm metal Hiflow rings
Fp = 16; // [square ft/cubic ft]
ul = 6.31*10^-4; // [Pa.s]
// From equation 4.6
Csflood = sqrt(Yflood/(ul^0.1*Fp)); // [m/s]
// From equation 4.7
vgf = Csflood/(sqrt(rowg/(rowl-rowg))); // [m/s]
// From equation 4.9
deltaPf = 93.9*(Fp)^0.7; // [Pa/m of packing]
// For operation at 70% of the flooding velocity
f = 0.7;
// From equation 4.10
vg = f*vgf; // [m/s]
D = sqrt(4*Qg/(vg*%pi));
// From Table 4.1, for 50 mm metal Hiflow rings
a = 92.3; // [square m/cubic m]
Ch = 0.876;
e = 0.977;
Cp = 0.421;
// From equation 4.13
dp = 6*(1-e)/a; // [m]
// From equation 4.12
Kw = 1/(1+(2*dp/(3*D*(1-e))));
// The viscosity of the gas phase is basically that of air at 303 K and 110 kPa
ug = 1.45*10^-5; // [kg/m.s]
// From equation 4.15
Reg = vg*rowg*dp*Kw/(ug*(1-e));
// From equation 4.14
sia_o = Cp*((64/Reg)+(1.8/(Reg^0.08)));
// From equation 4.11
// deltaP_o/z = I
I = sia_o*a*rowg*vg^2/(2*Kw*e^3); // [Pa/m]
// Now
Gx = L/(%pi*D^2/4); // [kg/square m.s]
Rel = Gx/(a*ul);
Frl = Gx^2*a/(rowl^2*g);
// From equation 4.5
// ah/a = x
x = 0.85*Ch*Rel^0.25*Frl^0.1;
// From equation 4.3
hl = (12*Frl/Rel)^(1/3)*(x)^(2/3);
// From equation 4.16
// daltaP/deltaP_o = Y
Y = (e/(e-hl))^1.5*exp(Rel/200);
// Therefore
// deltaP/z = H
H = Y*I; // [Pa/m]
printf('Since the pressure drop is too high, we must increase the tower diameter to reduce the pressure drop.\n');
// The resulting pressure drop is too high; therefore, we must increase the tower diameter to reduce the pressure drop. Appendix D presents a Mathcad computer
// program designed to iterate automatically until the pressure drop criterion is satisfied.
// From the Mathcad program we get
D1 = 0.738; // [m]
printf("The tower diameter for pressure drop of 300 Pa/m of packed height is %f m\n\n",D1);
printf('Illustration 4.4(b) - Page: 241\n\n');
// Solution(b)
// For the tower diameter of D = 0.738 m, the following intermediate results were obtained from the computer program in Appendix D:
vg1 = 2.68; // [m/s]
vl1 = 0.00193; // [m/s]
hl1 = 0.017;
ah1 = 58.8; // [square m/cubic m]
Reg1 = 21890;
Rel1 = 32.6;
Kw1 = 1/(1+(2*dp/(3*D1*(1-e))));
f1 = vg1/vgf;
printf("The fractional approach to flooding conditions is %f\n\n",f1);
printf('Illustration 4.4(c) - Page: 242\n\n');
// Solution(c)
// For ethanol
Vc_a = 167.1; // [cubic cm/mole]
sigma_a = 4.53*10^-10; // [m]
// E/k = M
M_a = 362.6; // [K]
// For carbon dioxide
sigma_b = 3.94*10^-10; // [m]
M_b = 195.2; // [K]
// From equation 1.48
Vb_a = 0.285*Vc_a^1.048; // [cubic cm/mole]
e1 = (9.58/(Vb_a)-1.12);
// From equation 1.53
Dl = 1.25*10^-8*((Vb_a)^-0.19 - 0.292)*T^1.52*(ul*10^3)^e1; // [square cm/s]
// From equation 1.49
Dg = 0.085; // [square cm/s]
// From Table 4.2, for 50 mm metal Hiflow rings
Cl = 1.168
Cv = 0.408;
// From equation 4.17
kl = 0.757*Cl*sqrt(Dl*a*vl1*10^-4/(e*hl1)); // [m/s]
mtcl = kl*ah1; // [s^-1]
Sc = ug/(rowg*Dg*10^-4);
// From equation 4.18
ky = 0.1304*Cv*(Dg*10^-4*P*1000/(R*T))*(Reg1/Kw1)^(3/4)*Sc^(2/3)*(a/(sqrt(e*(e-hl1)))); // [mole/square m.s]
mtcg = ky*ah1*10^-3; // [kmole/cubic m.s]
printf("The gas and liquid volumetric mass transfer coefficients are %e kmole/cubic m.s and %e s^-1 respectively.\n\n",mtcg,mtcl);
|
acc6f5a9e2f13550900fdb4ddd82cec840fc05b5 | 1573c4954e822b3538692bce853eb35e55f1bb3b | /DSP Functions/allpasslp2hp/test_11.sce | 04881f68755d0cbc3e56515cdbfc583ce83037c4 | [] | no_license | shreniknambiar/FOSSEE-DSP-Toolbox | 1f498499c1bb18b626b77ff037905e51eee9b601 | aec8e1cea8d49e75686743bb5b7d814d3ca38801 | refs/heads/master | 2020-12-10T03:28:37.484363 | 2017-06-27T17:47:15 | 2017-06-27T17:47:15 | 95,582,974 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 269 | sce | test_11.sce | // Test # 11 : Valid input test case #1
exec('./allpasslp2hp.sci',-1);
[n,d]=allpasslp2hp(0.3,0.6);
disp(d);
disp(n);
//
//Scilab Output
//d= 1 -0.1755705
//n= 0.1755705 -1
//Matlab Output
//d = 1.0000 -0.1756
//n = 0.1756 -1.0000
|
206df337d719fdeaa700b4c4e8a5125047e3bb5f | 634af5304c38dcb1f46551b3af0cd17d9538279f | /aula1/a1e4-histograma.sce | 9927f0501a8369bc72c2df865f1bf449da343329 | [] | no_license | taiaraujo/Processos_Estoc-sticos | 3b35ab57321d08047621f7045ae62a5c937a3346 | 85677fe2d055ed621d399c64cec14eb6ec1875de | refs/heads/master | 2021-04-28T03:06:13.349687 | 2018-02-19T23:07:28 | 2018-02-19T23:07:28 | 122,131,723 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 334 | sce | a1e4-histograma.sce | //histograma
clear
n = 10;
U = rand(1,n); //distribuição uniforme
X = zeros(1,n);
for
i=1:n
if U(i)<0.5
X(i) = 1;
end
end
barrasU = 10;
barrasX = 2;
[NU,Uhist] = histc(barrasU, U);
[NX,Xhist] = histc(barrasX, X);
figure
subplot(2,1,1)
histplot(barrasU, U)
subplot(2,1,2)
histplot(barrasX, X)
|
ed9635cc22e2dbce4cbbbe009f669136c4cc1d64 | beca18778f40d44e713160c5b0e8136d8a92cad8 | /scilab/cross.sci | 1968c9a5e7d31ed672be614967ad46369308f256 | [] | no_license | thomasantony/enjomitch-orbiter | 9542df3dfc83ce0a6cf06ec78dca91b4c1a0babf | 83967b7bf8f8c49d1e90f7b904846e66d1ad6e37 | refs/heads/master | 2022-12-02T07:47:03.976695 | 2020-03-22T13:54:57 | 2020-03-22T13:54:57 | 286,159,679 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 223 | sci | cross.sci | function v=cross(a,b)
// Produit vectoriel entre a et b
v=[a(2)*b(3)-b(2)*a(3);a(3)*b(1)-b(3)*a(1);a(1)*b(2)-b(1)*a(2)];
s=size(a);
// On remet le vecteur initial à la forme du vecteur a
v=matrix(v,s(1),s(2));
endfunction
|
ac689ab4f70dd5fc3637f44485024e7865673209 | 3592fbcb99d08024f46089ba28a6123aeb81ff3c | /src/asserVisu/interactionMatrix.sci | 6b4a898d75435264944319401b8b21208b4f374c | [] | no_license | clairedune/sciGaitanLib | a29ab61206b726c6f0ac36785ea556adc9ef03b9 | 7498b0d707a24c170fc390f7413359ad1bfefe9f | refs/heads/master | 2020-12-11T01:51:13.640472 | 2015-01-28T13:52:26 | 2015-01-28T13:52:26 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 9,768 | sci | interactionMatrix.sci | //---------------------------------------//
// compute the interaction matrix
// associated to a point
// and for a 6ddl control
// Typically, a free 6ddl camera
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matIntPoint6ddl(x,y,Z)
// compute the interaction matrix for a 6ddl camera
L = [-1/Z , 0 , x/Z, x*y ,-(1+x^2), y ; 0 , -1/Z , y/Z ,1+y^2 , - x*y , -x ] ;
endfunction
//---------------------------------------//
// compute Lz matrix for one point
// author : Claire Dune
// date : septembre 2013
//---------------------------------------//
function L = matLzPoint6ddl(x,y)
// compute the Lz Matrix described in Folio & Cadenat
L = [0 , 0, -1, -y ,-x, 0] ;
endfunction
//---------------------------------------//
// compute the interaction matrix
// associated to a point
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matIntPoint3ddl(x,y,Z)
// 3ddl vx, vz and thetay
L = [ -1/Z , x/Z , -(1+x^2); 0 ,y/Z , -x*y ];
endfunction
//---------------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 6ddl control
// Typically, a free 6ddl camera
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matIntMire6ddl(p,Zin)
Z = 0;
// point mire, 2 feature per point
N = length(p)/2;
//----- test on Zin
if (length(Zin)==N)
Z = Zin;
//disp('Z was a vector, no change')
else
Z = Zin*ones(N,1);
//disp('Z was a scalar, create a vector, change')
end
L=[];
for i=1:N
L= [L; matIntPoint6ddl(p((i-1)*2+1),p((i-1)*2+2),Z(i))];
end
endfunction
//---------------------------------------//
// compute the Lz matrix for n 2D points
// to estimate z
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : september 2013 (ICRA)
//---------------------------------------//
function L = matLzMire6ddl(p)
N = length(p)/2;
L=[];
for i=1:N
L= [L; matLzPoint6ddl(p((i-1)*2+1),p((i-1)*2+2))];
end
endfunction
//---------------------------------------//
// Compute the ODE relative to the visual
// servoing control law, see Folio's
//
//
// author : Claire Dune
// date : september 2013 (ICRA)
//---------------------------------------//
function Xdot =vsOde(t,X,v)
// t mandatory
// L the interaction matrix
// v the velocity
N_in = length(X)/3;
s_in =(X(1:2*N_in));
Z_in =(X(2*N_in+1:$));
L_in = matIntMireC(s_in,Z_in);
Lz_in = matLzMire6ddl(s_in);
Xdot = [L_in;Lz_in]*v;
//disp('Xdot!!----')
endfunction
//---------------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matIntMire3ddl(p,Zint)
Z = 0;
// point mire, 2 feature per point
N = length(p)/2;
//----- test on Zint
if (length(Zint)==N)
Z = Zint;
//disp('Z was a vector, no change')
else
Z = Zint*ones(N,1);
//disp('Z was a scalar, create a vector, change')
end
L=[];
for i=1:N
L= [L; matIntPoint3ddl(p((i-1)*2+1),p((i-1)*2+2),Z(i))];
end
endfunction
//---------------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 6ddl control
// Typically, a free 6ddl camera
//
// In this case, the 3D positions of the
// points have been estimated
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matInt3dMire6ddl(cP)
N = length(cP)/3;
L = [] ;
for i=1:N
L= [ L ; matIntPoint6ddl(cP(1,i)/cP(3,i),cP(2,i)/cP(3,i),cP(3,i))];
end
endfunction
//---------------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// In this case, the 3D positions of the
// points have been estimated
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------------//
function L = matInt3dMire3ddl(cP)
N = length(cP)/3;
L = [] ;
for i=1:N
L= [ L ; matIntPoint3ddl(cP(1,i)/cP(3,i),cP(2,i)/cP(3,i),cP(3,i))];
end
endfunction
//-------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------//
function L_out = matIntMireD(s_in,Z_in)
global Zdes_global;
global sdes_global;
L_out = matIntMire6ddl(sdes_global,Zdes_global);
endfunction
//-------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------//
function L_out = matIntMireC(s_in,Z_in)
L_out = matIntMire6ddl(s_in,Z_in);
endfunction
//-------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------//
function L_out = matIntMireP(s_in,Z_in)
global Zdes_global;
L_out = matIntMire6ddl(s_in,Zdes_global);
endfunction
//-------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------//
function L_out = matIntMireM(s_in,Z_in)
global Zdes_global;
global sdes_global;
L_des = matIntMire6ddl(sdes_global,Zdes_global);
L_current = matIntMire6ddl(s_in,Z_in);
L_out = 0.5*(L_des+L_current);
endfunction
//-------------------------------//
// compute the interaction matrix
// associated to 5 points
// and for a 3ddl control
// Typicaly the COM of the HRP2
//
// only the projection of the points in the
// image plane are known
//
// author : Claire Dune
// date : decembre 2009
//---------------------------------//
function L_out = matIntMireC(s_in,Z_in)
L_out = matIntMire6ddl(s_in,Z_in);
endfunction
//----------------------------------//
// First try of visual servoing for walking
// 10/02/10
// The cost funciton has to be linear
// the interaction matrix used is the desired matrix
// only for x and z
//------------------------------------//
function L_out = matIntDLinearWalk(s_des,Z_des,Np, Nbpts)
// Np is the lenght of the horizon
// Nbpts is the number of point of the target
// sdes id a vector of 2*Np
// Zdes is a vector of Np
// compute the whole interaction matrix
L = matIntMire6ddl(s_des,Z_des);
// take the 2 usefull columns X and Z
Lx = L(:,1);
Ly = L(:,3);
// stack the matrices
L_out_x = [];
L_out_y = [];
Zer = zeros(Nbpts*2,1);
for i = 1:Np;
L_ligne = [];
for j=1:Np
if i==j
L_ligne = [L_ligne Lx];
else
L_ligne = [L_ligne Zer];
end
end
L_out_x = [L_out_x;L_ligne]
end
for i = 1:Np;
L_ligne = [];
for j=1:Np
if i==j
L_ligne = [L_ligne Ly];
else
L_ligne = [L_ligne Zer];
end
end
L_out_y = [L_out_y;L_ligne]
end
L_out = [L_out_x L_out_y];
endfunction
//------------------------------//
// R Matrix
//------------------------------//
function [Rres,Rx] = matR(Np)
R = zeros(Np,Np);
Zer = R;
for i=1:Np
for j=1:i
R(i,j)=1;
end
end
Rres = [R Zer ; Zer R];
Rx =R;
endfunction
//------------------------------//
// L Matrix
//------------------------------//
function [Lxx,Lyy,Lxy,Lyx] = matL(L_in,Np)
// Lin'Lin
LL = L_in'*L_in;
Lxx = LL(1:Np,1:Np);
Lyy = LL(Np+1:2*Np,Np+1:2*Np);
Lxy = LL(1:Np,Np+1:2*Np);
Lyx = LL(Np+1:2*Np,1:Np);
endfunction
//----------------------------------//
// M Matrix
//-----------------------------------//
function [Mxx,Myy,Mxy,Myx,Rres,Ldes] = matLinearAsserVisu(sdes,Zdes,Np,Nbpts)
[Rres,Rx] = matR(Np);
Ldes = matIntDLinearWalk(sdes,Zdes,Np, Nbpts);
[Lxx,Lyy,Lxy,Lyx] = matL(Ldes,Np);
Mxx = Rx' * Lxx * Rx ;
Myy = Rx' * Lyy * Rx ;
Mxy = Rx' * Lxy * Rx ;
Myx = Rx' * Lyx * Rx ;
endfunction
//--------------------------------//
// ThetaU interaction matrix
// cdRc: current rotation in the reference frame
//--------------------------------//
function L = matIntThetaU(thetaU)
theta = norm(thetaU);
L0 = zeros(3,3);
if(theta~=0)
u = thetaU./theta;
else
u = thetaU;
end
Ux = skew(u);
Lw = eye(3,3)+ theta/2*Ux+ (1-sinc(theta)/(sinc(theta/2))^2)*Ux*Ux;
L = [L0 Lw]
endfunction
function L = matIntposeThetaU(posetU)
cdRc = rotationMatrixFromThetaU(posetU(4:6));
Lt = [cdRc zeros(3,3)];
Lr = matIntThetaU(posetU(4:6));
L = [Lt;Lr];
endfunction
//---------------------------------------//
function IsMatIntLoaded()
disp('Matrice interaction is loaded')
endfunction
|
11ca33886f98a53acad55099e3cd24ac8857f4e0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /692/CH6/EX6.16/P6_16.sce | 4533012f1072e37118742caaadc0a5120c842fd6 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 508 | sce | P6_16.sce | //EXAMPLE 6.16
//Partial fraction expansion
clc;
clear;
z=%z;
num = z^3;
den = 18*z^3 + 3*z^2 - 4*z - 1;
elts=factors(den);
disp(elts,'the factors are :') ;
func = num/den;
//the partial fraction gives:
p1 = horner((1/(1+0.3333333/z)^2),0.5);
disp(p1,'p1 = ');
p2 = horner(1/((1-0.5/z)),-0.3333333);
disp(p2,'p2 = ');
p3 = horner(0.6/((1-0.5/z)),-0.3333333);
disp(p3,'p3 = ');
disp('partial fraction gives : ');
disp(p1*z/elts(1),'h1 = ');
disp(p3*z/elts(3),'h2 = ');
disp(p2*z^2/(elts(2)*elts(2)),'h3 = '); |
5374e44812184fac637e985d2b39a2fecdaabb8b | 449d555969bfd7befe906877abab098c6e63a0e8 | /3751/CH12/EX12.5/Ex12_5.sce | 93c09f621c9c8984e036c4306e083be33ab0e882 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,901 | sce | Ex12_5.sce | //Fluid Systems - By Shiv Kumar
//Chapter 12- Reciprocating Pumps
//Example 12.5
//To Determine the Pressure Head on Piston at Begining, Middle and End of Suction Stroke.
clc
clear
//Given Data:-
L=150; //Length of Stroke, mm
l_s=7; //Length of Suction Pipe, m
ds_by_D=3/4; //Ratio of Suction Pipe Diameter to Piston Diameter, ds/D
hs=2.5; //Suction Head, m
ds=75; //Diameter of Suction Pipe, mm
N=75; //Crank Speed, rpm
f=0.01; //Co-efficient of Friction
//Data Used:-
g=9.81; //Acceleration due to gravity, m/s^2
h_atm=10.33; //Atmospheric Pressure Head, m of water
//Computations:-
L=L/1000; //m
ds=ds/1000; //m
r=L/2; //Crank radius, m
A_by_as=(1/ds_by_D)^2;
omega=2*%pi*N/60; //Angular Velocity, rad/s
//At Begining of Suction Stroke,
theta=0; //degrees
h_as=(l_s/g)*A_by_as*omega^2*r*cosd(theta); //Acceleration Head, m of water
h_fs=(4*f*l_s/(2*g*ds))*(A_by_as*omega*r*sind(theta))^2; //Head loss due to friction, m of water
h_v=hs+h_fs+h_as; //Pressure Head on Piston, m of water Vaccum
h_abs=h_atm-h_v; //Pressure Head on Piston, m of water Absolute
//Result 1
printf("At Begining of Suction Stroke\n Pressure Head on Piston=%.2f m of water Vaccum \n\t\t\t =%.2f m of water Absolute\n\n",h_v,h_abs) //The answer vary due to round off error
//At Mid of Suction Stroke,
theta=90; //degrees
h_as=(l_s/g)*A_by_as*omega^2*r*cosd(theta); //Acceleration Head, m of water
h_fs=(4*f*l_s/(2*g*ds))*(A_by_as*omega*r*sind(theta))^2; //Head loss due to friction, m of water
h_v=hs+h_fs+h_as; //Pressure Head on Piston, m of water Vaccum
h_abs=h_atm-h_v; //Pressure Head on Piston, m of water Absolute
//Result 2
printf("At Middle of Suction Stroke\n Pressure Head on Piston=%.4f m of water Vaccum \n\t\t\t =%.3f m of water Absolute\n\n",h_v,h_abs) //The answer vary due to round off error
//At End of Suction Stroke,
theta=180; //degrees
h_as=(l_s/g)*A_by_as*omega^2*r*cosd(theta); //Acceleration Head, m of water
h_fs=(4*f*l_s/(2*g*ds))*(A_by_as*omega*r*sind(theta))^2; //Head loss due to friction, m of water
h_v=hs+h_fs+h_as; //Pressure Head on Piston, m of water Vaccum
h_abs=h_atm-h_v; //Pressure Head on Piston, m of water Absolute
//Result 3
printf("At End of Suction Stroke\n Pressure Head on Piston=%.2f m of water Vaccum \n\t\t\t =%.2f m of water Absolute\n\n",h_v,h_abs) //The answer vary due to round off error
|
b20f1090c07241c988b8e1c13098de1d84bf0a69 | a5e2e29746cbbbfd0c0bd14cc542cd3ba2bf7d3f | /Sem2_Mathe/3D-Graphics/3D_2_schaubild_fxy.sce | 90d42384659f2b3c673cc798d9ca90e084e49777 | [] | no_license | DonnyAwesome/UNI | 99580eabc0ff200eeecb72d866313b89cd28d0cb | c028434b672ae1962c2074fc249012d68a63db2b | refs/heads/master | 2020-04-02T13:05:02.067280 | 2019-02-14T02:14:06 | 2019-02-14T02:14:06 | 154,466,384 | 0 | 0 | null | 2018-10-24T08:33:10 | 2018-10-24T08:33:10 | null | UTF-8 | Scilab | false | false | 386 | sce | 3D_2_schaubild_fxy.sce | //2. Schubild von f(x,y)
clf()
x = -2:0.05:2;
y = 0:.05:4;
//x = linspace(-2, 2);
//y = linspace(0, 4);
[X, Y] = meshgrid(x, y)
F = X.^2 + Y.^2;
surf(X, Y, F);
//Achsenbeschriftung
a = gca(); //
a.font_size = 2; //Schriftgröße für x,y,z scala
xlabel('x-Achse', 'fontsize', 5)
ylabel('y-Achse', 'fontsize', 5)
zlabel('z-Achse', 'fontsize', 5)
|
878986c1772564708deb88be2089bc5d16e56194 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2510/CH15/EX15.8/Ex15_8.sce | d9c07b2a4619d9310bb4eb2cae07377dc4ffecb7 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 3,719 | sce | Ex15_8.sce | //Variable declaration:
uC = 3.7*10**-4 //Viscosity of benzene (lb/ft.s)
uH = 2.05*10**-4 //Viscosity of water @200 . (lb/ft.s)
u2 = 2.16*10**-4 //Viscosity of water @192 . (lb/ft.s)
pC = 54.8 //Density of benzene (lb/ft^3)
pH = 60.13 //Density of water (lb/ft^3)
cpC = 0.415 //Specific heat capacity of benzene (Btu/lb..)
cpH = 1 //Specific heat capacity of water (Btu/lb..)
sgC = 0.879
kC = 0.092 //Thermal conductivity of benzene (Btu/h.ft..)
kH = 0.392 //Thermal conductivity of water @200 . (Btu/h.ft..)
k2 = 0.390 //Thermal conductivity of water @192 . (Btu/h.ft..)
mC = 2500 //Flow rate of benzene (lb/s)
mH = 4000 //Flow rate of water (lb/s)
Re = 13000 //Reynolds number
dTc = 120-60 //Difference in temperature heating for benzene
Tw = 200 //Temperatperature of hot water (.)
//For 2-inch schedule 40 pipe
Ai = 0.541 //Inside area of pipe (ft^2/ft)
Ao = 0.622 //Outside area of pipe (ft^2/ft)
Di = 2.067 //Inside diameter of pipe (inch)
Do = 2.375 //Outside diameter of pipe (inch)
Si = 0.0233 //Inside surface area of pipe (ft^2)
dXw = 0.128 //Width of pipe (ft)
pi = %pi
//For 4-inch schedule 40 pipe
Dio = 4.026 //Inside diameter of pipe (inch)
Doi = Do //Outside diameter of pipe (inch)
kw = 26
//Calculations:
function [a] = St(Re,Pr) //Dittus Boelter equation
a = 0.023*Re**-0.2*Pr**-0.667
endfunction
//For inside tubes:
Dicalc = 4*mC/(Re*pi*uC)/3600 //Inside diameter (ft)
mHcalc = Re*pi*uH*(Doi+Dio)/4*3600/12 //Mass flow rate of water (lb/h)
Q = mC*cpC*dTc //Heat in water (Btu/h)
dTH = Q/mH //Temperature difference of water (.)
THo = Tw - dTH //Outlet temperature of water (.)
THav = (Tw+THo)/2 //Average temperature of water (.)
//For benzene:
PrC = cpC*uC/kC*3600 //Prandtl number
StC = round(St(13000, PrC) * 10**5)/10**5 //Stanton number
hi = StC*cpC*mC/Si //Heat transfer coefficient (Btu/h.ft^2..)
//For water:
ReH = 4*mH/3600/(pi*u2*(Doi+Dio)/12) //Reynolds number
PrH = cpH*(u2)/k2*3600 //Prandtl number
StH = round(St(ReH, PrH) * 10**5)/10**5 //Stanton number
Sann = pi/4*(Dio**2-Doi**2)/144 //Surface area of annulus (ft^2)
ho = round(StH*cpH*mH/Sann) //Heat transfer coefficient (Btu/h.ft^2..)
//For pipe:
Dlm = (Do-Di)/log(Do/Di)*12 //Log mean difference in diameter (ft)
Uo = 1/(Do/Di/hi + dXw*Do/kw/Dlm + 1/ho) //Overall heat transfer coefficient (Btu/h.ft^2..)
dTlm = (124.4-80)/log(124.4/80) //Log mean temperature difference (.)
L = Q/(Uo*0.622*dTlm) //Length of pipe (ft)
//Result:
printf("The required length of pipe: %.1f ft",L)
|
b089b9c5cf9abf6ccc2f8b27a9ee00051fcc9f2e | 449d555969bfd7befe906877abab098c6e63a0e8 | /1019/CH8/EX8.15/Example_8_15.sce | 41336e333faffcd0e60689c387ea5f0e9ceedabb | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 579 | sce | Example_8_15.sce | //Example 8.15
clear;
clc;
//Given
T=298;//temperature in K
R=8.314;//gas constant in J K^-1 mol^-1
delGfoH2Ol=-237.2;//standard enthalpy of formation of water in kJ mol^-1
pH2O=23.7;//vapour pressure of water in mm Hg
P=760;//standard pressure in mm Hg
//To determine delGfoH2Og
Kp=pH2O/P;//equillibrium constant for given reaction
delGo=(-1)*R*T*log(Kp)/1000;//delGo in kJ mol^-1
delGfoH2Og=delGo+delGfoH2Ol;//free energy of formation of water vapour in kJ mol^-1
mprintf('Free energy of formation of water vapour,delGfoH2Og = %f kJ mol^-1',delGfoH2Og);
//end |
cfeb430877bf0dc9b3c660d665f4d04cdeb03d79 | a2919a91aa01a261d8f362383439831d8f774a16 | /Phase1_functions/function_final/warpaffine/builder_gateway_cpp.sce | 776043a24d841e458d01025916b38792bd641738 | [] | no_license | priyanka1111/Scilab-Image-Processing-Toolbox-using-OpenCV | d673451a979dee4ae67d23aa51c42aaa5a34c951 | d9d4ef736e88d172796aa59e113f5a6c9380f3f2 | refs/heads/master | 2020-12-30T11:15:31.975435 | 2020-10-03T09:30:19 | 2020-10-03T09:30:19 | 38,579,256 | 0 | 0 | null | 2020-10-02T04:49:55 | 2015-07-05T18:26:04 | C++ | UTF-8 | Scilab | false | false | 575 | sce | builder_gateway_cpp.sce | // This file is released under the 3-clause BSD license. See COPYING-BSD.
function builder_gw_cpp()
copyfile("../common.h",TMPDIR);
copyfile("../common.cpp",TMPDIR);
WITHOUT_AUTO_PUTLHSVAR = %t;
tbx_build_gateway("skeleton_cpp3451", ..
["warpaffine","warpaffine"], ..
["warpaffine.cpp"], ..
get_absolute_file_path("builder_gateway_cpp.sce"),[],"g++ -ggdb `pkg-config --cflags opencv` -o `basename warpaffine.cpp .cpp` warpaffine.cpp `pkg-config --libs opencv`");
endfunction
builder_gw_cpp();
clear builder_gw_cpp; // remove builder_gw_cpp on stack
|
59197a56af6d99549dcf0914a09fd207ad09ea78 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2078/CH10/EX10.2/Example10_2.sce | 0c6437691aa33aa03621fd7882bdf8ee3f422c8a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 255 | sce | Example10_2.sce | //Exa 10.2
clc;
clear;
close;
//Given data :
W=680;//kg/km
L=260;//m
U_strength=3100;//kg
SF=2;//safety factor
Clearance=10;//m
T=U_strength/SF;//kg
w=W/1000;//kg
S=w*L^2/(8*T);//,m
h=Clearance+S;//m
disp(h,"Height above the ground(m) :");
|
41eadad1823a2451016d0009486f0987dba0cb17 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2132/CH6/EX6.4/Example6_4.sce | 27afe507053823a3b5cc5fa396a950ef014ff114 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 239 | sce | Example6_4.sce | //Example 6.4
clc;
clear;
close;
format('v',5);
//Given data :
Q=180/62;//litres/sec
Q=Q/1000;//cumec
Dc=25/1000;//m
H=1.9;//m
ac=%pi/4*Dc^2;//m^2
g=9.81;//constant
Cv=Q/sqrt(2*g*H)/ac;
disp(Cv,"Coefficient of velocity : ");
|
292d14fc00ce97b7f8e2cede1d0301ee03865fb0 | ac66d3377862c825111275d71485e42fdec9c1bd | /Resources/res/map/map2102.sce | 440a476cfdde6e3cab3d3545bea62f662abac921 | [] | no_license | AIRIA/CreazyBomber | 2338d2ad46218180f822682d680ece3a8e0b46c3 | 68668fb95a9865ef1306e5b0d24fd959531eb7ad | refs/heads/master | 2021-01-10T19:58:49.272075 | 2014-07-15T09:55:00 | 2014-07-15T09:55:00 | 19,776,025 | 0 | 2 | null | null | null | null | UTF-8 | Scilab | false | false | 3,507 | sce | map2102.sce | <?xml version="1.0" encoding="UTF-8"?>
<Project Name="map2102" Width="13" Height="15" CellSize="40" BackgroundSize="1" Background="13plus.png">
<Cell Name="木箱" X="4" Y="1" />
<Cell Name="树" X="5" Y="1" />
<Cell Name="仓鼠-bt" X="8" Y="1" arg0="44" />
<Cell Name="丛林图腾2" X="9" Y="1" />
<Cell Name="出生点" X="1" Y="2" />
<Cell Name="树" X="2" Y="2" />
<Cell Name="木箱" X="3" Y="2" />
<Cell Name="丛林图腾2" X="4" Y="2" />
<Cell Name="木箱" X="5" Y="2" />
<Cell Name="丛林图腾2" X="6" Y="2" />
<Cell Name="豌豆-右" X="7" Y="2" arg0="3" arg1="3,0" arg2="3" />
<Cell Name="丛林图腾2" X="10" Y="2" />
<Cell Name="蜘蛛怪-bt" X="11" Y="2" arg0="26" />
<Cell Name="木箱" X="1" Y="3" />
<Cell Name="树" X="3" Y="3" />
<Cell Name="樱桃树" X="6" Y="3" />
<Cell Name="樱桃树" X="8" Y="3" />
<Cell Name="木箱" X="10" Y="3" />
<Cell Name="丛林图腾2" X="2" Y="4" />
<Cell Name="池塘-左上" X="4" Y="4" />
<Cell Name="池塘-上" X="5" Y="4" />
<Cell Name="池塘-右上" X="6" Y="4" />
<Cell Name="豌豆-左" X="9" Y="4" arg0="2" arg1="3,0" arg2="3" />
<Cell Name="蜘蛛怪-bt" X="10" Y="4" arg0="26" />
<Cell Name="木箱" X="11" Y="4" />
<Cell Name="木箱" X="1" Y="5" />
<Cell Name="树" X="2" Y="5" />
<Cell Name="池塘-左" X="4" Y="5" />
<Cell Name="池塘-中" X="5" Y="5" />
<Cell Name="池塘-右" X="6" Y="5" />
<Cell Name="木箱" X="8" Y="5" />
<Cell Name="木箱" X="9" Y="5" />
<Cell Name="丛林图腾2" X="11" Y="5" />
<Cell Name="木箱" X="2" Y="6" />
<Cell Name="池塘-左" X="4" Y="6" />
<Cell Name="池塘-内角右下" X="5" Y="6" />
<Cell Name="池塘-右下" X="6" Y="6" />
<Cell Name="地洞" X="9" Y="6" arg0="0" arg1="0,0,0,0,1" arg2="1" />
<Cell Name="丛林图腾2" X="11" Y="6" />
<Cell Name="丛林图腾2" X="2" Y="7" />
<Cell Name="蜘蛛怪-bt" X="3" Y="7" arg0="26" />
<Cell Name="池塘-左下" X="4" Y="7" />
<Cell Name="池塘-右下" X="5" Y="7" />
<Cell Name="花" X="6" Y="7" />
<Cell Name="仓鼠-bt" X="8" Y="7" arg0="44" />
<Cell Name="木箱" X="9" Y="7" />
<Cell Name="樱桃树" X="1" Y="8" />
<Cell Name="地洞" X="2" Y="8" arg0="0" arg1="0,0,0,0,1" arg2="1" />
<Cell Name="木箱" X="6" Y="8" />
<Cell Name="豌豆-右" X="7" Y="8" arg0="3" arg1="3,0" arg2="3" />
<Cell Name="树" X="10" Y="8" />
<Cell Name="丛林图腾2" X="1" Y="9" />
<Cell Name="樱桃树" X="2" Y="9" />
<Cell Name="樱桃树" X="4" Y="9" />
<Cell Name="樱桃树" X="5" Y="9" />
<Cell Name="木箱" X="6" Y="9" />
<Cell Name="地洞" X="8" Y="9" arg0="0" arg1="0,0,0,0,1" arg2="1" />
<Cell Name="树" X="11" Y="9" />
<Cell Name="豌豆-右" X="2" Y="10" arg0="3" arg1="3,0" arg2="3" />
<Cell Name="丛林图腾2" X="5" Y="10" />
<Cell Name="石块" X="10" Y="10" />
<Cell Name="仓鼠-bt" X="3" Y="11" arg0="44" />
<Cell Name="通关点-1" X="5" Y="11" />
<Cell Name="木箱" X="7" Y="11" />
<Cell Name="蜘蛛怪-bt" X="8" Y="11" arg0="26" />
<Cell Name="丛林图腾2" X="9" Y="11" />
<Cell Name="树" X="10" Y="11" />
<Cell Name="木箱" X="11" Y="11" />
<Cell Name="丛林图腾2" X="2" Y="12" />
<Cell Name="木箱" X="4" Y="12" />
<Cell Name="地洞" X="5" Y="12" arg0="0" arg1="0,0,0,0,1" arg2="1" />
<Cell Name="木箱" X="9" Y="12" />
<Cell Name="丛林图腾2" X="1" Y="13" />
<Cell Name="樱桃树" X="7" Y="13" />
<Cell Name="丛林图腾2" X="11" Y="13" />
</Project> |
b2335b315ce003b76c04679d2fe1507bf0851e4c | 449d555969bfd7befe906877abab098c6e63a0e8 | /1541/CH1/EX1.33/Chapter1_Example33.sce | dd100c50b8dd12a44e48d6857738542945259660 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 843 | sce | Chapter1_Example33.sce | //Chapter-1, Example 1.21, Page 1.49
//=============================================================================
clc
clear
clc
clear
//INPUT DATA
N1=1500;//Initial speed in rpm
N2=1200;//Final speed in rpm
Ia1=30;//Initial armature current in A
V=300;//Terminal voltage in V
Ra1=0.5;//Initial armature resistance in ohm
//CALCULATIONS
R=(V-((N2/N1)*(V-(Ia1*Ra1))))/Ia1;//Total resistance in ohm
Rs=(R-Ra1);//Resistance to be added in ohm
n=((V-(Ia1*R))/V)*100;//Armature circuit efficiency
Nn2=(N2*(V-((Ia1/2)*R)))/(V-(Ia1*R));//New speed at half of the full load torque in rpm
//OUTPUT
mprintf('Resistance to be added to the existing armature resistance is %3.1f ohm \n Speed at half of the full load torque is %3.1f rpm',Rs,Nn2)
//=================================END OF PROGRAM==============================
|
43c9f233fe89a9fb22dee3e51a5cac030760d35b | 52cbfb547384bc9612dc59f5280971ed5a701a9d | /Continuous Exponential Signal.sce | 0d728b49b04813e4d5cdfae4007f45e561aa251b | [] | no_license | allenbenny419/Scilab-Codes | efa5402bea6d03088f77dafcf9ed87bd1f93e915 | 48109cd70c8a66a56e87f88152e866565dd52362 | refs/heads/main | 2023-06-23T21:10:24.227426 | 2021-07-21T11:09:15 | 2021-07-21T11:09:15 | 388,086,261 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 139 | sce | Continuous Exponential Signal.sce | function y=f(x)
y=exp(x)
endfunction
x=linspace(0,6)
plot(x,f)
xlabel('t')
ylabel('y')
xtitle('Continuous Exponential Signal')
|
064ba1e662670eb8d79ad345b5a5f05707997d6c | 449d555969bfd7befe906877abab098c6e63a0e8 | /3685/CH12/EX12.12/Ex12_12.sce | 473dabb7232d8b11c59673810ad19847505ee13f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,572 | sce | Ex12_12.sce | clc
// From table
h1 = 2792.2 // Enthalpy at state 1 in kJ/kg
h4 = 122.96// Enthalpy at state 4 in kJ/kg
hb = 254.88 // Enthalpy at state b in kJ/kg
hc = 29.98// Enthalpy at state c in kJ/kg
ha = 355.98 // Enthalpy at state a in kJ/kg
hd = hc // Isenthalpic process
h2 = 1949.27 // // Enthalpy at state 2 in kJ/kg
//
m = (h1-h4)/(hb-hc) // Amount of mercury circulating
Q1t = m*(ha-hd) // Heat addition
W1t = m*(ha-hb) + (h1-h2) // Turbine work
n = W1t/Q1t // first law efficiency
printf("\n Example 12.12 \n")
printf("\n Overall efficiency of the cycle is %f percent",n*100)
//The answers vary due to round off error
S = 50000 // Stem flow rate through turbine in kg/h
wm = S*m // mercury flow rate
printf("\n Flow through the mercury turbine is %e kg/h",wm)
Wt = W1t*S/3600 // Turbine work
printf("\n Useful work done in binary vapor cycle is %f MW",Wt/1e3)
nm = 0.85 // Internal efficiency of mercury turbine
ns = 0.87 // Internal efficiency of steam turbine
WTm = nm*(ha-hb) // turbine work of mercury based cycle
hb_ = ha-WTm // Enthalpy at state b in kJ/kg
m_ = (h1-h4)/(hb_-hc) // mass flow rate of mercury
h1_ = 3037.3 // Enthalpy at state 1 in kJ/kg
Q1t = m_*(ha-hd)+(h1_-h1) // Heat addition
x2_ = (6.9160-0.4226)/(8.47-0.4226) // steam quality
h2_ = 121+(0.806*2432.9) // Enthalpy at state 2 in kJ/kg
WTst = ns*(h1_-h2_) // Turbine work
WTt = m_*(ha-hb_)+WTst // Total turbine work
N = WTt/Q1t //Overall efficiency
printf("\n Overall efficiency is %f percent",N*100)
// The answers vary due to round off error
|
cd76cd5016f01186d33051cc612449ede9268291 | eec0cb8a9a3987d4e28fc22c89750a158a00ea84 | /Assignment5_Team8/logicalop.tst | e48b573ca6cc413e8259dfc238e5dba3e86ddee5 | [] | no_license | Archaic-Mage/CS2310_LAB_Assignments | 8ac90e0123de95f5cf8db709cd7761962bf8cef2 | e922b59fc1350db3f23b07b8f5986ac54f197c8d | refs/heads/main | 2023-08-29T23:42:07.913682 | 2021-11-16T14:00:05 | 2021-11-16T14:00:05 | 401,640,543 | 1 | 1 | null | 2021-10-01T05:55:36 | 2021-08-31T09:10:15 | Scilab | UTF-8 | Scilab | false | false | 637 | tst | logicalop.tst | //TEST CASES FOR LOGICAL OPERATIONS(NOP,AND,OR,XOR)
load ALU.hdl;
output-file logicalop.out,
compare-to logicalop.cmp,
output-list x%B1.8.1 y%B1.8.1 z%B1.8.1 OF%B3.1.3 EQ%B3.1.3;
//1 pair of operand with X not equal to Y for NOP
set x 12,
set y 24,
set c %B000,
eval,
output;
//1 pair of operand with X equal to Y for NOP
set x 11,
set y 11,
set c %B000,
eval,
output;
//1 pair of operand for AND
set x 7,
set y 11,
set c %B001,
eval,
output;
//1 pair of operand for OR
set x 15,
set y 29,
set c %B010,
eval,
output;
//1 pair of operand for XOR
set x 1,
set y 19,
set c %B011,
eval,
output;
|
1238420415428756cd2acb64792d71c401451a7f | 449d555969bfd7befe906877abab098c6e63a0e8 | /542/CH12/EX12.1/Example_12_1.sci | d5d77a416f8d497a1474ad32fe15a7e195bacaf1 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,027 | sci | Example_12_1.sci | clear;
clc;
printf("\n Example 12.1");
//Overall liquid transfer coefficient KLa = 0.003 kmol/s.m^3(kmol/m^3)
//(1/KLa)=(1/kLa)+(1/HkGa)
// let (KLa)=x
x = 0.003;
overall = 1/x;
//For the absorption of a moderately soluble gas it is reasonable to assume that the liquid and gas phase resistances are of the same order ofmagnitude, assuming them to be equal.
//(1/KLa)=(1/kLa)+(1/HkGa)
//let 1/kLa = 1/HkGa = y
y = (1/(2*x));
z = (1/y); //z is in kmol/s m^3(kmol/m^3)
printf("\n For S02:");
printf("\n kGa = %f kmol/s m^3(kN/m^2)",z/50);
printf("\n For NH3:");
d_SO2 = 0.103; //diffusivity at 273K for SO2 in cm^2/sec
d_NH3 = 0.170; //diffusivity at 273K for NH3 in cm^2/sec
printf("\n kGa = %f kmol/s m^3(kN/m^2)",(z/50)*(d_NH3/d_SO2)^0.56);
printf("\n For a very soluble gas such as NH3, kGa = KGa.");
printf("\n For NH3 the liquid-film resistance will be small, and:");
printf("\n kGa =KGa = %fkmol/s m^3(kN/m^2)",(z/50)*(d_NH3/d_SO2)^0.56);
|
977e9922dc4dbece155a5e08625f85561dc2458d | 449d555969bfd7befe906877abab098c6e63a0e8 | /548/CH2/EX2.5/2_5.sce | 78946b5c9a5c4f3cdfb08ca522d3b99c94f9d238 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 317 | sce | 2_5.sce | pathname=get_absolute_file_path('2_5.sce')
filename=pathname+filesep()+'2_5data.sci'
exec(filename)
function[unit]=Conversion(SI)
unit=(9.8*(0.3048)^2)*(SI)/4.448;
endfunction
disp("1lb/ft^2=(9.8*(0.3048)^2)*/4.448)kgf/m^2")
disp(Conversion(280.8),"wing loading in lb/ft^2 for F-117A stealth fighter"); |
f37fbb1926a555d552376c34144ef4c801c75b2c | 449d555969bfd7befe906877abab098c6e63a0e8 | /269/CH1/EX1.1/ex.sce | 2d6cdd030278930bcdcdaeee4edb7f0d6de9b768 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 487 | sce | ex.sce | disp("example1.1")
printf("\n")
disp("given")
printf("\n")
disp("C=C0(1-coswt)")
disp("angular frequency=500rad/sec")
w=500;
t=0:0.001:0.015
disp("initial capacitance=1 micro farad")
disp("i=d(CV)/dt")
disp("supply voltage=3V")
C0=1*(10^-6)
C=C0*(1-cos(w*t))
V=3;
i= w*C0*V*sin(w*t)//differentiating CV wrt t ,V is constant, i=d(CV)/dt
subplot(221)
plot(t,i)
xtitle('i vs t','t','i')
subplot(222)
plot(t,C)//variation of capacitance with time
xtitle('C vs t','t','C') |
43c38fc5ed910696d5913f673cd33d62de79d4da | 449d555969bfd7befe906877abab098c6e63a0e8 | /2873/CH1/EX1.8/Ex1_8.sce | fa542d8f7a9218db01435fe0652e8587e1146f11 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 597 | sce | Ex1_8.sce | // Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Engineering Thermodynamics by Onkar Singh,Chapter 1,Example 8")
d=15*10^-2;//diameter of cylinder in m
h=12*10^-2;//manometer height difference in m of mercury
rho=13.6*10^3;//density of mercury in kg/m^3
g=9.81;//acceleration due to gravity in m/s^2
disp("pressure measured by manometer(P) in pa")
disp("p=rho*g*h")
p=rho*g*h
disp("now weight of piston(m*g) = upward thrust by gas(p*%pi*d^2/4)")
disp("mass of piston(m)in kg")
disp("so m=(p*%pi*d^2)/(4*g)")
m=(p*%pi*d^2)/(4*g)
|
f3d3ef761677bcaaaef9ad145f619cd6954a678f | 449d555969bfd7befe906877abab098c6e63a0e8 | /1466/CH20/EX20.5/20_5.sce | 84c245260f8c183be9fdb7fc751a6d6e1017dd2e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 160 | sce | 20_5.sce | clc
//initialisation of variables
clear
W= [0 2000 4000 6000 8000 10000 12000 14000]
V= [4 3.76 3.48 3.18 2.86 2.48 2.02 1.47]
//CALCULATIONS
plot (V,W)
|
deb43ee6b1741ca7119367975aed5b0654af718f | 8217f7986187902617ad1bf89cb789618a90dd0a | /browsable_source/2.0/Unix/scilab-2.0/macros/metanet/g_xnode.sci | 49795bad06bdb0cba801d56a9832233e9c44bd63 | [
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer",
"MIT"
] | permissive | clg55/Scilab-Workbench | 4ebc01d2daea5026ad07fbfc53e16d4b29179502 | 9f8fd29c7f2a98100fa9aed8b58f6768d24a1875 | refs/heads/master | 2023-05-31T04:06:22.931111 | 2022-09-13T14:41:51 | 2022-09-13T14:41:51 | 258,270,193 | 0 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 76 | sci | g_xnode.sci | function x=g_xnode(g)
[lhs,rhs]=argn(0), if rhs=0 then g=the_g, end
x=g(16)
|
c34298e7a9efa6d69c3c50f4e64f434152a54a1b | ab0891df3df62a84b3bc60ee178e2d84b0d692c5 | /FINAL_SUBMISSION/Geometry_Processing_Toolbox/demos/decimate_libigl.sci | dc40ae2a47c1bf675702c5b1d4fd9b4e5ac99ceb | [
"MIT"
] | permissive | sidgairo18/SCILAB_MEX_TOOLBOX | 6b36c8b5dd21bb15d942a283ebfe2366a7ac02ec | fc679f6d226c03b992b632823a5e57abea05cefa | refs/heads/master | 2020-03-19T04:03:55.721880 | 2018-08-14T11:22:24 | 2018-08-14T11:22:24 | 135,791,680 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 761 | sci | decimate_libigl.sci | % DECIMATE_LIBIGL Decimate a closed manifold mesh (V,F)
%
% [W,G] = decimate_libigl(V,F,ratio)
% [W,G,J,I] = decimate_libigl(V,F,ratio,'ParameterName',ParameterValue, ...)
%
% Inputs:
% V #V by 3 list of vertex positions
% F #F by 3 list of triangle indices into V
% ratio either a 1<number<#F of max faces, or a 0<ratio<1 to be multiplied
% against #F to get max faces in output
% Optional:
% 'Method' followed by one of:
% {'naive'} simply collapse small edges and place vertices at midpoint
% 'qslim' Quadric error metric
% Outputs:
% W #W by 3 list of vertex positions
% G #G by 3 list of triangle indices into W
% J #G list of indices into F of birth face
% I #U list of indices into V of birth vertices
%
|
a1fff1245b5e00043eec424b927c90b87b7d95ed | 449d555969bfd7befe906877abab098c6e63a0e8 | /323/CH2/EX2.17/ex2_17.sci | a68cf4ec72da25f75e47a7785d54d00929bef90e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 296 | sci | ex2_17.sci | //Chapter 2,Ex2.16,Pg2.24
clc;
disp("Refer to the diagram shown in the figure")
a=[15 -10 -5;0 1 -1;-15 12 6]
b=[50;2;0]
i=a\b
printf("\n I1 = %.0f A\n",i(1))
printf("\n I2 = %.2f A\n",i(2))
printf("\ I3=%.2f A\n",i(3))
printf("\n Current through 5 ohms resistor = %.1f A\n",i(1)-i(3))
|
6dd3c7c332de3e2e2fa8ec1e4f57fd2b4ad11928 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1238/CH1/EX1.12/12.sce | a5563782d0971fd1a4c8780a43440c37606dcf10 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 396 | sce | 12.sce | //hex to binary,octal and decimal conversion//
//example 12//
clc
//clears the command window//
clear
//clears//
//decimal conversion//
x='100'
d=hex2dec(x);//hex to decimal conversion//
b=dec2bin(d);//decimal to binary conversion//
o=dec2oct(d);//decimal to octal conversion//
disp(d);//answer in decimal form//
disp(b);//answer in binary form//
disp(o);//answer in octal form//
|
d4aa7fa125e61f381719babc7318d72384d40bdc | 449d555969bfd7befe906877abab098c6e63a0e8 | /2006/CH14/EX14.5/ex14_5.sce | aa64da71f605cdaff8e6176fa25107ecc8e2a5ba | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 728 | sce | ex14_5.sce | clc;
p=101.325; // Atmospheric pressure in kPa
// The complete combustion equation for actane
// yC8H18+ x (O2+3.76N2) → n1 CO2+n2 H2O+n3 O2+n3 N2
x=12.5*1.5; y=1;
n1=8; n2=9; n3=6.28; n4=70.5;
n=n1+n2+n3+n4; // Total number of moles of the products
AFm=(x+x*3.76)/y ;// Air fuel ratio
m=28.84;
M=116; // Molecular weight of octane
AF=AFm*m/M;
yco2=n1/n; yH2O=n2/n; yO2=n3/n; yN2=n4/n;
pH2O=p*yH2O; // Partial pressure of water vapour in the products
Tsat=45.21; // In oC
disp ("kg air/kg octane",AF,"Air fuel ratio = ");
disp ("If the products are cooled below 25 oC then, the water vapour will condense. Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat.");
|
cb16c3d055aaaf10efb8b6069bec4a21c0bb1d79 | 4a1effb7ec08302914dbd9c5e560c61936c1bb99 | /Project 2/Experiments/FURIA-C/results/FURIA-C.abalone-10-1tra/result8s0.tst | 8109b3927cfaf3ad9ef69a7413618fba603f337a | [] | no_license | nickgreenquist/Intro_To_Intelligent_Systems | 964cad20de7099b8e5808ddee199e3e3343cf7d5 | 7ad43577b3cbbc0b620740205a14c406d96a2517 | refs/heads/master | 2021-01-20T13:23:23.931062 | 2017-05-04T20:08:05 | 2017-05-04T20:08:05 | 90,484,366 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 2,428 | tst | result8s0.tst | @relation abalone
@attribute Sex{M,F,I}
@attribute Length real[0.075,0.815]
@attribute Diameter real[0.055,0.65]
@attribute Height real[0.0,1.13]
@attribute Whole_weight real[0.002,2.8255]
@attribute Shucked_weight real[0.001,1.488]
@attribute Viscera_weight real[5.0E-4,0.76]
@attribute Shell_weight real[0.0015,1.005]
@attribute Rings{15,7,9,10,8,20,16,19,14,11,12,18,13,5,4,6,21,17,22,1,3,26,23,29,2,27,25,24}
@inputs Sex,Length,Diameter,Height,Whole_weight,Shucked_weight,Viscera_weight,Shell_weight
@outputs Rings
@data
9 9
10 9
12 9
10 7
12 9
18 9
8 7
7 7
9 9
13 9
9 9
12 20
13 9
9 7
9 7
10 9
5 4
14 11
9 9
14 23
8 7
9 7
9 23
14 9
22 9
3 3
5 5
10 7
7 7
15 9
13 9
12 9
4 4
19 9
5 4
8 23
9 9
8 9
20 9
16 11
15 9
12 9
14 9
6 7
14 9
11 9
9 7
8 7
19 9
16 11
17 9
21 11
16 9
15 9
15 9
10 9
6 7
5 7
20 9
10 7
14 9
10 7
7 5
13 9
13 9
13 7
10 7
12 9
17 9
8 7
9 7
7 5
10 9
10 7
2 3
15 20
14 9
13 9
20 9
13 9
15 9
9 7
11 9
10 9
6 7
9 9
10 9
12 9
8 9
8 9
12 9
11 20
9 9
4 5
6 5
6 7
7 7
7 7
7 7
8 9
7 9
9 9
9 9
11 9
8 9
10 9
8 9
11 9
10 9
11 9
6 5
7 7
6 7
8 7
9 9
9 9
7 9
9 9
10 9
9 9
9 9
9 9
11 9
5 5
5 5
4 7
7 7
6 7
7 7
6 7
7 7
7 7
10 9
9 9
10 9
8 9
10 9
10 9
9 9
9 9
10 9
12 9
9 9
10 9
10 9
12 11
12 11
12 11
14 11
6 7
6 7
8 9
8 9
11 9
10 9
10 9
5 5
8 5
7 7
6 7
7 7
6 9
8 9
7 9
9 9
8 9
10 9
10 9
10 9
10 9
10 9
11 9
10 9
11 9
9 9
9 9
9 9
11 9
14 11
7 7
8 7
10 9
10 9
9 9
8 7
8 7
9 7
8 9
8 9
9 9
9 9
9 9
8 9
11 9
9 9
11 9
11 9
10 9
10 9
11 9
9 9
10 9
10 9
12 9
10 9
12 11
4 3
6 7
7 7
8 7
7 7
9 9
9 9
9 9
11 9
8 9
6 7
12 20
9 7
9 9
12 9
17 9
10 7
8 9
9 7
7 7
6 7
6 7
12 9
13 9
9 9
12 9
16 9
14 9
13 9
12 9
15 23
23 11
18 9
12 9
18 9
5 4
16 9
11 7
17 9
12 9
10 5
10 9
10 7
15 9
10 9
6 5
5 5
17 9
14 9
14 9
19 9
6 5
7 5
8 9
11 9
13 11
13 9
7 7
6 7
7 9
11 9
9 9
13 11
10 11
5 5
8 7
6 7
9 9
8 9
9 9
9 9
8 9
9 9
8 9
9 9
9 9
9 9
8 7
10 9
11 9
8 9
11 9
8 9
11 9
11 9
10 9
4 5
7 7
9 9
10 9
12 9
11 9
11 9
6 7
11 9
9 9
8 9
11 9
9 9
11 9
10 9
10 9
10 9
8 9
9 9
8 7
8 7
10 9
10 9
8 9
12 9
9 9
11 9
11 9
11 9
8 7
11 9
10 9
8 7
8 9
7 9
9 7
6 5
11 9
8 7
7 7
10 9
13 9
11 9
15 9
18 9
10 7
13 9
15 9
13 9
16 20
12 7
4 4
13 9
11 7
13 7
14 23
11 7
17 9
10 7
5 5
7 5
13 9
8 7
7 7
7 9
10 9
12 9
7 7
8 7
8 9
11 9
10 9
9 9
11 9
11 11
7 7
6 7
8 7
9 9
10 9
11 9
11 9
11 9
8 9
10 9
7 7
8 9
11 9
11 9
13 9
11 11
9 9
12 11
7 7
7 7
8 7
9 9
9 9
9 9
10 9
10 9
7 5
8 7
8 9
9 9
7 9
10 7
11 9
18 9
11 9
8 9
7 7
6 7
6 9
11 9
9 9
9 9
8 9
10 9
9 9
8 9
9 9
11 9
7 7
8 7
|
1d6616cda1c3d54af1df2b7e96a18dcfb6bf83a0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /914/CH1/EX1.2/ex1_2.sce | fb3b6644c850b98e441172d5ae6642fcafdedc61 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 482 | sce | ex1_2.sce | clc;
warning("off");
printf("\n\n example1.2 - pg9");
// given
// the three unknowns are x,y,z
// the three equations are-
// x+y+z=1500
// (1) 0.05*x+0.15*y+0.40*z=1500*0.25
// (2) 0.95*x+0.00*y+0.452*z=1500*0.50
a=[1 1 1;0.05 0.15 0.40;0.95 0 0.452];
d=[1500;1500*0.25;1500*0.50];
ainv=inv(a);
sol=ainv*d;
printf("\n\n the amount of concentrated HNO3 is %fkg\n the amount of concentrated H2SO4 is %fkg\n the amount of waste acids is %fkg",sol(2),sol(1),sol(3));
|
8201afccc0c42c99e3fbc7a9ee78b193ec464cab | 449d555969bfd7befe906877abab098c6e63a0e8 | /1301/CH5/EX5.3/ex5_3.sce | 112ee0c4780ac365235632d0234781c8d50e53bf | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 205 | sce | ex5_3.sce | clc;
F=2000; //force in lb
s=80; //distance inft
W=F*s; //calculating weight
disp(W,"Weight in ft.lb = "); //displaying result
disp(W,"Potential Energy in ft.lb = "); //displaying result |
4ac2926578fab9f0e74e9935104a24ba9e5bd127 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1022/CH2/EX2.2/2_2.sce | c10d42868fafbc1f8a9c050f38a3c1301d945982 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 158 | sce | 2_2.sce | clc
//initialisation of variables
F= 1 //Pouunda
m= 1 //lbm
g= 1 //fts^-2
//CALCULATIONS
gc= m*g/F
//RESULTS
printf ('gc= %.2f lbm ft/poundal^2',gc)
|
9279205c9513464bbf3c746de04676a4d2585d68 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1910/CH7/EX7.3/Chapter73.sce | 23bd9b11644cf0ec6d6445bdb9e006e2c761ac6c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,960 | sce | Chapter73.sce | // Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Introduction to heat transfer by S.K.Som, Chapter 7, Example 3")
//Air at a pressure of 101kPa and temprature,Tinf=20°C flows with a velocity(Uinf) of 5m/s over a flat plate whose temprature is kept constant at Tw=140°C.
Tw=140;
Tinf=20;
Uinf=5;
//The properties at the film temprature of 80°C are Prandtl number(Pr=0.706),Conductivity(k=0.03W/(m*°C)),kinematic viscosity(nu=2*10^-5m^2/s)
Pr=0.706;
k=0.03;
nu=2*10^-5;
//ReL is reynolds number and L is length of flat plate
disp("(a)When the air flows parallel to the long side we have L=5 and the Reynolds no. becomes")
L=5;
ReL=(Uinf*L)/nu
disp("which is greater than critical Reynolds number.")
//Thus we have combined laminar and tubulent flow.
// So The average heat transfer coefficient over L=5m is determined from hbarL=(k/L)*[0.037*(ReL)^(4/5)-871]*Pr^(1/3)
disp("The average heat transfer coefficient over L=5m in W/(m^2*K)")
hbarL=(k/L)*[0.037*(ReL)^(4/5)-871]*Pr^(1/3)
//The rate of heat transfer per unit width is Q=h*A*(Tinf-Tw)
//Since width is 1m so B=1
//Area(A)=L*B
B=1;
A=L*B;
//Q is the rate of heat transfer
disp("The rate of heat transfer per unit width in W is")
Q=hbarL*A*(Tw-Tinf)
//When the air flow is parallel to the 1m side we have L=1
disp("(b)When the air flow is parallel to the 1m side we have L=1 an the Reynolds no. becomes ")
L=1;
ReL=(Uinf*L)/nu
disp("which is less than critical Reynolds number.")
//Thus we have laminar flow
//Heat flux is given by h=(k/L)*0.664*ReL^0.5*Pr^(1/3)
disp("Heat flux in W/(m^2*K) is")
h=(k/L)*0.664*ReL^0.5*Pr^(1/3)
//The rate of heat transfer per unit width is Q=h*A*(Tinf-Tw)
//Now width is 5m so B=5
//Area(A)=L*B
B=5;
A=L*B;
//Q is the rate of heat transfer
disp("The rate of heat transfer per unit width in W is")
Q=h*A*(Tw-Tinf)
|
a1c9ccdf101f75ce3a8fc5017d91ec8997518b23 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2252/CH6/EX6.4/Ex6_4.sce | 9b1d85eb5b054a6ffa84bb4f969d14750ff07fd0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 545 | sce | Ex6_4.sce |
//e=100*sin(100*%pi*t)
//calculating rate of change of voltage at t=.0025 sec
t=.0025
r1=10000*%pi*cos(100*%pi*t)
mprintf("Rate of change of voltage at .0025 sec=%f V/sec\n",r1)
//calculating rate of change of voltage at t=.005 sec
t=.005
r2=10000*%pi*cos(100*%pi*t)
mprintf("Rate of change of voltage at .005 sec=%d V/sec\n",r2)
//calculating rate of change of voltage at t=.01 sec
t=.01
r3=10000*%pi*cos(100*%pi*t)
mprintf("Rate of change of voltage at .01 sec=%f V/sec\n",r3)
//error in textbook answer in first and last case
|
0c8fed804842da6e39df32a6f572fd39077f739f | 449d555969bfd7befe906877abab098c6e63a0e8 | /3785/CH12/EX12.2/Ex12_2.sce | 4f059fa2a2bdfdd6b1c1124fb8f3b1e888d82817 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 602 | sce | Ex12_2.sce | // Example 12_2
clc;funcprot(0);
// Given data
T=20;// °C
SPL=20;// Sound Pressure level in dB
// From table 1.1,
rho_0=1.204;// kg/m^3
gamma=3.5/2.5;// Specific heat ratio
// Calculation
// (a) Inverting equation 12.18,
Pa=2*10^-5*(1*10^(20/10));// Pa
// (b) From equation 12.17,
a=(gamma*1.013*10^5*rho_0)^(1/2);// m/s
va=Pa/(rho_0*a);
//(c) From equation 12.17,
P_sw=(Pa)^2/(rho_0*a);
printf('\n(a)The pressure amplitude is %1.0e Pa \n(b)The velocity amplitude is %1.2e m/s \n The power per unit area,P_sw=%1.2e W/m^2',Pa,va,P_sw);
// The answer provided in the book is wrong
|
57ac8130bd0b124efc9e0ffe7af9ea3774eecdc4 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1670/CH4/EX4.5/4_5.sce | 34a049b36e3c4ea918490bdd71bde166831b4b78 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 773 | sce | 4_5.sce | //Example 4.5
//Jacobi Method
//Page no. 95
clc;close;clear;
A=[10,7,8,7;7,5,6,5;8,6,10,9;7,5,9,10];
n=4;
for k=1:14
max1=0
for i=1:n
for j=1:n
if A(i,j)>max1 & i~=j then
max1=A(i,j)
i1=i;j1=j;
end
end
end
fi=(atan((2*A(i1,j1))/(A(i1,i1)-A(j1,j1)+10^-20)))/2
disp(fi,'fi = ')
O1=eye(n,n)
O1(i1,j1)=-sin(fi)
O1(j1,i1)=sin(fi)
O1(i1,i1)=cos(fi)
O1(j1,j1)=cos(fi)
disp(O1,'O1 = ')
A=inv(O1)*A*O1
disp(A,'A1 = ')
end
printf('\n\n The eigenvalues are : \n\n')
for i=1:n
printf('\tl%i = %g\t',i,A(i,i))
end
printf('\n\n')
l=poly(0,'lb')
A=A-l*eye(n,n)
disp(det(A),'Characteristic Equation = ')
printf("\n\n\n\n\nNote : Computation Errors in some parts in calculation performed in book") |
2963509a303b5a0fe575f24c6324a42395c56192 | 449d555969bfd7befe906877abab098c6e63a0e8 | /284/CH10/EX10.1/ex_1.sce | cd7a4901b0bee34d36f007933048c5eb990a67ca | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 376 | sce | ex_1.sce | // Chapter 10_Fundamentals of the Metal Oxide Semiconductor Field Effect Transistor
//Caption_The two terminal MOS structure
//Ex_1//page 434
Na=10^16
T=300
eps=11.7*8.85*10^-14
e=1.6*10^-19
ni=1.5*10^10 //intrinsic carrier concentration
phi_fp=0.0259*log(Na/ni)
xdT=10^4*(4*eps*phi_fp/(e*Na))^0.5
printf('The maximum space charge width is %1.2f micrometer',xdT) |
89cc7d9f80f7940b6ad2100252d47f872909d6c8 | 19e7b2a92e135cbdbd427cbb0b422f1706b80d35 | /tests/FAC5861.tst | e68efc5c5b3bd756c920d55d762391934e5a1f17 | [
"LicenseRef-scancode-unknown-license-reference",
"LicenseRef-scancode-other-permissive",
"BSD-2-Clause"
] | permissive | friedkiwi/hyperion | 08106d9235c67480b609452903d7f253f7baeb5f | d0ccfbc9a74dd0a77a75ac224025fc68f6a6617f | refs/heads/master | 2023-03-16T08:26:25.222250 | 2022-01-06T23:54:32 | 2022-01-06T23:54:32 | 142,925,136 | 0 | 1 | NOASSERTION | 2021-09-12T21:15:38 | 2018-07-30T20:31:06 | C | UTF-8 | Scilab | false | false | 174 | tst | FAC5861.tst | *Testcase FAC5861: Quick Test of Misc. Instr. Ext. 2 & 3
mainsize 2
numcpu 1
sysclear
archlvl z/Arch
loadcore "$(testpath)/FAC5861.core"
runtest 1.0
*Done
|
3a420a5ae849b2717ac1cc6af1887fe5378cbf17 | 449d555969bfd7befe906877abab098c6e63a0e8 | /555/CH3/EX3.3/3.sce | 616eb2d432c8ae3d67008fd8ad996e7a64f7566a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 442 | sce | 3.sce | // Implementation of example 3.3
// Basic and Applied Thermodynamics by P.K.Nag
// page 55
clc
clear
p=101.325 // (atmospheric pressure in kN/m^2)
N=10000 // no. of revolutions
T=1.275 // (torque in Nm)
d=0.6 //(diameter in m)
l=0.8 //(distance moved in m)
w1=(2*%pi*T*N)/1000; // work done by stirring device
a=((%pi/4)*d^2);
w2=(p*a)*l; // work done by system
w=(-w1)+w2;
disp("net work transfer")
disp(w)
disp("kJ")
|
683d6bdb2671ce59712991b7e7815b33b182f583 | 0592c9e4cfbb77a0755aff6f0c798d9fe31f6ff4 | /scilab/LiborMarketModel/lmm_scilab.sci | 5ee4f0c74f6239045f74ffb4c5919d8d5cd55c15 | [] | no_license | FinancialEngineerLab/premia-13-cpp_FICC | e19caa6a9cadb4ad1361053efc0dfc9418071cf9 | e271da627dbfc8c2c1f7e9f700766544f64c72b2 | refs/heads/master | 2023-03-16T11:11:26.830681 | 2016-04-19T05:58:16 | 2016-04-19T05:58:16 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 7,055 | sci | lmm_scilab.sci |
function resu=lmm_swpt_stovol_sci(period , nb_fac , swpt_mat , swp_mat , perct)
list_file=[ "lmm_swpt_stovol_sci.o", "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_stochastic_volatility.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "premia_files/complex.o " ]
link( list_file ,"lmm_swpt_stovol_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swaptionMat=[ swpt_mat ];
swapMat=[ swp_mat ];
percent=[ perct ];
c=fort("lmm_swpt_stovol_sci",tenor,2,"d",numFac , 3, "i" , swaptionMat , 4 , "d", swapMat , 5 , "d" , percent , 6 , "d" , "out",[1,1],1,"d");
resu=c*100*100;
endfunction
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////
//// martingale X
////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function resu=lmm_cap_martX_sci(period , nb_fac , maturity , strike )
list_file=[ "lmm_martingaleX_sci.o", "lmm_martingaleX.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "cumulfunc.o" , "dcdflib.o" , "ipmpar.o" ]
link( list_file ,"lmm_cap_martX_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
Mat=[ maturity ];
K=[strike];
numcap=round(maturity/period)
c=fort("lmm_cap_martX_sci",tenor,3,"d",numFac , 2, "i" , Mat , 5 , "d", strike , 4 , "d" , "out",[numcap , 1],1,"d");
m=zeros(numcap,2);
for i=1:numcap,
m(i,1)=c(i),
m(i,2)=(i-1)*period,
end;
resu=m;
endfunction
function resu=lmm_swpt_martX_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )
list_file=[ "lmm_martingaleX_sci.o", "lmm_martingaleX.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "cumulfunc.o" , "dcdflib.o" , "ipmpar.o" ]
link( list_file ,"lmm_swpt_martX_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swpt_mat = [ swpt_maturity ];
swp_mat = [ swp_maturity ];
K=[ strike];
c=fort("lmm_swpt_martX_sci",tenor,6 ,"d",numFac , 4, "i" ,swpt_mat , 2 , "d", swp_mat , 3 , "d", K , 5 , "d" , "out",[1 , 1],1,"d");
resu=c;
endfunction
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////
//// martingale V
////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function resu=lmm_cap_spotV_sci(period , nb_fac , maturity , strike )
list_file=[ "lmm_martingaleV_sci.o", "lmm_martingaleV.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "cumulfunc.o" , "dcdflib.o" , "ipmpar.o" ]
link( list_file ,"lmm_cap_spotV_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
Mat=[ maturity ];
K=[strike];
numcap=round(maturity/period)
c=fort("lmm_cap_spotV_sci",tenor,3,"d",numFac , 2, "i" , Mat , 5 , "d", strike , 4 , "d" , "out",[numcap , 1],1,"d");
m=zeros(numcap,2);
for i=1:numcap,
m(i,1)=c(i),
m(i,2)=(i-1)*period,
end;
resu=m;
endfunction
function resu=lmm_swpt_spotV_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )
list_file=[ "lmm_martingaleV_sci.o", "lmm_martingaleV.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "cumulfunc.o" , "dcdflib.o" , "ipmpar.o" ]
link( list_file ,"lmm_swpt_spotV_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swpt_mat = [ swpt_maturity ];
swp_mat = [ swp_maturity ];
K=[strike];
c=fort("lmm_swpt_spotV_sci",tenor,6 ,"d",numFac , 4, "i" ,swpt_mat , 2 , "d", swp_mat , 3 , "d", K , 5 , "d" , "out",[1 , 1],1,"d");
resu=c;
endfunction
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////
//// Jump
////
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function resu=lmm_swpt_jump_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )
list_file=[ "lmm_jump_sci.o", "lmm_jump.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" , "cumulfunc.o" , "dcdflib.o" , "ipmpar.o" ]
link( list_file ,"lmm_swpt_jump_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swpt_mat = [ swpt_maturity ];
swp_mat = [ swp_maturity ];
K=[ strike];
c=fort("lmm_swpt_jump_sci",tenor,6 ,"d",numFac , 4, "i" ,swpt_mat , 2 , "d", swp_mat , 3 , "d", K , 5 , "d" , "out",[1 , 1],1,"d");
resu=c;
endfunction
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// Bermuda swaption Pedersen interface
///
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function resu=lmm_bermuda_LS_sci(period , nb_fac , swpt_maturity , swp_maturity , strike , payoff_Reg ,Regr_basis_dim)
list_file=[ "lmm_bermuda_LS_sci.o", "lmm_basis.o" , "lmm_bermudaprice.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" ]
link( list_file ,"lmm_bermuda_LS_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swpt_mat = [ swpt_maturity ];
swp_mat = [ swp_maturity ];
K=[ strike];
payoff_as_regressor=[ payoff_Reg ];
Regr_Basis_Dimension=[ Regr_basis_dim ];
c=fort("lmm_bermuda_LS_sci",tenor ,2 ,"d",numFac , 3, "i" ,swpt_mat , 4 , "d", swp_mat , 5 , "d", K , 6 , "d" , payoff_as_regressor , 7 , "d" , Regr_Basis_Dimension , 8 , "i" , "out",[1 , 1],1,"d");
resu=c*100*100;
endfunction
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///
/// Bermuda swaption Andersen interface
///
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
function resu=lmm_bermuda_andersen_sci(period , nb_fac , swpt_maturity , swp_maturity , strike )
list_file=[ "lmm_bermuda_andersen_sci.o", "lmm_basis.o" , "lmm_bermudaprice_andersen.o" , "lmm_volatility.o" , "lmm_zero_bond.o" , "lmm_random_generator.o" , "lmm_products.o" , "lmm_numerical.o" , "lmm_mathtools.o" , "lmm_libor.o" ]
link( list_file ,"lmm_bermuda_andersen_sci","C")
tenor=[ period ];
numFac=[ nb_fac ];
swpt_mat = [ swpt_maturity ];
swp_mat = [ swp_maturity ];
K=[ strike];
c=fort("lmm_bermuda_andersen_sci",tenor ,2 ,"d",numFac , 3, "i" ,swpt_mat , 4 , "d", swp_mat , 5 , "d", K , 6 , "d", "out",[1 , 1],1,"d");
resu=c*100*100;
endfunction
|
806a4d3a8d4026e996d11f34e180f3d069fa3578 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1703/CH11/EX11.1/11_1.sce | 76f4b918a8a966d1fd18df7dff4522c56216ede2 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 392 | sce | 11_1.sce |
clc
//initialisation of variables
h= 75 //ft
e= 0.75
k= 0.01
Q= 3000 //gal/min
k1= 1.2
N= 1500
g= 32.2 //ft/sec^2
D= 0.836 //ft
//CALCULATIONS
W= h/e
v1= sqrt((W-h)/k)
Q1= Q/374.06
f1= Q1/(k1*D^2)
u1= %pi*D*N/60
w1= W*g/u1
B= atand(f1/(u1-w1))
//RESULTS
printf ('Diameter of impeller = %.3f ft ',D)
printf ('\n Blade angle at outlet edge of impeller = %.f degrees ',B)
|
1b4401befaa32bdff3576daa0845ae6de5562b43 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2411/CH2/EX2.13/Ex2_13.sce | fafa9367eee25119eb499512bd049c7dd03e8393 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 667 | sce | Ex2_13.sce | // Scilab Code Ex2.13: Page-80 (2008)
clc; clear;
x = poly(0, 'x');
y = x^2-4;
F = [x*y (x^2 + y^2)]; // Force acting on the particle, N
x1 = 2; // lower limit
x2 = 4; // upper limit
dr = [derivat(x); derivat(y);]; // Infinitesimal displacement, m
dW = F*dr; // Work done or infinitesimally small displcement, J
work_exp = sci2exp(dW); // Convert the polynomial to the expression
W = integrate(work_exp, 'x', x1, x2); // Total work done in moving the particle in a force field, J
printf("\nThe total work done in moving the particle in the x-y plane = %d J", W);
// Result
// The total work done in moving the particle in the x-y plane = 732 J |
4d1c833e85abcae46138229a4dc56f6987564977 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2240/CH14/EX13.1/EX13_1.sce | 6db13a19291210bfbe7e4889d1ce5cf7075cace0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 485 | sce | EX13_1.sce | // Grob's Basic Electronics 11e
// Chapter No. 13
// Example No. 13_1
clc; clear;
// Make the following conversions: (a) 25,000 Mx to Wb; (b) 0.005 Wb to Mx.
// Given data
A = 25000; // A=25000 Maxwell
B = 0.005; // B=0.005 Wabers
C = 1*10^8; // Conversion Factor
Wb = A*(1/C);
disp (Wb,'The 25000 Maxwell in Wabers is')
disp ('i.e 250*10^-6 Wb or 250 uWb')
Mx = B*C;
disp (Mx,'The 0.005 Wabers in Maxwell is')
disp ('i.e 5.0*10^5 Mx')
|
8982087deaee9d83eb1d1e6de74ed477c010652c | 3ab7c3ba0b53c896747be95b21d2a39dc0ba021a | /Biseccion.sci | bbda212922fad57fcbdd2c4e15280bfd705bc217 | [] | no_license | Farber98/MetodosNumericos | 0752f090eb596926f05bff0730a088eb70e77033 | 5c1be0d0e8274d204b41d0b91778847e6469e6bb | refs/heads/master | 2021-04-23T12:58:07.339435 | 2020-03-25T08:41:32 | 2020-03-25T08:41:32 | 249,926,955 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 333 | sci | Biseccion.sci | function [p]= biseccion(f,a,b,n,e) //n:cantidad de iteraciones ; e: error
i=1
p=(a+b)/2
while i<=n & abs (f(p))>e
if f(a)*f(p)>0 then
a=p;
else
b=p;
end
i=i+1
p=(a+b)/2
end
if i>n then
printf("No converge")
else
printf("Raiz: %f",p)
end
endfunction
|
556ad258ac1ede0779ef69d0e3e0f74490895d24 | 449d555969bfd7befe906877abab098c6e63a0e8 | /401/CH6/EX6.6/Example6_6.sce | 65e43cf2e3d46d6cd20cb3bf12ccb369ca5d12cf | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 486 | sce | Example6_6.sce | //Example 6.6
//Program to calculate the external power efficiency of the device
clear;
clc ;
close ;
//Given data
eeta_t=0.18; //*100 percent - TOTAL EFFICIENCY
Eg=1.43; //eV - ENERGY BAND GAP OF GaAs
V=2.5; //Volts - APPLIED VOLTAGE
//External power efficiency of the device
eeta_ep=eeta_t*Eg/V;
//Displaying the Result in Command Window
printf("\n\n\t External power efficiency of GaAs device is %1.0f percent.",eeta_ep*100); |
d4fb01b30a89c4bca83ab71b6944be8cd875cc32 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3718/CH3/EX3.8/Ex3_8.sce | 6f40f4418c887ae0f79ddc7b6cf1d349aa4a16a9 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 474 | sce | Ex3_8.sce | //Chapter 3: Thermodynamic and Chemical Equilibrium
//Problem: 8
clc;
//Declaration of Constant
R = 1.987 // cal per K per mol
//Declaration of Variables
m = 5
Vo = 4 //in litres, Initial Volume
Vf = 40 //in litres, Final Volume
T = 27 //in deg C
// Solution
mprintf("dS = nRln(V2 / V1)\n")
dS = m * R * 2.303 * log10(Vf / Vo)
mprintf(" The change in entropy is: %.2f cal / degree",dS)
|
4cc2e9c479278784c9d0c39968b970650dcd55fd | 931df7de6dffa2b03ac9771d79e06d88c24ab4ff | /FortBox Tracking.sce | 88694add387b19fec1311fce4c82c22ca1a6eaa5 | [] | no_license | MBHuman/Scenarios | be1a722825b3b960014b07cda2f12fa4f75c7fc8 | 1db6bfdec8cc42164ca9ff57dd9d3c82cfaf2137 | refs/heads/master | 2023-01-14T02:10:25.103083 | 2020-11-21T16:47:14 | 2020-11-21T16:47:14 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 22,937 | sce | FortBox Tracking.sce | Name=FortBox Tracking
PlayerCharacters=Player
BotCharacters=Pigeon Jumper.bot
IsChallenge=true
Timelimit=60.0
PlayerProfile=Player
AddedBots=Pigeon Jumper.bot;Pigeon Jumper.bot;Pigeon Jumper.bot
PlayerMaxLives=0
BotMaxLives=0;0;0
PlayerTeam=1
BotTeams=2;2;2
MapName=box_v4.map
MapScale=3.15
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=true
InvincibleBots=false
Timescale=0.75
BlockHealthbars=false
TimeRefilledByKill=0.0
ScoreToWin=1.0
ScorePerDamage=0.0
ScorePerKill=1.0
ScorePerMidairDirect=0.0
ScorePerAnyDirect=0.0
ScorePerTime=0.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=false
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=Fortnite, TPS, Tracking
WeaponHeroTag=AR, SMG
DifficultyTag=2
AuthorsTag=Tee7even
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=false
BlockFCT=true
Description=FortBox, but with a tracking weapon and targets that live longer
GameVersion=2.0.1.0
ScorePerDistance=0.0
MBSEnable=false
MBSTime1=0.25
MBSTime2=0.5
MBSTime3=0.75
MBSTime1Mult=1.0
MBSTime2Mult=2.0
MBSTime3Mult=3.0
MBSFBInstead=false
MBSRequireEnemyAlive=false
LockFOVRange=false
LockedFOVMin=80.0
LockedFOVMax=80.0
LockedFOVScale=Clamped Horizontal
[Aim Profile]
Name=Default
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
AimingStyle=Original
ScanSpeedMultiplier=1.0
MaxSeekPitch=30.0
MaxSeekYaw=30.0
AimingSpeed=5.0
MinShootDelay=0.3
MaxShootDelay=0.6
[Bot Profile]
Name=Pigeon Jumper
DodgeProfileNames=Long Strafes Jumping
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=5.0
DodgeProfileMinChangeTime=1.0
WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=Default;Default;Default;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=true
CharacterProfile=Clay Pigeon
SeeThroughWalls=false
NoDodging=false
NoAiming=false
AbilityUseTimer=0.1
UseAbilityFrequency=1.0
UseAbilityFreqMinTime=0.3
UseAbilityFreqMaxTime=0.6
ShowLaser=false
LaserRGB=X=1.000 Y=0.300 Z=0.000
LaserAlpha=1.0
[Character Profile]
Name=Player
MaxHealth=100.0
WeaponProfileNames=Head Tracker;;;;;;;
MinRespawnDelay=1.0
MaxRespawnDelay=5.0
StepUpHeight=0.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=10.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=800.0
MaxCrouchSpeed=0.0
Acceleration=5000.0
AirAcceleration=16000.0
Friction=4.0
BrakingFrictionFactor=2.0
JumpVelocity=0.0
Gravity=0.0
AirControl=0.0
CanCrouch=true
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=255.000 Y=0.000 Z=0.000
EnemyHeadColor=X=255.000 Y=255.000 Z=255.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Cylindrical
MainBBHeight=300.0
MainBBRadius=45.0
MainBBHasHead=false
MainBBHeadRadius=0.1
MainBBHeadOffset=0.0
MainBBHide=true
ProjBBType=Cylindrical
ProjBBHeight=300.0
ProjBBRadius=45.0
ProjBBHasHead=false
ProjBBHeadRadius=0.1
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=false
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.5
AllowBufferedJumps=false
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=true
TPSArmLength=450.0
TPSOffset=X=0.000 Y=65.000 Z=105.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=-390.0
TerminalVelocity=0.0
CharacterModel=Ecto
CharacterSkin=Default
SpawnXOffset=0.0
SpawnYOffset=0.0
InvertBlockedSpawn=false
ViewBobTime=0.0
ViewBobAngleAdjustment=0.0
ViewBobCameraZOffset=0.0
ViewBobAffectsShots=false
IsFlyer=false
FlightObeysPitch=false
FlightVelocityUp=800.0
FlightVelocityDown=800.0
[Character Profile]
Name=Clay Pigeon
MaxHealth=5.0
WeaponProfileNames=;;;;;;;
MinRespawnDelay=0.001
MaxRespawnDelay=0.001
StepUpHeight=75.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=1.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=8.0
MovementType=Base
MaxSpeed=1000.0
MaxCrouchSpeed=500.0
Acceleration=12000.0
AirAcceleration=16000.0
Friction=8.0
BrakingFrictionFactor=4.0
JumpVelocity=1750.0
Gravity=3.0
AirControl=0.2
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=255.000 Y=0.000 Z=0.000
EnemyHeadColor=X=255.000 Y=255.000 Z=255.000
TeamBodyColor=X=0.000 Y=0.000 Z=255.000
TeamHeadColor=X=255.000 Y=255.000 Z=255.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=800.0
MainBBType=Spheroid
MainBBHeight=150.0
MainBBRadius=20.0
MainBBHasHead=false
MainBBHeadRadius=10.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Spheroid
ProjBBHeight=50.0
ProjBBRadius=25.0
ProjBBHasHead=false
ProjBBHeadRadius=45.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=true
AerialFriction=0.05
StrafeSpeedMult=1.2
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=2048.0
VerticalSpawnOffset=10.0
TerminalVelocity=0.0
CharacterModel=None
CharacterSkin=Default
SpawnXOffset=0.0
SpawnYOffset=0.0
InvertBlockedSpawn=false
ViewBobTime=0.0
ViewBobAngleAdjustment=0.0
ViewBobCameraZOffset=0.0
ViewBobAffectsShots=false
IsFlyer=false
FlightObeysPitch=false
FlightVelocityUp=800.0
FlightVelocityDown=800.0
[Dodge Profile]
Name=Long Strafes Jumping
MaxTargetDistance=3000.0
MinTargetDistance=500.0
ToggleLeftRight=true
ToggleForwardBack=true
MinLRTimeChange=0.5
MaxLRTimeChange=3.0
MinFBTimeChange=0.5
MaxFBTimeChange=1.5
DamageReactionChangesDirection=false
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=0.0
DamageReactionResetTimer=0.1
JumpFrequency=0.5
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.0
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.25
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.3
MaxCrouchTime=0.6
MinJumpTime=0.00001
MaxJumpTime=0.00001
LeftStrafeTimeMult=1.0
RightStrafeTimeMult=1.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=0.5
BlockedMovementReactionMin=0.125
BlockedMovementReactionMax=0.2
WaypointLogic=Ignore
WaypointTurnRate=200.0
MinTimeBeforeShot=0.15
MaxTimeBeforeShot=0.25
IgnoreShotChance=0.0
[Weapon Profile]
Name=Head Tracker
Type=Hitscan
ShotsPerClick=1
DamagePerShot=1.0
KnockbackFactor=4.0
TimeBetweenShots=0.03
Pierces=false
Category=FullyAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=1.0
HeadshotCapable=true
HeadshotMultiplier=2.0
MagazineMax=0
AmmoPerShot=1
ReloadTimeFromEmpty=0.5
ReloadTimeFromPartial=0.5
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=25.0
DelayBeforeShot=0.0
ProjectileGraphic=Ball
VisualLifetime=0.05
BounceOffWorld=false
BounceFactor=0.5
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=0.1
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-50.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=4.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=true
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=300.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=false
AimPunchAmount=0.0
AimPunchResetTime=0.2
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=false
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=1
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=70.0
ADSFOVScale=Clamped Horizontal
ADSAllowUserOverrideFOV=false
IsBurstWeapon=false
ForceFirstPersonInADS=true
ZoomBlockedInAir=false
ADSCameraOffsetX=0.0
ADSCameraOffsetY=0.0
ADSCameraOffsetZ=0.0
QuickSwitchTime=0.1
WeaponModel=Heavy Surge Rifle
WeaponAnimation=Primary
UseIncReload=false
IncReloadStartupTime=0.1
IncReloadLoopTime=0.1
IncReloadAmmoPerLoop=1
IncReloadEndTime=0.1
IncReloadCancelWithShoot=true
WeaponSkin=Default
ProjectileVisualOffset=X=0.000 Y=0.000 Z=0.000
SpreadDecayDelay=0.0
ReloadBeforeRecovery=false
3rdPersonWeaponModel=SMG
3rdPersonWeaponSkin=Default
ParticleMuzzleFlash=
ParticleWallImpact=
ParticleBodyImpact=
ParticleProjectileTrail=
ParticleHitscanTrace=None
ParticleMuzzleFlashScale=1.0
ParticleWallImpactScale=1.0
ParticleBodyImpactScale=1.0
ParticleProjectileTrailScale=1.0
Explosive=false
Radius=500.0
DamageAtCenter=100.0
DamageAtEdge=100.0
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,5.0
SpreadSCA=1.0,1.0,-1.0,5.0
SpreadMSA=1.0,1.0,-1.0,5.0
SpreadMCA=1.0,1.0,-1.0,5.0
SpreadSSH=0.0,1.0,0.0,0.0
SpreadSCH=1.0,1.0,-1.0,5.0
SpreadMSH=0.0,1.0,0.0,0.0
SpreadMCH=1.0,1.0,-1.0,5.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=0
AAPreferClosestPlayer=false
AAAlpha=0.05
AAMaxSpeed=1.0
AADeadZone=0.0
AAFOV=30.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=false
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.175
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Map Data]
reflex map version 8
global
entity
type WorldSpawn
brush
vertices
-91.466667 -76.000000 112.000000
-91.466667 96.000000 112.000000
-91.466667 96.000000 -128.000000
-91.466667 -76.000000 -128.000000
-80.000000 96.000000 -128.000000
-80.000000 -76.000000 -128.000000
-80.000000 -76.000000 112.000000
-80.000000 96.000000 112.000000
faces
0.000000 0.000000 2.000000 1.433334 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 1.433334 -1.433334 90.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 1.433334 -1.433334 90.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -90.000000 112.000000
-80.000000 -74.000000 112.000000
-80.000000 -74.000000 -128.000000
-80.000000 -90.000000 -128.000000
160.000000 -74.000000 -128.000000
160.000000 -90.000000 -128.000000
160.000000 -90.000000 112.000000
160.000000 -74.000000 112.000000
faces
0.000000 0.000000 2.000000 2.000000 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
160.000000 -76.000000 112.000000
160.000000 96.000000 112.000000
160.000000 96.000000 -128.000000
160.000000 -76.000000 -128.000000
171.466667 96.000000 -128.000000
171.466667 -76.000000 -128.000000
171.466667 -76.000000 112.000000
171.466667 96.000000 112.000000
faces
0.000000 0.000000 2.000000 1.433334 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 1.433334 -1.433334 90.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 1.433334 -1.433334 90.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -76.000000 123.466667
-80.000000 96.000000 123.466667
-80.000000 96.000000 112.000000
-80.000000 -76.000000 112.000000
160.000000 96.000000 112.000000
160.000000 -76.000000 112.000000
160.000000 -76.000000 123.466667
160.000000 96.000000 123.466667
faces
0.000000 0.000000 1.433334 1.433334 90.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 1.433334 1.433334 90.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -76.000000 -128.000000
-80.000000 96.000000 -128.000000
-80.000000 96.000000 -139.466667
-80.000000 -76.000000 -139.466667
160.000000 96.000000 -139.466667
160.000000 -76.000000 -139.466667
160.000000 -76.000000 -128.000000
160.000000 96.000000 -128.000000
faces
0.000000 0.000000 1.433334 1.433334 90.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 1.433334 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 1.433334 1.433334 90.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 223.000000 112.000000
-80.000000 239.000000 112.000000
-80.000000 239.000000 -128.000000
-80.000000 223.000000 -128.000000
160.000000 239.000000 -128.000000
160.000000 223.000000 -128.000000
160.000000 223.000000 112.000000
160.000000 239.000000 112.000000
faces
0.000000 0.000000 2.000000 2.000000 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-91.466667 -76.000000 112.000000
-91.466667 224.000000 112.000000
-91.466667 224.000000 -128.000000
-91.466667 -76.000000 -128.000000
-80.000000 224.000000 -128.000000
-80.000000 -76.000000 -128.000000
-80.000000 -76.000000 112.000000
-80.000000 224.000000 112.000000
faces
0.000000 0.000000 2.000000 2.500000 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.500000 -1.433334 90.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.500000 -1.433334 90.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -90.000000 112.000000
-80.000000 -74.000000 112.000000
-80.000000 -74.000000 -128.000000
-80.000000 -90.000000 -128.000000
160.000000 -74.000000 -128.000000
160.000000 -90.000000 -128.000000
160.000000 -90.000000 112.000000
160.000000 -74.000000 112.000000
faces
0.000000 0.000000 2.000000 2.000000 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.000000 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
160.000000 -76.000000 112.000000
160.000000 224.000000 112.000000
160.000000 224.000000 -128.000000
160.000000 -76.000000 -128.000000
171.466667 224.000000 -128.000000
171.466667 -76.000000 -128.000000
171.466667 -76.000000 112.000000
171.466667 224.000000 112.000000
faces
0.000000 0.000000 2.000000 2.500000 0.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.500000 -1.433334 90.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 90.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.500000 -1.433334 90.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -76.000000 123.466667
-80.000000 224.000000 123.466667
-80.000000 224.000000 112.000000
-80.000000 -76.000000 112.000000
160.000000 224.000000 112.000000
160.000000 -76.000000 112.000000
160.000000 -76.000000 123.466667
160.000000 224.000000 123.466667
faces
0.000000 0.000000 2.500000 1.433334 90.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.500000 1.433334 90.000000 4 7 6 5 0x00000000 __TB_empty
brush
vertices
-80.000000 -76.000000 -128.000000
-80.000000 224.000000 -128.000000
-80.000000 224.000000 -139.466667
-80.000000 -76.000000 -139.466667
160.000000 224.000000 -139.466667
160.000000 -76.000000 -139.466667
160.000000 -76.000000 -128.000000
160.000000 224.000000 -128.000000
faces
0.000000 0.000000 2.500000 1.433334 90.000000 0 1 2 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 2 4 5 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 5 6 0 3 0x00000000 __TB_empty
0.000000 0.000000 2.000000 -1.433334 0.000000 1 7 4 2 0x00000000 __TB_empty
0.000000 0.000000 2.000000 2.500000 0.000000 6 7 1 0 0x00000000 __TB_empty
0.000000 0.000000 2.500000 1.433334 90.000000 4 7 6 5 0x00000000 __TB_empty
entity
type PlayerSpawn
Vector3 position 128.000000 -20.000000 -96.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position 48.000000 -20.000000 0.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamB 0
entity
type PlayerSpawn
Vector3 position -48.000000 -20.000000 80.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position -48.000000 -20.000000 -96.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position 128.000000 -20.000000 80.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position 128.000000 -20.000000 -96.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position 48.000000 -20.000000 0.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamB 0
entity
type PlayerSpawn
Vector3 position -48.000000 -20.000000 80.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position -48.000000 -20.000000 -96.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
entity
type PlayerSpawn
Vector3 position 128.000000 -20.000000 80.000000
Vector3 angles 90.000000 0.000000 0.000000
Bool8 TeamA 0
|
5a24cc0666bf39803cbf97aa0a6aa008767b7067 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2159/CH6/EX6.1/61.sce | 647b40b9a8479ae6042928fd9e8669528b771a4d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 182 | sce | 61.sce | // problem 6.1
Rn=1700
v=0.744*(10^-4)
d=0.05
V=(Rn*v)/d
Vmax=2*V
x=0.00625
r=(d/2)-x
V1=Vmax*(1-(2*r/d)^2)
disp(V1,"velocity at the point 6.25 mm from the wall in m/sec")
|
9940b08784b41a846b75479706ac7318efb806e0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1397/CH1/EX1.3/1_3.sce | 227d46298853b63ec905d19a7d90cd688f6e0ac3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 447 | sce | 1_3.sce | //clc();
clear;
// To determine the slit seperation in Young's double slit experiment
lambda=5100*10^(-8); //A source of light in centimetres
D=200; // Seperation between screen and slit in centimetres
beeta=0.01; // Overall seperation from double slit in metres
d=(lambda*D)/beeta;
printf("The seperation between slits if the source of light is incident from a narrow slit on a double slit is %f m",d);
|
2ee619ae59fd6a9d45dfde4a5bc21cdea2b1c0d1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2183/CH7/EX7.5.a/Ex_7_5_a.sce | 7f57833c39cd66e2ccab1b3b73e7678b02cd5990 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 146 | sce | Ex_7_5_a.sce | // Example 7.5.a //photocurrent
clc;
clear;
close;
R=0.85;//in AW^-1
pi=1.5;//in mW
po=1;//in mW
ip=po*R;//in mA
disp(ip,"photocurrent in mA is")
|
8f9e727b740c84c0d9de5f965c1043f3c424d064 | ee3626ca13823b55caeb86e78fe258aad67d85e9 | /scenes/toon_faces/toon_faces.sce | 76a5c4ecd6d1f1db9ead7af83ca7a2d25721d53d | [] | no_license | Maleedo/ComputerGraphics | ea334e6a16520706e7934e61b2224e866b6f62dc | 8e7bab0824676a67c1ea2faabddf128bbe9ef63c | refs/heads/master | 2020-09-04T18:04:41.768905 | 2020-01-31T19:44:14 | 2020-01-31T19:44:14 | 219,843,157 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 907 | sce | toon_faces.sce | # camera: eye-point, look-at-point, up, fovy, width, height
camera 0 16 50 0 12 -1 0 1 0 30 600 300
# recursion depth
depth 1
# background color
background 0.5 0.7 1.0
# global ambient light
ambience 0.2 0.2 0.2
# light: position and color
light 5 20 0 1.0 1.0 1.0 25
# meshes: filename, shading, material (ambient, diffuse, specular, shininess)
mesh neutral.obj PHONG 0.2 0.2 0.2 0.9 0.9 0.4 1.0 1.0 1.0 30.0 0.0
mesh sad.obj PHONG 0.2 0.2 0.2 0.9 0.5 0.1 1.0 1.0 1.0 30.0 0.0
mesh confused.obj PHONG 0.2 0.2 0.2 0.9 0.2 0.2 1.0 1.0 1.0 30.0 0.0
mesh smile.obj PHONG 0.2 0.2 0.2 0.2 0.2 0.7 1.0 1.0 1.0 30.0 0.0
mesh kiss.obj PHONG 0.2 0.2 0.2 0.7 0.2 0.7 1.0 1.0 1.0 30.0 0.0
mesh puff.obj PHONG 0.2 0.2 0.2 0.2 0.7 0.7 1.0 1.0 1.0 30.0 0.0
# planes: center, normal, material
plane 0 0 0 0 1 0 0.2 0.9 0.2 0.2 0.9 0.2 0.0 0.0 0.0 100.0 0.1
|
b090084751694d8ad7c5cdfa3fd2683ea092d8d9 | a439c420539294c6e178cc89c43c4231246f9cbe | /Scripts/21. Signal/convol&corr/convol.sce | 819abbe1c7251fee36dca4dbfb837997c1659b84 | [] | no_license | PirateKing19902016/Scilab-Spoken-Tutorials | b7927e196acbefa47abdbdeb326d37385d5cbc34 | a110fc425c123f7041cb9ee8eca42ce08619ae60 | refs/heads/master | 2021-05-02T06:14:37.089440 | 2018-02-09T16:23:27 | 2018-02-09T16:23:27 | 120,855,481 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 201 | sce | convol.sce | //Linear Convolution
n=1:4
x=[1,2,3,4];
h=[1,1,1];
y=convol(x,h)
subplot(311)
plot(x)
xtitle("Input Sequence [x]")
subplot(312)
plot(h)
xtitle("h")
subplot(313)
plot2d3('gnn',y)
xtitle("Convolution")
|
a5c9e040a67b96b9cb6ec6657070729d11b9b557 | 449d555969bfd7befe906877abab098c6e63a0e8 | /122/CH6/EX6.5/exa6_5.sce | 2119af75fbdde234ecb46b8dd75a9a568192ee35 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 401 | sce | exa6_5.sce | // Example 6_5
// Root locus of system in state space
clear; clc;
xdel(winsid()); //close all windows
// please edit the path
// cd "/<your code directory>/";
exec("rootl.sci");
A = [0 1 0; 0 0 1; -160 -56 -14];
B = [0; 1; -14];
C = [1 0 0];
D = [0];
G = syslin('c',A,B,C,D);
H = clean(ss2tf(G));
disp(H,' transfer function = ');
rootl(G,[-20 -20; 20 20],'Root locus plot of State Space model');
|
8e0c5a6b4d990a21b56fa07374f4942f0b25de2c | 449d555969bfd7befe906877abab098c6e63a0e8 | /3856/CH10/EX10.2/Ex10_2.sce | 946965632577ffa0bcce3d392a751937387393c8 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 599 | sce | Ex10_2.sce | //Calculate the Standard Reduction Potential for the Half reaction Fe(three positive)(aq)+3 electron =Fe(s).
//Example 10.2
clc;
clear;
v1=2; //Number of electron in first reaction
v2=1; //Number of electron in second reaction
v3=3; //Number of electron in third reaction
E1=-0.447; //Standard Reduction Potential for first reaction in V
E2=0.771; //Standard Reduction Potential for second reaction in V
E3=(v1*E1+v2*E2)/v3; //Standard Reduction Potential for first reaction in V (delrG3=delrG1+delrG2)
printf("Standard Reduction Potential = %.3f V",E3);
|
e1db1d1b3351ad4333bb20b9096d41d56fbd232b | 4ba406c1422fd1f3462feb6c2f378b17ea9175c2 | /src/functions/dump/AbstractOrbit.tst | 754e9a3cad23e1918334386c7b4648a18fc55700 | [] | no_license | dwjohnston/geoplanets-model | 236670178c456a0537ee31cfb3ab931ea46c7edf | 06ff2b0ec83272f56ffe02b9ee38f1e169b41a51 | refs/heads/master | 2021-07-12T23:00:17.411355 | 2018-09-02T08:08:22 | 2018-09-02T08:08:22 | 144,376,835 | 1 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 2,091 | tst | AbstractOrbit.tst | import {
AbstractParameter
} from "../AbstractParameter";
import {
Position
} from "../../../blacksheep-geometry/lib";
import {
SimpleParameter
} from "../SimpleParameter";
export class AbstractOrbit extends AbstractParameter < Position[] > {
speed: SimpleParameter;
distance: SimpleParameter;
center: Position;
currentPhase: number;
initPhase: number;
positionsList: Position[];
previousPositionsList: Position[];
nPositions: SimpleParameter;
constructor(
label: string,
speed: SimpleParameter,
distance: SimpleParameter,
center: Position,
initPhase: number,
nPositions: SimpleParameter,
) {
super(label);
this.speed = speed;
this.distance = distance;
this.initPhase = initPhase;
this.currentPhase = initPhase;
this.center = center;
this.nPositions = nPositions;
this.tickables = [];
this.resetParams = [];
this.randomParams = [this.speed, this.distance];
this.clearParams = [this.speed, this.distance];
this.initPositions();
// this.initialiseClearEventSubscriptions();
}
reset() {
this.currentPhase = this.initPhase;
}
getCenter() {
return this.center;
}
getDistance() {
return this.distance;
}
getSpeed() {
return this.speed;
}
setCenter(p : Position) {
this.center =p;
}
getPositions(): Position[] {
return this.positionsList;
}
getPreviousPositions(): Position[] {
return this.previousPositionsList;
}
calcPositions(): Position[] {
throw "Calc positions not implmented";
}
tick() {
this.calcPositions();
}
initPositions() {
this.positionsList = [];
this.previousPositionsList = [];
for (let i = 0; i < this.nPositions.getValue(); i++) {
this.positionsList[i] = this.center.copy();
this.previousPositionsList[i] = this.center.copy();
}
}
} |
fa3773f4c3dece16254534c866d25f8e7330dba9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1787/CH2/EX2.11/Exa2_11.sce | bae41f8fc5669001bb255b4dfe542fd8fed933e8 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 517 | sce | Exa2_11.sce | //Exa 2.11
clc;
clear;
close;
//given data
ni=2.5*10^13;//in cm^-3
e=1.6*10^-19;//in coulamb
MUh=1800;//in cm^2/V-s
MUe=3800;//in cm^2/V-s
SIGMAi=ni*e*(MUe+MUh);//in (ohm-cm)^-1
GeAtoms=4.41*10^22;//in cm^-1
DonorImpurity=1/10^7;//in per Ge Atom
Nd=4.41*10^22*DonorImpurity;//in cm^-1
n=Nd;//in cm^-1
p=ni^2/Nd;//in cm^-3
SIGMAn=e*Nd*MUe;//in (ohm-cm)^-1
disp(SIGMAi,"Conductivity of Ge(intrinsic) in (ohm-cm)^-1 ");
disp(SIGMAn,"Conductivity of resulting N-type Ge semiconductor in (ohm-cm)^-1 : "); |
9fbfe9a4049b52b05ac89c2f1e1d4d54f94c8597 | cac765899ef2f4a3fea7b30feb7d3cc9e32a4eb4 | /test-deprecated/testFonctionCout.sce | 3e7e17d5f30aa7fafb04261b05a5dd165a0dfa35 | [] | no_license | clairedune/AsserVisu | 136d9cb090f709a410f23d3138ab115b722066d2 | f351f693bffd50b5ae19656a7fcb7b52e01d6943 | refs/heads/master | 2020-04-11T09:56:32.106000 | 2017-01-12T14:01:12 | 2017-01-12T14:01:12 | 1,187,919 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 14,827 | sce | testFonctionCout.sce | //--------------------------------------------------//
// main program
// test the functions defined in
// src/asserVisu/predictiveControl.sci
//
// author Claire Dune
// date 28/01/2010
// Pour tester les fonctions de cout
// ;exec('testAsserVisuTous.sce');
//--------------------------------------------------//
clear
DEBUG_VERBOSE = %F;
//--------------------------------------------------//
// LOAD The Files ---------------------//
//--------------------------------------------------//
path=get_absolute_file_path("scilab-src");
disp('HOME:'+path),
getd(path + "src/graphisme"); // pour charger un repertoire en entier
getd(path + "src/transformation");
getd(path + 'src/projectionPers');
getd(path + 'src/asserVisu');
getd(path + 'src/hrp2')
getd(path + 'src/optimisation')
// load optimisation
exec('../HuMAnS/KickStart.sci');
execstr(LoadModule('../HuMAnS/Kernel'));
if ~c_link('libcfsqp') then exec('../HuMAnS/Kernel/OptimizationTools/fsqp-1.2/loader.sce') ; end
disp('')
disp('------ Test Predictive Control -------')
disp('')
//----------------------------------------------------------------//
// problem Statement
// A fixed Object and a mobile camera
//----------------------------------------------------------------//
////-------------case 1 Allibert-------------------------// //
posecDesMo_m= [0 0 1 0 0 0 ]; // pose target/object desired
posecMo_m = [0.05 -0.6 1 0 0 0 ]; // pose target/object init
posewMo_m = [0 0 0 0 %pi 0 ]; // pose of the target in the World Frame
Np_m = 1; // horizon lenght
Nc_m = 1; // command horizon length
v_m = [0 0 0 0 0 0]'; // init velocity
// ------ Constraints definition
xu_m = [ 0.22 ; 0.22 ]; // position max of the a 2D point in the image plane
xl_m = [ -0.22 ; -0.22 ]; // position min of the a 2D point in the image plane
bu_m = 1e3*0.25*ones(6,1); // command bounds
bl_m = -bu_m; // command bounds on the horizon
// -------- Sampling time
Te_m = 0.08; // to be consistant with the image frame rate
Te_simu = Te_m;
a_m = 0.20; // dimension of the target
oP_m = mire4points (a_m); // create the Npbts Points Target
Nbpts_m = length(oP_m)/3 ;
thres_m = 1e-4; // error threshold
lambda = 1/Te_m;
//----------LFunction and Q definition
Lfunction = matIntMireC; // Lc(t) classical visual servo s(t) Z(t)
//Lfunction = matIntMireP; // Lp(t) classical visual servo s(t) Z*
//Lfunction = matIntMireM; // Lm(t) mixte (L*+Lc(t))
//Lfunction = matIntMireD; // Ld classical interaction matrix desired
Q_m = matWeightIdentity(Np_m,Nbpts_m);
//Q_m = matWeightIdentityZero(Np_m,Nbpts_m,1);
//Q_m = matWeightTV(Np_m,Nbpts_m);
//funcost_m = cld_costLocalMire;
//funcost_m = ga_costLocalMire;
funcost_m = cld_costSQPMire;
//funcost_m = ga_costSQPMire;
funcst_m = ga_constraintsLocalMire;
jaccost_m = "grobfd";
jaccst_m = "grcnfd";
// -------- OP
OPT_ERROR = %F; // use error sm-s as a correction
OPT_DISPLAY = %T; // display option
OPT_SAVE = %F; // Save option
OPT_INEQ = %F; // ineq constraints
OPT_NORMALIZE = %F; // normalisation
//OPT_CONTROL ='SQP';
//OPT_CONTROL = 'QLD';
OPT_CONTROL = 'AV';
//OPT_CONTROL = 'PRED';
path_exp = '/home/dune/Documents/Resultats/100125-TestAsserVisu/';
name_exp = 'PRED';
save_path = path_exp+'/'+name_exp;
//---------------------------------------------------------------------//
// Create the object
//---------------------------------------------------------------------//
wMo_m = homogeneousMatrixFromPos(posewMo_m);
wP_m = changeFrameMire(oP_m,wMo_m); // the Points in the World frame
//---------------------------------------------------------------------//
// Create the cameras
//---------------------------------------------------------------------//
// ------ First Camera Object Position
cMo_m = (homogeneousMatrixFromPos(posecMo_m));// pose target/object init
wMc_m = wMo_m*inv(cMo_m) ; // pose of the camera in the world frame
wMc_m = wMc_m.*(abs(wMc_m)>1e-10);
// compute the init projection on the view
cP_m = changeFrameMire(oP_m,cMo_m); // target Points in the camera frame
s_m = projectMireDirect(cP_m); // projection of the target points in the image plane
Z_m = cP_m(3:3:length(cP_m)) ; // depth of the target points in the camera frame
disp(s_m)
halt
//------- Desired Camera Object Position
cDesMo_m = (homogeneousMatrixFromPos(posecDesMo_m));
wMcDes_m = wMo_m*inv(cDesMo_m);
wMcDes_m = wMcDes_m.*(abs(wMcDes_m)>1e-10);
// compute the desired projection on the view
cDesP_m = changeFrameMire(oP_m,cDesMo_m); // desired target Points in the camera frame
sDes_m = projectMireDirect(cDesP_m); // desired target Points projection
ZDes_m = cDesP_m(3:3:length(cDesP_m)) ; // desired depth
//---------------------------------------------------------------------//
// Global Variable Control settings
//----------------------------------------------------------------------//
e0_m = zeros(Nbpts_m*2,1);
defineGlobalVariable(s_m,...
Z_m,Nc_m,Np_m,Nbpts_m,Te_m,sDes_m,ZDes_m,Q_m,e0_m,xl_m,xu_m,bl_m,bu_m,Lfunction,OPT_INEQ);
// ----- Control param
U0_m = []; // create the first control horizon
for i = 1:Nc_m
U0_m = [U0_m ; v_m];
end ;
//----------------------------------------------------------------------//
// Displays //
//----------------------------------------------------------------------//
// create the image plane
if(OPT_DISPLAY)
cote_m = 0.01; // display size of the dots
hf2d1_m = createPlanImage(1,xl_m,xu_m,"Point 2D");
mire2DDraw(s_m,cote_m,3); // display the current points
show_pixmap()
mire2DDraw(sDes_m,cote_m,5); // display the desired points
show_pixmap()
// create the 3D view
hf3d1_m = createFigure3D(2,"Camera Motion",1);
Camera3DDrawColor(0.1,wMc_m,3); // display the current camera
Camera3DDrawColor(0.1,wMcDes_m ,5); // display the desired camera
Mire3DDraw4pts(wP_m); // display the target
show_pixmap()
disp('Red : desired pose, Green : init pose and target');
//create a windows to display the top view
hf2d2_m = createFigure2D(3,"TopView");
// create a window to display the error
hf2d3_m = createFigure2D(4,"Error");
//create a windows to display the top view
hf2d4_m = createFigure2D(5,"Velocity");
//create a windows for the prediction
hf2d5_m = createPlanImage(6,xl_m,xu_m,"Prediction Mire");
//create a windows to display the top view
hf2d6_m = createFigure2D(7,"Prediction Velocity");
//create a windows to display the top view
hf2d7_m = createFigure2D(8,"Erreur en Position ");
end
//-----------------------------------------------------//
// launch the servo
//------------------------------------------------------//
disp('-------------------- servo loop------------')
halt
err = 10; // error value init
iter_m = 0; // number of the iteration
pt2D_m = s_m'; // store the real points for display
norme_m = [];
norme2_m = [];
velocity_m = [];
sm_m = s_m;
position_m = [];
v_m = zeros(6,1);
while(err > thres_m & iter_m < 1000 )
iter_m = iter_m+1;
disp('---------------------------------')
disp(iter_m)
updateVar(s_m,Z_m,sDes_m,ZDes_m,e0_m);
//-------------------------------------------------------//
// Compute the velocity using predictive control //
//-------------------------------------------------------//
if(OPT_CONTROL == 'PRED')
disp('Predictive control')
tic;
// compute the best control on the Time horizon
// vcam is a vector of Np velocities
// sm is a vector of Np features / Np*Nbpts 2d points
[U_m,smhor_m,Uhor_m] =predControlLocalMire(U0_m,funcost_m,funcst_m,jaccost_m,jaccst_m);
disp('time')
toc
v_m = U_m(1:6) ; // apply only the first velocity
U0_m = U_m;
cost = ga_costHorLoc2dMire(s_m,Z_m,Uhor_m,Te_m,Lfunction,Np_m,Q_m,e0_m,sDes_m);
//--------------------------------------------------------//
// Compute the velocity using classical visual servoing //
//--------------------------------------------------------//
elseif(OPT_CONTROL == 'SQP')
disp('SQP')
nf = 1; // nombre de fonction de cout
nineqn = 0; // nombre de contraintes d'inegalite nl
if(OPT_INEQ)
nineq = Np_m*Nbpts_m*4; // nombre de contraintes d'inegalites l
else
nineq = 0;
end
neqn = 0; // nombre de contraintes d'egalite nl
neq = 0; // nombre de contraintes d'egalite l
modefsqp = 100;
miter = 500; // maximum number of iteration allowed by the user
iprint = 0; // displayed parameter objective and constraint is displayed
ipar =[nf,nineqn,nineq,neqn,neq,modefsqp,miter,iprint];
bigbnd = 1e4; // infinity value
eps = 1e-5; // final norm requirement for d0k
epsneq = 0.e0; // maximum violation of linear equalite contraints
udelta = 0.e0; // the perturbation sixze the user suggest to compute the gradients
// 0 if the user has no idea of what to suggest
rpar =[bigbnd,eps,epsneq,udelta];
v_m=fsqp(v_m,ipar,rpar,[bl_m,bu_m],funcost_m,funcst_m,jaccost_m,jaccst_m);
cost = funcost_m(1,v_m);
//--------------------------------------------------------//
// Compute the velocity using classical visual servoing //
//--------------------------------------------------------//
elseif(OPT_CONTROL == 'AV')
disp('Asservissement visuel classique')
L_m = Lfunction (s_m,Z_m);
v_m = computeVelocity(lambda, L_m,s_m-sDes_m);
v_m = v_m';
sm_m = s_m;
cost = (s_m-sDes_m)'*(s_m-sDes_m)
cost2 = cld_costSQPMire(1,v_m)
cost3 = ga_costSQPMire(1,v_m)
end
//--------------------------- End of velocity computation //
if(OPT_NORMALIZE)
v_m = normalizeU(v_m,0.25);
end
v_m = v_m.*(abs(v_m)>1e-08);
velocity_m =[velocity_m ;v_m'];
//--------------------------------------------------------//
// Displays //
//--------------------------------------------------------//
if(OPT_DISPLAY)
xset("window",1); // image plane
mire2DDraw(s_m,cote_m,3); // current projection
show_pixmap()
mire2DDraw(sDes_m,cote_m,5); // desired projection
show_pixmap()
mire2DDraw(sm_m,cote_m,4);//model projection
show_pixmap()
pt2D_m = [pt2D_m ; s_m'];
if(size(pt2D_m,1)>1)
for l=1:Nbpts_m
xset("color",l)
xpoly(pt2D_m(:,(l-1)*2+1),pt2D_m(:,(l-1)*2+2),"lines",0)
show_pixmap()
end
end
xset("window",2); // 3D view
Camera3DDraw(0.1,wMc_m);
show_pixmap()
xset("window",3);
AxeZ2DDraw(1,wMc_m);
show_pixmap();
xset("window",4);
plot(thres_m*ones(1,iter_m),'r')
show_pixmap();
her=gce();
her.foreground=5;
plot(norme_m,'b');
plot(norme2_m,'g')
her=gce();
her.foreground=3;
show_pixmap();
if(size(velocity_m,1)>1)
xset("window",5);
plot2d(velocity_m);
show_pixmap()
end
if(size(position_m,1)>1)
xset("window",8);
plot2d(position_m);
show_pixmap()
end
if(OPT_CONTROL == 'PRED')
hf2d5_m = createPlanImage(6,xl_m,xu_m,"Prediction Mire");
//xset("window",6);
mire2DDraw(s_m,cote_m,3); // current projection
show_pixmap()
mire2DDraw(sDes_m-e0_m,cote_m,5); // desired projection
show_pixmap()
mire2DDraw(sm_m(1:Nbpts_m*2),cote_m,4); //model projection
show_pixmap()
smvisu_m =[s_m;smhor_m];
mireEvolutionDraw(Np_m+1,smvisu_m,1);
show_pixmap()
hf2d6_m = createFigure2D(7,"Prediction Velocity");
previewVelocity_m = [];
for index=1:Np_m
previewVelocity_m = [previewVelocity_m ;...
Uhor_m((index-1)*6+1:(index-1)*6+6)' ];
end
plot2d(previewVelocity_m);
show_pixmap()
end
end
//--------------------------------------------------------//
// Update data for next iter //
//--------------------------------------------------------//
c1Mc2_m = computeMotion(v_m',Te_simu) ; // resulting motion
cMo_m = inv(c1Mc2_m)*cMo_m;
wMc_m = wMc_m* c1Mc2_m ;
cP_m = changeFrameMire(oP_m,cMo_m);
sm_m = ga_predLoc2dMire(s_m,Z_m,v_m,Te_m,Lfunction);
Z_m = cP_m(3:3:length(cP_m)) ; // init depth for the step
s_m = projectMireDirect(cP_m);
if(OPT_ERROR)
e0_m = sm_m-s_m ; // model error
disp('error taken into account');
disp(e0_m');
end
err =(s_m-sDes_m)'*(s_m-sDes_m)
//--------------------------------------------------------------//
cDesMc_m = inv(wMcDes_m)*wMc_m;
p = pFromHomogeneousMatrix(cDesMc_m);
position_m = [position_m;p'];
//------ termination test----//
norme_m = [norme_m err];
norme2_m = [norme2_m cost];
//halt
disp('---------------------------------')
end
disp('------ the end -------')
disp('Enter to exit')
halt
if(OPT_SAVE & OPT_DISPLAY)
xs2fig(1,save_path+'-point2D.fig')
xs2fig(2,save_path+'-cameraPosition.fig')
xs2fig(3,save_path+'-topview.fig')
xs2fig(4,save_path+'-error.fig')
xs2fig(5,save_path+'-velocity.fig')
xs2fig(8,save_path+'-errPosision.fig')
disp('IMAGES SAVED')
end
if(OPT_DISPLAY)
xset("pixmap",0);
delete(hf3d1_m);
delete(hf2d1_m);
delete(hf2d2_m);
delete(hf2d3_m);
delete(hf2d4_m);
delete(hf2d5_m);
delete(hf2d6_m);
delete(hf2d7_m);
end
|
e5fd5c92ab995fed2672f819b25ea10174d4c100 | 449d555969bfd7befe906877abab098c6e63a0e8 | /48/CH4/EX4.5/eg_4_5.sce | 82073dc804e2f5ce9d166beb44d15a90659143cc | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 15,323 | sce | eg_4_5.sce | //f=x^y^z+wxz+xy+v^w^yz^
clc;
n=4;
k=[0 0 0 0;
1 0 1 1;
0 1 1 0;
1 1 1 0];
k(:,:,2)=[0 0 0 0;
1 0 1 1;
0 1 1 0;
0 1 1 0];
//k=[1 0 0 0;
// 0 0 0 0;
// 0 0 0 0;
// 0 0 1 0];
//k(:,:,2)=[1 0 0 0;
// 0 0 0 0;
// 0 0 0 0;
// 1 0 0 0];
k(:,:,3)=zeros(n,n);
k(:,:,4)=zeros(n,n);
var=['y' 'z' 'v' 'w' 'x'];
p1=['y''z''' 'y''z' 'yz' 'yz'''];
p2=['v''w''x''';'v''w''x';'v''wx';'v''wx''';
'vw''x''';'vw''x';'vwx';'vwx'''];
cmn16=9;
cmn8=5;
cmn4=3;
cmn2=2;
temp=1;
printf('The minimal ecpression of the given Kmap ');
disp(k(:,:,1));
disp(k(:,:,2));
disp("is :");
printf('f');
printf("=");
//32 cells
for i=1:n
for j=1:n
for l=1:2
if(k(i,j,l)~=1 & k(i,j,l)~=2)
temp=0;
break;
end
end
end
end
if(temp==1)
printf("1");
abort;
end
//16 cells
//8+8 row cells
z1=ones(2,4,2);
z2=ones(4,2,2);
temp1=['00' '01' '11' '10'];
temp2=['000' '001' '011' '010' '100' '101' '111' '110'];
for i=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=[k(i,:,1:2);k(t,:,1:2)];
z1=[k(i,:,3:4);k(t,:,3:4)];
if(noof3(z,0)==0 & noof3(z1,1)<cmn16)
k(i,:,3:4)=ones(4,2);
k(t,:,3:4)=ones(4,2);
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
k(i,:,3:4)=ones(1,4,2);
k(t,:,3:4)=ones(1,4,2);
end
end
//8+8 column cells
for j=1:n
if(j==4)
t=1;
else
t=j+1;
end
z=[k(:,j,1:2) k(:,t,1:2)];
z1=[k(:,j,3:4) k(:,t,3:4)];
if(noof3(z,0)==0 & noof3(z1,1)<cmn16)
k(:,j,3:4)=ones(4,2);
k(:,t,3:4)=ones(4,2);
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,t));
c=strsplit(temp2(1,j+4));
d=strsplit(temp2(1,t+4));
c1=check(a,b,c,d);
for in=1:max(size(c1))
if(c1(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c1(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf("+");
k(:,j,3:4)=ones(1,4,2);
k(:,t,3:4)=ones(1,4,2);
end
end
//4x4 front matrix
if(number_of(k(:,:,1),0)==0 & number_of(k(:,:,3),1)<cmn16)
printf(var(3));
printf('''');
k(:,:,3)=ones(4,4);
end
//4x4 rear matrix
if(number_of(k(:,:,2),0)==0 & number_of(k(:,:,4),1)<cmn16)
printf(var(3));
k(:,:,4)=ones(4,4);
end
//8 cells
//2x2 front and rear cells
for i=1:n
for j=1:n
if(i==4)
t=1;
else
t=i+1;
end
if(j==4)
u=1;
else
u=j+1;
end
z=k(i,j,1:2);
z(1,2,:)=k(i,u,1:2);
z(2,1,:)=k(t,j,1:2);
z(2,2,:)=k(t,u,1:2);
z1=k(i,j,3:4);
z1(1,2,:)=k(i,u,3:4);
z1(2,1,:)=k(t,j,3:4);
z1(2,2,:)=k(t,u,3:4);
if(noof3(z,0)==0 & noof3(z1,1)<cmn8)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,u));
c=strsplit(temp2(1,4+j));
d=strsplit(temp2(1,4+u));
c1=check(a,b,c,d);
for in=1:max(size(c1))
if(c1(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c1(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
k(i,j,3:4)=ones(1,1,2);
k(i,u,3:4)=ones(1,1,2);
k(t,j,3:4)=ones(1,1,2);
k(t,u,3:4)=ones(1,1,2);
printf("+");
end
end
end
//1x4 front and rear cells
for i=1:n
z=k(i,:,1:2);
z1=k(i,:,3:4);
if(noof3(z,0)==0 & noof3(z1,1)<cmn8)
printf(p1(i));
printf("+");
k(i,:,3:4)=ones(1,4,2);
end
end
//4x1 front and rear cells
for j=1:n
z=k(:,j,1:2);
z1=k(:,j,3:4);
if(noof3(z,0)==0 & noof3(z1,1)<cmn8)
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,u));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf("+");
k(:,j,3:4)=ones(1,2,4);
end
end
//2x4 front cells
for i=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=k(i,:,1);
z(2,:,1)=k(t,:,1);
z1=k(i,:,3);
z1(2,:,1)=k(t,:,3);
if(number_of(z,0)==0 & number_of(z1,1)<cmn8)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
printf('%s''',var(3));
printf("+");
k(i,:,3)=ones(1,4);
k(t,:,3)=ones(1,4);
end
end
//2x4 rear cells
for i=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=k(i,:,2);
z(2,:,1)=k(t,:,2);
z1=k(i,:,4);
z1(2,:,1)=k(t,:,4);
if(number_of(z,0)==0 & number_of(z1,1)<cmn8)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
printf(var(3));
printf("+");
k(i,:,4)=ones(1,4);
k(t,:,4)=ones(1,4);
end
end
//4x2 front cells
for j=1:n
if(j==4)
u=1;
else
u=j+1;
end
z=k(:,j,1);
z(:,2,1)=k(:,u,1);
z1=k(:,j,3);
z1(:,2,1)=k(:,u,3);
if(number_of(z,0)==0 & number_of(z1,1)<cmn8)
a=strsplit(temp2(1,i));
b=strsplit(temp2(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
printf('%s''',var(3));
printf("+");
k(:,j,3)=ones(4,1);
k(:,u,3)=ones(4,1);
end
end
//4x2 rear cells
for j=1:n
if(j==4)
u=1;
else
u=j+1;
end
z=k(:,j,2);
z(:,2,1)=k(:,u,2);
z1=k(:,j,4);
z1(:,2,1)=k(:,u,4);
if(number_of(z,0)==0 & number_of(z1,1)<cmn8)
a=strsplit(temp2(1,i));
b=strsplit(temp2(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(4+in));
else
if(c(in)==0 & a(in)=='1')
printf(var(4+in));
end
end
end
printf(var(3));
printf("+");
k(:,j,4)=ones(4,1);
k(:,u,4)=ones(4,1);
end
end
//4 cells
//1x4 front cells
for i=1:n
z=k(i,:,1);
z1=k(i,:,3);
if(number_of(z,0)==0 & number_of(z1,1)<cmn4)
printf(p1(1,i));
printf('%s''',var(3));
printf("+");
k(i,:,3)=ones(1,4);
end
end
//1x4 rear cells
for i=1:n
z=k(i,:,2);
z1=k(i,:,4);
if(number_of(z,0)==0 & number_of(z1,1)<cmn4)
printf(p1(1,i));
printf(var(3));
printf("+");
k(i,:,4)=ones(1,4);
end
end
//4x1 front cells
for j=1:n
z=k(:,j,1);
z1=k(:,j,3);
if(number_of(z,0)==0 & number_of(z1,1)<cmn4)
printf(p2(j,1));
printf("+");
k(:,j,3)=ones(4,1);
end
end
//4x1 rear cells
for j=1:n
z=k(:,j,2);
z1=k(:,j,4);
if(number_of(z,0)==0 & number_of(z1,1)<cmn4)
printf(p2(4+j,1));
printf("+");
k(:,j,4)=ones(4,1);
end
end
//2x1 front and rear matrix
for i=1:n
for j=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=[k(i,j,1);k(t,j,1)];
z(:,:,2)=[k(i,j,2) k(t,j,2)];
z1=[k(i,j,3);k(t,j,3)];
z1(:,:,2)=[k(i,j,4) k(t,j,4)];
if(noof3(z,0)==0 & noof3(z1,1)<cmn4)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,4+j));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf('+');
k(i,j,3)=1;k(t,j,3)=1;
k(i,j,4)=1; k(t,j,4)=1;
end
end
end
//1x2 front and rear matrix
for i=1:n
for j=1:n
if(j==4)
u=1;
else
u=j+1;
end
z=[k(i,j,1) k(i,u,1)];
z(:,:,2)=[k(i,j,2) k(i,u,2)];
z1=[k(i,j,3) k(i,u,3)];
z1(:,:,2)=[k(i,j,4) k(i,u,4)];
if(noof3(z,0)==0 & noof3(z1,1)<1)
printf(p1(i));
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,u));
c=strsplit(temp2(1,4+j));
d=strsplit(temp2(1,4+j));
c1=check(a,b,c,d);
for in=1:max(size(c1))
if(c1(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c1(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf('+');
k(i,j,3)=1; k(i,u,3)=1;
k(i,j,4)=1; k(i,u,4)=1;
end
end
end
//2 cells
//1x2 front cells
for i=1:n
for j=1:n
if(j==4)
u=1;
else
u=j+1;
end
z=[k(i,j,1) k(i,u,1)];
z1=[k(i,j,3) k(i,u,3)];
if(number_of(z,0)==0 & number_of(z1,1)<cmn2)
printf(p1(1,i));
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,u));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf('+');
k(i,j,3)=1; k(i,u,3)=1;
end
end
end
//1x2 rear cells
for i=1:n
for j=1:n
if(j==4)
u=1;
else
u=j+1;
end
z=[k(i,j,2) k(i,u,2)];
z1=[k(i,j,4) k(i,u,4)];
if(number_of(z,0)==0 & number_of(z1,1)<cmn2)
printf(p1(1,i));
a=strsplit(temp2(1,4+j));
b=strsplit(temp2(1,4+u));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(2+in));
else
if(c(in)==0 & a(in)=='1')
printf(var(2+in));
end
end
end
printf('+');
k(i,j,4)=1; k(i,u,4)=1;
end
end
end
//2x1 front cells
for i=1:n
for j=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=[k(i,j,1);k(t,j,1)];
z1=[k(i,j,3) k(t,j,3)];
if(number_of(z,0)==0 & number_of(z1,1)<cmn2)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
printf(p2(j,1))
printf('+');
k(i,j,3)=1; k(i,u,3)=1;
end
end
end
//2x1 rear cells
for i=1:n
for j=1:n
if(i==4)
t=1;
else
t=i+1;
end
z=[k(i,j,2);k(t,j,2)];
z1=[k(i,j,4) k(t,j,4)];
if(number_of(z,0)==0 & number_of(z1,1)<cmn2)
a=strsplit(temp1(1,i));
b=strsplit(temp1(1,t));
c=strcmp(a,b);
for in=1:max(size(c))
if(c(in)==0 & a(in)=='0')
printf('%s''',var(in));
else
if(c(in)==0 & a(in)=='1')
printf(var(in));
end
end
end
printf(p2(4+j,1))
printf('+');
k(i,j,4)=1; k(i,u,4)=1;
end
end
end
//1 cell front and rear matrix
for i=1:n
for j=1:n
z=k(i,j,1:2);
z1=k(i,j,3:4);
if(noof3(z,0)==0 & noof3(z1,1)<cmn2)
printf(p1(1,i));
a=strsplit(temp2(1,j));
b=strsplit(temp2(1,4+j));
c=strcmp(a,b);
for in=2:max(size(c))
if(a(in)=='0' & c(in)==0)
printf('%s''',var(2+in));
else
if(a(in)=='1' & c(in)==0)
printf(var(2+in));
end
end
end
printf('+');
k(i,j,3:4)=ones(1,1,2);
end
end
end
//single cell
for i=1:n
for j=1:n
for z=1:2
if(k(i,j,z)==1 & k(i,j,z+2)==0)
printf(p2(j,1));
printf(p1(1,i));
printf('+');
end
end
end
end
printf('0'); |
a61d24649e656c1d8d921d2d6489e40897f1e6de | 8016059350f017142cd5cdf2df5cabf94cf3c477 | /Digital Communication/snr pcm.sce | 095d20891a4b928b4eab821f738e875b1ef9dc7c | [] | no_license | aftalam/5th-sem-labworks | 07062dc9824af810a7d7970c7907ab999fda7c52 | d3c858587369757ccbed96bc9b29e8a1fa709824 | refs/heads/master | 2022-11-11T23:58:51.147782 | 2020-07-05T18:13:59 | 2020-07-05T18:13:59 | 275,115,844 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 593 | sce | snr pcm.sce | //Find Signal to Noise Ratio (SNR)& Probability of Error of Pulse Code Modulation (PCM) System
clc
clear all
n = input('Enter the Number of Bits : ');
snrdb = 4.8+6*n;
print(%io(2),snrdb,'in db');
xmax = input('Enter XMAX : ');
pb = input('Enter the Input Power : ');
snr = ((pb*3*(2^2*n))/(xmax^2));
print(%io(2),snr);
print(%io(2),'in no. unit');
notb = 10:1:30;
pe = 0.5*erfc(0.5*sqrt(pb/notb));
print(%io(2),pe);
plot(notb,pe)
xlabel('Noise Power Spectral Density')
ylabel('Probability of Error')
title('Probability of Error of PCM System')
//no of bits = 8
//xmax = 100
//input power = 1 |
642d19a7f87294b85cc61ea5befd239d6b6b1906 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1133/CH10/EX10.2/Example10_2.sce | 83620e1021c5b081b4b3e3689a1800fc332e2541 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 377 | sce | Example10_2.sce | //Example 10.4
clc
disp("R1 = 5 k-ohm, R2 = 10 k-ohm")
disp("The IC is 7808 i.e. V_reg = +8 V")
vt=8*(3)
format(3)
disp(vt,"Therefore, V_out(in V) = V_reg*[1 + R2/R1] =")
disp("Now R2 = 1 k-ohm then,")
vo=8*(1+(1/5))
format(4)
disp(vo,"V_out(in V) = 8*[1 + 1/5] =")
disp("Thus the V_out can be varied from 9.6 V to 24 V, by varing R2 from 1 k-ohm to 10 k-ohm.")
|
cf14b7bd7af9997e1501cef191534aa6ffdf7a3f | 449d555969bfd7befe906877abab098c6e63a0e8 | /608/CH15/EX15.22/15_22.sce | f2143b83b24c2dcdea1a89fbe87387b98fca0fd3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 925 | sce | 15_22.sce | //Problem 15.22: A coil of negligible resistance and inductance 100 mH is connected in series with a capacitance of 2 μF and a resistance of 10 across a 50 V, variable frequency supply. Determine (a) the resonant frequency, (b) the current at resonance, (c) the voltages across the coil and the capacitor at resonance, and (d) the Q-factor of the circuit.
//initializing the variables:
L = 100E-3; // in Henry
C = 2E-6; // in Farads
R = 10; // in ohms
V = 50; // in Volts
//calculation:
fr = 1/(2*%pi*((L*C)^0.5))
//At resonance, XL = Xc and impedance Z = R
I = V/R
VL = I*(2*%pi*fr*L)
Vc = I/(2*%pi*fr*C)
Q = VL/V
printf("\n\n Result \n\n")
printf("\n (a)the resonant frequency = %.1f Hz",fr)
printf("\n (b)Current, I = %.0f A",I)
printf("\n (c)Voltage across coil at resonance is %.0fV and Voltage across capacitance at resonance is %.0fV",VL, Vc)
printf("\n (d)At resonance, Q-factor = %.2f",Q) |
e872ebb6ceebbf150846f23df7a2d61de54fb52d | 449d555969bfd7befe906877abab098c6e63a0e8 | /2441/CH1/EX1.12/Ex1_12.sce | fe5bbf2204fb84b310ce07a74570ab5e24a8b15e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 697 | sce | Ex1_12.sce | //exa 1.12
clc;clear;close;
format('v',5);
//Arranging data for Load Duration Curve
//week days 5-9pm load
L1=350;//MW
t1=4*5;//hours
//week days 8-12am & 1-5pm load
L2=250;//MW
t2=t1+8*5;//hours
//saturday & sunday 5-9pm load
L3=200;//MW
t3=t2+4*2;//hours
//All days 150MW load
L4=150;//MW
t4=t3+6*5+15*2;//hours
//All days 100MW load
L5=100;//MW
t5=t4+6*5+5*2;//hours
A=31600;//Total Load Curve Area
LF=A/L1/24/7*100;//%//Weekly load factor
disp(LF,"Weekly Load factor(%)");
disp("Load Duration Curve is shown in figure.");
//Load Duration Curve
L=[L1 L2 L3 L4 L5];//MW
T=[t1 t2 t3 t4 t5];//hours
plot2d2(T,L);
xtitle('Load Duration Curve','Time(Hours)','Load(MW)');
|
865410ee5157972968aa41ffbc9e4cb31ba69395 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1076/CH12/EX12.9/12_9.sce | a2ec65b9666be7d9999613f9ea3ba638f10b7197 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 528 | sce | 12_9.sce | clear;
clc;
ef=3000;
Zc=300;
ea=1700;
iF=ef/Zc
mprintf("\nCurrent in line= %d kA",iF)
Ia=((2*ef)-ea)/Zc
mprintf("\nCurrent through Arrester= %.3f kA",Ia)
Ia=round(Ia *1000)/1000
R=ea/Ia
mprintf("\nresistance of arrester= %.2f ohm",R)
er=ea-ef;
mprintf("\nSurge Voltage Reflected= %.0f kV",er)
Cr=er/ef;
CR=ea/ef;
mprintf("\nCoeff of Reflection = %.3f, Coeff of Refraction=%.3f",Cr,CR)
Cr=(R-Zc)/(R+Zc);
CR=(R*2)/(R+Zc);
mprintf("\nVerification: Coeff of Reflection = %.3f, Coeff of Refraction=%.3f",Cr,CR)
|
f683ba518ade4bc172bb8236217d6e2d419d7967 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1697/CH1/EX1.12/Exa1_12.sce | 16d780f421127e7b86bf89b9cecf7d819be776c7 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 246 | sce | Exa1_12.sce | //Exa 1.12
clc;
clear;
close;
//given data :
r=10;//in Km
Erms=10;//in mV/m
r1=20;//in Km
//Formula : Erms=sqrt(90*W)/r;//in V/m
//Let swrt(90*W)=a
a=Erms*r;
Erms1=a/r1;//in mV/m
disp(Erms1,"Field strength at 20Km distace in mV/m: "); |
6d05c09eb011572b27c5cd7276378c59f5d2f5f6 | 5a05d7e1b331922620afe242e4393f426335f2e3 | /macros/pchips.sci | c639ca256860bf8666fb4babdcd8e96c7a4ff5fb | [] | no_license | sauravdekhtawala/FOSSEE-Signal-Processing-Toolbox | 2728cf855f58886c7c4a9317cc00784ba8cd8a5b | 91f8045f58b6b96dbaaf2d4400586660b92d461c | refs/heads/master | 2022-04-19T17:33:22.731810 | 2020-04-22T12:17:41 | 2020-04-22T12:17:41 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 1,383 | sci | pchips.sci | function d = pchips(x,y,delta)
//Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
//Parameters
// x: a vector
// y: is Y is vector then it must have the same length as x and Y is matrix then the last dimension of Y must equal
//length(X).
// delta: Points for interpolation
// d: vector of interpolantant at delta
//Examples:
//x = -3:3;
//y = [-1 -1 -1 0 1 1 1];
//xq1 = -3:.01:3;
//v=pchips(x,y,xq1)
//
n = length(x);
if n==2
d = repmat(delta(1),size(y));
else
d = zeros(size(y));
k = find(sign(delta(1:n-2)).*sign(delta(2:n-1)) > 0);
h = diff(x);
hs = h(k)+h(k+1);
w1 = (h(k)+hs)./(3*hs);
w2 = (hs+h(k+1))./(3*hs);
if ~isempty (k) then
del_mx = max(abs(delta(k)), abs(delta(k+1)));
del_mn = min(abs(delta(k)), abs(delta(k+1)));
d(k+1) = del_mn./conj(w1.*(delta(k)./del_mx) + w2.*(delta(k+1)./del_mx));
else
d(1) = ((2*h(1)+h(2))*delta(1) - h(1)*delta(2))/(h(1)+h(2));
if sign(d(1)) ~= sign(delta(1))
d(1) = 0;
elseif (sign(delta(1)) ~= sign(delta(2))) & (abs(d(1)) > abs(3*delta(1)))
d(1) = 3*delta(1);
end
d(n) = ((2*h(n-1)+h(n-2))*delta(n-1) - h(n-1)*delta(n-2))/(h(n-1)+h(n-2));
if sign(d(n)) ~= sign(delta(n-1))
d(n) = 0;
elseif (sign(delta(n-1)) ~= sign(delta(n-2))) & (abs(d(n)) > abs(3*delta(n-1)))
d(n) = 3*delta(n-1);
end
end
end
endfunction
|
3dc16b0a27e6cc9ad159a8a4ed3d5516ff327d52 | ef7da921e1289d3deaaf9727db2b6f025656e8d9 | /AverageOfDiscreteSignal.sce | 8aae511ef938adc81418bd938af4206f4fe8a3b5 | [] | no_license | PrayagS/SciLab_Exercises | ea88438207f2dc5d3f211c9abfe137a4bd43f68f | 0495ba76e693750980fefb386c28209a6fd6563e | refs/heads/master | 2020-09-08T01:52:22.914681 | 2019-11-16T05:39:29 | 2019-11-16T05:39:29 | 220,977,317 | 2 | 1 | null | null | null | null | UTF-8 | Scilab | false | false | 103 | sce | AverageOfDiscreteSignal.sce | clear;
clf;
dn = 1;
n = 0 : dn : 10;
x = sin(2*%pi*(1/11)*n);
plot2d3(n, x);
y = sum(x) / 11;
disp(y); |
56087e821263694485279d6214153be6082663a0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1826/CH2/EX2.26/ex2_26.sce | 1ff572853fe6e553e9539f81261e9a1d4a348021 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 317 | sce | ex2_26.sce | // Example 2.26, page no-46
clear
clc
theta=27.5/2//in degrees
a=0.563*10^-9
n=1
h=1
k=1
l=1
d=a/sqrt(h^2+k^2+l^2)
printf("\nThe lattice spacing for the plane (111) is %.2f * 10^-10 m",d*10^10)
lam=2*d*sin(theta*%pi/180)/n
printf("\nThe deBroglie wavelength of the neutrons is %.3f *10^-10 m",lam*10^10)
|
8f88efc4949f2c94f954d1a210f7522e36307e97 | 449d555969bfd7befe906877abab098c6e63a0e8 | /67/CH1/EX1.49.b/example149b.sce | a5ac9be7481d38b4266d44636d7b25183665b369 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 230 | sce | example149b.sce | //Example 1.49b
//Determine whether the signal x(n)=cos(pi*n/2)cos(pi*n/4)
clc;
n=0:1/100:100
x0=cos((%pi*n/2)+(%pi*n/4))
x1=cos((%pi*n/2)-(%pi*n/4))
x=(x0+x1)/2;
plot(x);
disp('plot shows that this is a periodic signal'); |
2339672c248addc5bffac0deb3c133835964bf2e | 449d555969bfd7befe906877abab098c6e63a0e8 | /662/CH8/EX8.13/Example8_13.sci | fab4ae0b6aba2147e70b7aea04914fcaa77b7002 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 568 | sci | Example8_13.sci | //Programming Example 8.13
//simple compound interest problem
function[]=mainCI()
//read input data(including prompts)
printf("Please enter a value for the principle:(p)");
p=scanf("%f");
printf("Please Enter a value for the interest rate(r): ")
r=scanf("%f");
printf("Please Enter a value for the number of years(n): ")
n=scanf("%f");
//calculate i, then f
i= r/100;
f=p*(n^(1+i));
//display the output
printf("\n The final value(F) is: %.2f\n", f);
endfunction
//calling routine
mainCI(); |
5399e3c8d27aceaee8cbf0cd31ce0f146723a68a | 449d555969bfd7befe906877abab098c6e63a0e8 | /69/CH5/EX5.13/5_13.sce | 0381bea777377a48603cc4fb993f43ec15870f61 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 494 | sce | 5_13.sce | clear; clc; close;
Vcc = 12;
Vbe = 0.7;
Vt = 26*(10^(-3));
Rc = 3*(10^(3));
Rf1 = 120*(10^(3));
Rf2 = 68*(10^(3));
Rf = Rf1 + Rf2;
ro = 30*(10^(3));
Beta = 140;
Ib = (Vcc-Vbe)/(Rf+Beta*Rc);
Ie = (1+Beta)*Ib;
re = Vt/Ie;
disp(re,"Value of diode resistive element(re) :");
Zb = Beta*re;
Zi = (Rf1*Zb)/(Rf1+Zb);
disp(Zi,"Input Impedance(Zi) :");
Zo = (Rc*Rf2)/(Rc+Rf2);
disp(Zo,"Output Impedance(Zo) :");
Av = -[(Rf2*Rc)/(Rf2+Rc)]/re;
disp(Av,"Voltage gain(Av) :");
|
3a2ad3c651627279e96495ae27724ec4a7c3ce71 | 13c3ed7bef4d80dabd836219bbf4396f07cb934a | /mattrace.sci | 15d48e6ee9058a2b1c6aec42c2b608e22336de10 | [] | no_license | Mushirahmed/scilab_workspace | 99f489a110a5e295ce9fca9991122d14840018d3 | f58b91b87bb0357fff82dcb97b05541e7e976eca | refs/heads/master | 2021-01-10T15:48:40.576771 | 2016-02-10T10:32:46 | 2016-02-10T10:32:46 | 43,348,489 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 123 | sci | mattrace.sci | //SCI2C: DEFAULT_PRECISION= FLOAT
function mattrace()
a = uint16([1,2,3;4,5,6;7,8,9]);
disp(trace(a));
endfunction
|
d3f6d1c2b10d8d419948a4d995b2b29ef9bf00fa | 449d555969bfd7befe906877abab098c6e63a0e8 | /69/CH14/EX14.5/14_5.sce | c61c830fce91800046a035914a0c02dfee9b8c7e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 263 | sce | 14_5.sce | clear; clc; close;
hfe = 120;
hie = 900;
Re = 510;
Rc = 2.2*10^(3);
re = 7.5;
A = -hfe/(hie+Re);
Beta = -Re;
Af = A/(1+Beta*A);
Avf = Af*Rc;
Av = -Rc/re;
disp(Avf,'Voltage gain with feedback = ');
disp(Av,'Voltage gain without feedback = ');
|
3912434ec77a467ab7ebd92e48cceca0430dfc94 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1574/CH10/EX10.4/PoRW_Ex_10_4.sce | bfe0a23ab408ec1a129954942e170f83334a749f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 212 | sce | PoRW_Ex_10_4.sce | clc
//Chapter10
//Example10.4
//Given
//b
ht=3e3,hr=5e3 // Antenna height
d=4100*(sqrt(ht)+sqrt(hr))//distance
mprintf('Max possible distance for efective point to point\n communication is %f km',d*1e-3)
|
db6c67965d537bd3579ccf0bfe9c46726d142d1c | 449d555969bfd7befe906877abab098c6e63a0e8 | /1073/CH2/EX2.30/2_30.sce | 1d289783155e79b4c92d6db8bddf61a38d346b16 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 817 | sce | 2_30.sce |
clear;
clc;
//Example 2.30
//Given
hi=75 //[W/sq m.K)
x1=0.2 //m
x2=0.1 //[m]
x3=0.1 //[m]
T1=1943 //[K]
k1=1.25 //W/m.K
k2=0.074 ///W/m.K
k3=0.555 //W/m.K
T2=343 //K
A=1 //assume [sq m]
sigma_R=1/(hi*A)+x1/(k1*A)+x2/(k2*A)+x3/(k3*A);
//Heat loss per i sq m
Q=(T1-T2)/sigma_R //[W]
//if T=temperature between chrome brick and koalin brick then
//Q=(T1-T)/(1/(hi*A)+x1/(k1*A))
//or T=T1-(Q*(1/(hi*A)+x1/(k1*A)))
T=T1-(Q*(1/(hi*A)+x1/(k1*A))); //[K]
printf("Temperature at inner surface of middle layer=%f K(%f degree C)",T,T-273);
//if Tdash=temperature at the outer surface of middel layer,then
//Q=(Tdash-T2)/(x3/(k1*A))
//or Tdash=T2+(Q*x3/(k3*A))
Tdash=T2+(Q*x3/(k3*A)) //[K]
printf("Temperature at outer surface of middle layer=%f K (%f degree C)",Tdash,Tdash-273);
|
e77924e3da32e97448380c64b6d6d31d4ded8e91 | e25bb3040c96f9782aab0493e05ba22f5bf50ccf | /ex6/ex6_q2_template.sce | 9247cc796992ea306bf54f1b90df726cb85142e6 | [] | no_license | gpioblink/aizu-spls-exercise | c13258d46f50ed2db7797693a097b0fb75d24eaf | 6c0b9326ba8e4b52378cfe777e82a2bfcdecc9b9 | refs/heads/master | 2022-09-14T06:09:44.774157 | 2020-05-31T07:43:26 | 2020-05-31T07:43:26 | 263,856,972 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 772 | sce | ex6_q2_template.sce | // EXERCISE 6 - QUESTION 2
// Change values of p and q to (2, 4), (5, 5) or (5, 10)
p = 2;
q = 4;
// Define some parameters
a = 0.1; // a(k)=0.1
b = 0.4; // b(k)=0.4
omega = -%pi:2*%pi/100:%pi; // omega=[-pi:pi]
// Initialize B(e^jw) and A(e^jw)
B = zeros(1,length(omega));
A = zeros(1,length(omega));
// Compute B(e^jw) into "B"
// Write your code here
for m=0:q
B = B+b*((exp(%i*omega))^(-m));
end
// Compute A(e^jw) into "A"
// Write your code here
for m=0:p
if m==0
A = 1;
else
A = A+a*((exp(%i*omega))^(-m));
end
end
// Compute H(e^jw) into "H"
// Write your code here
H = B./A;
disp(H)
// Plot H(e^jw)
figure;
plot(abs(H));
title(sprintf('q = %d, p = %d',q,p));
xlabel('|H(ejw)|');
|
77d30d09a240ac20660e880d2f846077f4a72421 | 449d555969bfd7befe906877abab098c6e63a0e8 | /991/CH20/EX20.2/Example20_2.sce | 3ce1cd6b3674e8d4dcc13112cc679b3d6e782d16 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 132 | sce | Example20_2.sce | //Example 20.2.
clc
format(6)
sr=20/(4) // in V/us
disp(" The slew rate, SR = dVo / dt")
disp(sr," SR(in V/us) =") |
b05b35f1c25fc087a6ecdcae04a3e42173fa2288 | 20f46832ae88a89a38f61087f5c7b9be092760cf | /tspCityInput.sce | 8738f855e5e564ac70e8c41222ef513499068b4a | [] | no_license | valdron/tspscilab | beef362216b51a534e928a51a917f691cb99b846 | c148f9a1d08d246966f23bcfb2739f2faa62526d | refs/heads/master | 2020-06-11T13:57:36.005279 | 2016-12-08T20:54:27 | 2016-12-08T20:54:27 | 75,650,403 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 927 | sce | tspCityInput.sce | clear;
exec tspGetCoordFromName.sci;
exec tspDistOnSphere.sci;
exec tspDraw.sci;
exec tspLength.sci;
exec tsp2Opt.sci;
global name dist pos;
disp "wieviele städte:"
anzahl = scanf("%d");
name = [];
for i = 1:anzahl
disp "Name der Stadt oder exit:\n"
text = scanf("%s");
if strcmp(text,'exit') == 0 then
break;
end
name(i) = text;
end
_size = length(length(name));
coord = zeros(_size,2);
for j = 1:_size
[lat,lon]=tspGetCoordFromName(name(j));
coord(j,1)=lat;
coord(j,2)=lon;
end
dist = zeros(_size,_size);
for i = 1:_size
for j = 1:_size
if i == j then
dist(i,j) = 0;
else
dist(i,j) = tspDistOnSphere(coord(i,1) , coord(i,2) , coord(j,1) , coord(j,2));
end
end
end
pos = zeros(_size,2);
for j = 1:_size
pos(j,1)=coord(j,2);
pos(j,2)=coord(j,1);
end
|
b8fa6bf64a7cc4ed2473ae33ffa9d68c6839a69b | 449d555969bfd7befe906877abab098c6e63a0e8 | /3511/CH8/EX8.5/Ex8_5.sce | bbb11b731d3a50d9303635ede6747e9b093b9952 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,054 | sce | Ex8_5.sce | clc;
N=12500; // Speed in rpm
m=15; // Mass flow rate in kg/s
rp=4; // Pressure ratio
eff_c=0.75; // Isentropic efficiency
mu=0.9; // Slip factor
pi=0.3; // Flow coefficient at impeller exit
D=0.15; // Hub diameter in m
ca2=150; // Axial velocity in m/s
T01=275; // Inlet temperature in kelvin
p01=1; // Inlet pressure in bar
Cp=1.005;// Specific heat at constant pressure in kJ/kg K
Cv=0.717;// Specific heat at constant volume in kJ/kg K
r=1.4; // Specific heat ratio
R=287; // Characteristic gas constant in J/kg K
u2=ca2/pi;
P=m*mu*u2^2/1000; // Power output
D2=u2*60/(3.14*N);
T1=T01-ca2^2/(2*Cp*10^3);
p1=p01*(T1/T01)^(r/(r-1));
row1=p1*10^5/(R*T1);
A1=m/(row1*ca2);
D1=sqrt ((A1*4/(3.14))+D^2);
p3_p1=rp;
p2=2*p1;
T_2=T1*(p2/p1)^((r-1)/r);
T2=T1+(T_2-T1)/eff_c;
row2=p2*10^5/(R*T2);
W2=(m)/(row2*ca2*3.14*D2);
disp ("kW",P,"Power = ");
disp ("Impeller Diameters");
disp ("cm",D2*100,"D2 = ","cm (roundoff error)",D1*100,"D1 = ");
disp ("Impeller width")
disp ("cm (roundoff error)",W2*100,"W2 = ");
|
d23696cfdd608ffdd456b7cf1422b9483a06edf6 | 05df9394f5d45c0bddbd52e4aad8c8210e9e2743 | /Scilab/Linear_Interpolation.sce | 23013b3d456608ad9c8a49d57b000dc72732b236 | [] | no_license | pikabing/Scilab | a9fd34b70be3bd552f47fafc409bf7c88573ac7a | 87f2cc1914bfdb6c24a54960e9c49191bbd1f1ad | refs/heads/master | 2020-03-10T09:34:56.522084 | 2018-04-12T21:51:52 | 2018-04-12T21:51:52 | 129,311,712 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 138 | sce | Linear_Interpolation.sce | function[ans] = linear_interpolarion(x,x0,y0,x1,y1)
b0 = y0;
b1 = (y1 - y0) / (x1-x0);
ans = b0 + b1*(x-x0);
endfunction
|
78951ce97fd9198e18e8904645f051d5f30ad6a1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /869/CH1/EX1.6/1_6.sce | 58504d63cb281ab43c6b8ed140f7d5b09d1139ad | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 137 | sce | 1_6.sce | clc
//initialisation of variables
V= 30 //mph
//CALCULATIONS
Vinfps= V*5280*(1/60)*(1/60)
//RESULTS
printf ('v = %.f fps',Vinfps)
|
3f016948a6ba2b83f33ea7e938acea0f498b4bc3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /608/CH36/EX36.15/36_15.sce | 9be820846bae8d4c55c9afeb29f568a4cafbadd4 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,635 | sce | 36_15.sce | //Problem 36.15: A voltage wave has an amplitude of 800 V at the fundamental frequency of 50 Hz and its nth harmonic has an amplitude 1.5% of the fundamental. The voltage is applied to a series circuit containing resistance 5 ohm, inductance 0.369 H and capacitance 0.122 μF. Resonance occurs at the nth harmonic. Determine (a) the value of n, (b) the maximum value of current at the nth harmonic, (c) the p.d. across the capacitor at the nth harmonic and (d) the maximum value of the fundamental current.
//initializing the variables:
V1m = 800; // in volts
f = 50; // in Hz
x = 0.015;
C = 0.122E-6; // in farads
R = 5; // in ohms
L = 0.369; // in Henry
//calculation:
//voltage at nth harmonic
Vnm = x*V1m
w = 2*%pi*f
//For resonance at the nth harmonic nwL = 1/nwC
n = 1/(w*(L*C)^0.5)
//At resonance, impedance
Zn = R
//the maximum value of current at the nth harmonic
Inm = Vnm/Zn
//capacitive reactance, at nth harmonic
Xcn = 1/(n*w*C)
//the p.d. across the capacitor at the nth harmonic
Vcn = Inm*Xcn
//At the fundamental frequency, inductive reactance,
XL1 = w*L
//capacitive reactance
Xc1 = 1/(w*C)
//Impedance at the fundamental frequency,
Z1 = R + %i*(XL1 - Xc1)
Z1mag = (real(Z1)^2 + imag(Z1)^2)^0.5
phiZ1 = atan(imag(Z1)/real(Z1))
//Maximum value of current at the fundamental frequency,
I1m = V1m/Z1mag
printf("\n\n Result \n\n")
printf("\n(a)n = %.0f",n)
printf("\n(b)the maximum value of current at the nth harmonic %.2f A",Inm)
printf("\n(c)the p.d. across the capacitor at the nth harmonic is %.2f",Vcn)
printf("\n(d)the maximum value of the fundamental current. %.2f A",I1m) |
b7089d5fc764ab98a2fbc4e9dda1da9bd4197ae6 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1703/CH10/EX10.5/10_5.sce | 1272fd5d8f6900c67d3023b04b576e58b1633bec | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 548 | sce | 10_5.sce |
clc
//initialisation of variables
pl= 122.5 // ft
Hw= 1225 //ft
g= 32.2 //ft/sec^2
Cd= 0.98
Cd1= 0.45
N= 500 //r.p.m
P= 6800 //h.p
n= 0.86
w= 62.4 //lb/ft^2
l= 5450 //ft
f= 0.005
A= 18 //ft^2
//CALCULATIONS
Ah= Hw-pl
js= Cd*sqrt(2*g*Ah)
bs= Cd1*js
D= bs*60*2/(N*2*%pi)
a= P*2*g*550*144/(n*w*js^3*2)
vp= sqrt(pl*2*g/(4*f*l))
dp= (js*2*4*A/(%pi*144*vp))^(2/3)
dp=2.495 //ft
//RESULTS
printf ('diameter of bucket circle D = %.1f ft',D)
printf ('\n area of jet = %.f in^2',a)
printf ('\n diameter of pipe = %.1f ft',dp)
|
c086e1b38db121624996de284525cfc45be56367 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1757/CH6/EX6.10/EX6_10.sce | 2f69e7ff4ce8c5fdf9269a40d70eec430a790d4d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499817 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,063 | sce | EX6_10.sce | //Example6.10 // To determine the range of the differential voltage gain
clc;
clear;
close;
//R1 = 1 K ohm to 25 K ohm ;
R2 = 50 ; // K ohm
R3 = 10 ; // K ohm
R4 = 10 ; // K ohm
// the output of instrumentation amplifier is given by
//Vo = (R4/R3)*(1+(2*R2/R1))*(VI@-VI1);
// the differential voltage gain of the instrumentation amplifier can be written as
//Av = (Vo/(VI2-VI1)) = (R4/R3)*(1+(2R2/R1));
// For R1 = 1 K ohm the maximum differential voltage gain of the instrumentation amplifier is
R1 = 1 ; // K ohm
Av = (R4/R3)*(1+(2*R2/R1));
disp('the maximum differential voltage gain of the instrumentation amplifier is = '+string(Av)+ ' ');
// For R1 = 25 K ohm the mminimum differential voltage gain of the instrumentation amplifier is
R1 = 25 ; // K ohm
Av = (R4/R3)*(1+(2*R2/R1));
disp('the minimum differential voltage gain of the instrumentation amplifier is = '+string(Av)+ ' ');
disp(' the range of the differential voltage gain of the instrumentation amplifier is ');
disp(' 5 <= Av <= 101 ');
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.