Dataset Viewer
blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 6
214
| content_id
stringlengths 40
40
| detected_licenses
sequencelengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 7
87
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 6
values | visit_date
timestamp[us]date 2016-08-04 21:00:17
2023-09-04 18:06:17
| revision_date
timestamp[us]date 2006-11-21 14:53:12
2023-08-28 19:50:26
| committer_date
timestamp[us]date 2006-11-21 14:53:12
2023-08-28 19:50:26
| github_id
int64 955k
471M
⌀ | star_events_count
int64 0
907
| fork_events_count
int64 0
379
| gha_license_id
stringclasses 5
values | gha_event_created_at
timestamp[us]date 2012-11-16 11:45:07
2023-08-16 20:49:37
⌀ | gha_created_at
timestamp[us]date 2012-08-01 11:36:17
2021-07-30 17:53:14
⌀ | gha_language
stringclasses 13
values | src_encoding
stringclasses 10
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 10
7.66M
| extension
stringclasses 1
value | filename
stringlengths 5
96
| content
stringlengths 10
7.66M
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
147120be5dee7265cfdb0f4301f014c9e724d2f1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3311/CH12/EX12.2/Ex12_2.sce | bd7a36d5d8100dc240b4f31ea1be85e7edcac6e0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,115 | sce | Ex12_2.sce | // chapter 12
// example 12.2
// fig. 12.8
// Determine resonant frequency, maximum operating frequency,Peak thyristor current, average thyristor current, rms thyristor current, rms load current and average supply current
// page-760-762
clear;
clc;
// given
C1=4; // in uF
C2=4; // in uF
Lr=40; // in uH
R=2; // in ohm
Edc=120; // in V (input voltage)
t_q=20; // in us (SCR turn-off time)
// calculate
Lr=Lr*1E-6; // changing unit from uH to H
t_q=t_q*1E-6; // changing unit from us to s
Ceq=C1+C2;
Ceq=Ceq*1E-6; // changing unit from uF to F
wr=sqrt((1/(Lr*Ceq))-R^2/(4*Lr^2)); // calculation of resonant angular frequency
fr=wr/(2*%pi); // calculation of resonant frequency
tr=1/fr; // calculation of resonant time-period
fr_max=1/(2*t_q); // calculation of maximum frequency
f0=0.4*fr; // calculation of output frequency
T0=1/f0; // calculation of output period
td=T0/2-tr; // calculation of delay time
tp=(1/wr)*atan(2*wr*Lr/R); // calculation of time at which peak current is obtained
Ec1=Edc/(exp(R*2*%pi/(2*Lr*wr))+1); // calculation of initial capacitor voltage
Ip=(Edc+Ec1)/(wr*Lr)*sin(wr*tp)*exp(-R*tp/(2*Lr)); // calculation of peak current
I_av_SCR=(Edc+Ec1)/(wr*Lr)*(1/T0)*integrate('sin(wr*t)*exp(-R*t/(2*Lr))','t',0,tr/2); // calculation of average thyristor current
I_rms_SCR=(Edc+Ec1)/(wr*Lr)*sqrt((1/T0)*(integrate('(sin(wr*t))^2*exp(-R*t/Lr)','t',0,tr/2))); // calculation of rms thyristor current
I0=2*I_rms_SCR; // calculation of rms load current
P0=I0^2*R; // calculation of output power
Is=P0/Edc; // calculation of average supply current
printf("\nThe resonant frequency is \t\t\t fr=%.3f KHz",fr*1E-3);
printf("\nThe maximum possible operating frequency is \t fr_max=%.f KHz",fr_max*1E-3);
printf("\nThe Peak thyristor current is \t\t\t Ip=%.2f A",Ip);
printf("\nThe average thyristor current is \t\t I_av_SCR=%.3f A",I_av_SCR);
printf("\nThe rms thyristor current is \t\t\t I_rms_SCR=%.2f A",I_rms_SCR);
printf("\nThe rms load current is \t\t\t I0=%.1f A",I0);
printf("\nThe average supply current is \t\t\t Is=%.2f A",Is);
// Note : The answers vary slightly due to precise calculation
|
4553ddfff9ca13c06f12cda03c1826b45928b941 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3204/CH12/EX12.7/Ex12_7.sce | 13059d1b93aa03cc9fb0b8b2ffd54c661e07be4a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 538 | sce | Ex12_7.sce | // Initilization of variables
A= 50 // cm^2 // area of the shaded portion
J_A=22.5*10^2 // cm^4 // polar moment of inertia of the shaded portion
d=6 // cm
// Calculations
J_c=J_A-(A*d^2)
// substuting the value of I_x from eq'n 2 in eq'n 1 we get,
I_y=J_c/3 // cm^4 // M.O.I about Y-axis
// Now from eq'n 2,
I_x=2*I_y // cm^4 // M.O.I about X-axis
// Results
clc
printf('The centroidal moment of inertia about X-axis (I_x) is %f cm^4 \n',I_x)
printf('The centroidal moment of inertia about Y-axis (I_y) is %f cm^4 \n',I_y)
|
ff2b2f0212d404e54b094ecb52814db0c88ef06b | 449d555969bfd7befe906877abab098c6e63a0e8 | /3710/CH4/EX4.3/Ex4_3.sce | 3f143509db81db406f426aa1d9ff7dc51bfa77d9 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,246 | sce | Ex4_3.sce | //Example 4.3, Page Number 158
//The Function fpround(dependency) is used to round a floating point number x to n decimal places
clc;
d=0.2*(10**-3) //Chip Diameter in meter
d1=1 //Distance in Meter
l=550*(10**-9 ) //Wavelength in Meter
q=0.001 //External Quantum Efficiency
i=50*(10**-3) //Operational Current
h=6.6*(10**-34)//Plancks Constant
c=3*(10**8)//Speed of Light
e=1.6*(10**-19)//Charge of an electron
theta=(d/2)
mprintf("Angle Theta of Emitting Area :%f\n",theta)
mprintf(" Since theta is less than one, the LED acts as a Point Source\n")
W=((h*c)/l)*q*(i/e) //W is the Total Radiant Power
W=fpround(W,6)
mprintf(" The Total Radiant Power is :%.2e W\n",W)
//From the graph(Fig 1.24 Page No.33)
l1=600 //Average Luminosity
lf=W*l1 //lf is the luminous flux from the source
lf=fpround(lf,3)
mprintf(" The Luminous Flux from the source is:%.2e lm\n",lf)
li=lf/(2*3.14)//li is the luminous intensity at normal incidence since flux is distributed over angle 2PI
li=fpround(li,4)
mprintf(" The Luminous Intensity at normal incidence is: %.2e candela\n",li)
X = [400,500,555,600,650,700]
V = [0.0,0.3,1.0,0.7,0.3,0.0]
plot(X,V);
xlabel("Wavelength in nm")
ylabel("V")
title("Fig 1.24")
|
bba581d482483adf1aac3470846152ac65a73005 | 449d555969bfd7befe906877abab098c6e63a0e8 | /401/CH3/EX3.7/Example3_7.sce | 081047e80d4e0cdfff01e7d7c1ea2f7520995f32 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 731 | sce | Example3_7.sce | //Example 3.7
//Program to estimate rms pulse broadening per kilometer for the fiber
clear;
clc ;
close ;
//Given data
lambda=0.85*10^(-6); //metre - WAVELENGTH
L=1; //km - DISTANCE
MD=0.025;//MATERIAL DISPERSION = mod(lamda^2*[del^2(n1)/del(lamda)^2)
c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
sigma_lambda_by_lambda=0.0012;// sigma_lambda/lambda
//Material Dispersion Parameter
M=MD/(lambda*c);
//R.M.S. Spectral Width
sigma_lambda=sigma_lambda_by_lambda*lambda;
//R.M.S. pulse broadening per kilometer
sigma_m=sigma_lambda*L*M;
//Displaying the Result in Command Window
printf("\n\n\t R.M.S. pulse broadening per kilometer is %0.2f ns/km.",sigma_m/10^(-12)); |
d7cd385a2ace5b07e56046ddd7b1c526047a180b | 449d555969bfd7befe906877abab098c6e63a0e8 | /2513/CH14/EX14.5/14_5.sce | ee69c21d49d40a139f1ef83d1bf54904adcaed4d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 499 | sce | 14_5.sce | clc
//initialisation of variables
d1=0.67//ft
h1=2.00//ft
h2=4.04//ft
hv1=0.062//ft
hv2=0.254//ft
d=0.19//ft
h=0.2//ft
h1=0.04//ft
q=0.644//ft
q1=0.65//ft
v=0.92//ft
d2=6.5//ft
v1=3.69//ft
d3=0.542//ft
hv3=0.21//ft
delv=0.15//ft
d4=0.02//ft
//CALCULATIONS
H=d1+hv1//ft
H1=d1+hv2//ft
he=h*d//ft
hi=d+h1//ft
H2=d3+hv3//ft
he1=h*delv//ft
S=d4+h1//ft
//RESULTS
printf('the required slope=% f ft',hi)
printf('the lower sewer and the invert drop in the transition=% f ft',S)
|
6861bacb671cfa6dfe6db8039f1b19103726b8a8 | 449d555969bfd7befe906877abab098c6e63a0e8 | /24/CH42/EX42.3/Example42_3.sce | 963a9d4a9bcb69eb4d5d371aec65c235c702df84 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 395 | sce | Example42_3.sce | //Given that
E = 7 //in ev
V = 2*10^-9 //in m^3
density = 2*10^28 //in m^3/ev
deltaE = 3*10^-3 //in ev
//Sample Problem 42-3a
printf("**Sample Problem 42-3a**\n")
n = density*V
printf("The number of states are equal to %1.2e per ev\n", n)
//Sample Problem 42-3b
printf("\n**Sample Problem 42-3b**\n")
n = n*deltaE
printf("The number of states are equal to %1.2e per ev\n", n) |
1b7a48afe6f0657c305f7c8eb4db799c9fbc0b87 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2561/CH10/EX10.6/Ex10_6.sce | b1b9776b89e3f9b69f7262fb9c2db29dd7551e62 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 155 | sce | Ex10_6.sce | //Ex10_6
clc
x='110';
disp("Octal number="+string(x))// octal value
str=oct2dec(x)//octal to decimal
disp("Eqivalent Decimal number="+string(str))
|
780ab8fa1e903eedf5b8ceaedf5dc96c5ef1cff4 | 449d555969bfd7befe906877abab098c6e63a0e8 | /866/CH6/EX6.2/6_2.sce | e956e8573ad4bab294636e8d1ac639b2a1e29679 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 653 | sce | 6_2.sce | clc
//initialisation of variables
W= -10 //KN/m
Yac= 7 //m
xad= -7.5 //m
xac= -15 //m
xcb= 10 //m
//CALCULATIONS
k= Yac/((xac)^2)
yb= k*(xcb)^2
hb= Yac-yb
yd= k*(xad)^2
hd= Yac-yd
A=[(xcb-xac),(hb);(xcb),(-yb)]
b=[-W*(-xac)*(-xad);0]
c= A\b
Rbv= c(1,1)
Rbh= c(2,1)
Rah= Rbh
Rav= -Rbv-W*(-xac)
dybydx= 2*k*xad
alpha= atand(-2*k*xad)
Nd= -Rav*sind(alpha)-Rah*cosd(alpha)+((-W)*(-xad)*sind(alpha))
Sd= -Rav*cosd(alpha)+Rah*sind(alpha)+((-W)*(-xad)*cosd(alpha))
Md= Rav*(-xad)-Rah*hd+W*(-xad)*(-xad/2)
//RESULTS
printf ('Normal force= %.2f kN',Nd)
printf ('\n Shear force=%.2f KN',Sd)
printf (' \n Bending moment=%.1f KNm',Md)
|
23b79b4e7c237c7d5cba33a025a23088e924c985 | ac4e0c7ecf872bf33401feeb94567319345f1d91 | /Culvert_design.sce | 75eb59470e8de6eec9941be54295d13d9424bd2f | [] | no_license | namanmaheshwari97/Circular-Culvert-Design-Analysis | 91a47220ca8ff7c3c3dc04b598aa1b2532b07304 | 260c00fa43a36915c3de352da2bf30929a6cb81e | refs/heads/master | 2021-01-20T20:56:56.559000 | 2016-07-08T17:53:43 | 2016-07-08T17:53:43 | 62,906,453 | 0 | 1 | null | 2020-10-05T08:15:54 | 2016-07-08T17:43:39 | Scilab | UTF-8 | Scilab | false | false | 7,417 | sce | Culvert_design.sce | disp("15CS101L");
disp("Programming Laboratory");
disp("Internet Programming lab");
disp("Culvert Design and Analysis");
disp("Mr. M. Mohamed Rabik");
disp("Aryaman Dhanda , RA1511003010481");
disp("Naman Maheshwari , RA1511003010471");
disp("Sidharth Suresh , RA1511003010477");
disp("Select Pipe material and inlet type");
disp("1. Concrete. Square edge inlet with headwall.");
disp("2. Concrete. Groove end inlet with headwall.");
disp("3. Concrete. Groove end projecting at inlet.");
disp("4. Corrugated metal (CMP). Headwall at inlet.");
disp("5. Corrugated metal (CMP). Mitered to slope at inlet.");
disp("6. Corrugated metal (CMP). Projecting at inlet");
pipeMaterial = input("Enter the number corresponding to the pipe Material. (0 to 6) :");
//np = Pipe manning n coefficient.
//C1,C2,C3,C4,C5 = constants for inlet control equations
//Ke = Minor loss coefficient for pipe inlet
select(pipeMaterial)
case 1 then np = 0.013;
C1 = 0.0098;
C2 = 2.0;
C3 = -0.5;
C4 = 0.0398;
C5 = 0.67;
Ke = 0.5;
case 2 then np = 0.013;
C1 = 0.0078;
C2 = 2.0;
C3 = -0.5;
C4 = 0.0292;
C5 = 0.74;
Ke = 0.2;
case 3 then np = 0.013;
C1 = 0.0045;
C2 = 2.0;
C3 = -0.5;
C4 = 0.0317;
C5 = 0.69;
Ke = 0.2;
case 4 then np = 0.022;
C1 = 0.0078;
C2 = 2.0;
C3 = -0.5;
C4 = 0.0379;
C5 = 0.69;
Ke = 0.5;
case 5 then np = 0.022;
C1 = 0.0210;
C2 = 1.33;
C3 = 0.7;
C4 = 0.0463;
C5 = 0.75;
Ke = 0.7;
case 6 then np = 0.022;
C1 = 0.0340;
C2 = 1.50;
C3 = -0.5;
C4 = 0.0553;
C5 = 0.54;
Ke = 0.9;
else
disp("Entered value is incorrect. Please recheck !");
end
disp("Choose the channel material : ");
disp("1. Clean and Straight");
disp("2. Major Rivers");
disp("3. Sluggish with Deep pools.");
disp("4. Clean");
disp("5. Gravelly");
disp("6. Weedy");
disp("7. Stony, Cobbles");
disp("8. Pasture, Farmland");
disp("9. Light Brush");
disp("10. Heavy Brush");
disp("11. Trees");
channelMaterial = input("Enter the values from 1-11 :");
select(channelMaterial)
case 1 then nc = 0.030;
case 2 then nc = 0.035;
case 3 then nc = 0.040;
case 4 then nc = 0.022;
case 5 then nc = 0.025;
case 6 then nc = 0.030;
case 7 then nc = 0.035;
case 8 then nc = 0.035;
case 9 then nc = 0.050;
case 10 then nc = 0.075;
case 11 then nc = 0.15;
else
disp("Entered value is incorrect. Please recheck ! ");
end
A=input("Flow area :");
Ac=input("Flow area in one pipe based on critical depth : ");
Av=input("Flow area in one pipe used for computing outlet velocity : ");
b=input("Width of channel bottom :");
D=input("Diameter of each pipe : ");
Ei1=input("Elevation of road crest relative to pipe outlet invert : ");
Er=input("Elevation of road (or dam) crest relative to pipe outlet invert :");
g=input("Acceleration due to gravity : ");
H=input("Head loss computed from outlet control equation : ");
Lp=input("Pipe length : ");
Lw=input("Weir length : ");
N=input("Number of pipes next to each other : ");
P=input("Wetted perimeter : ");
Qp=input("Flowrate through each pipe : ");
Qr=input("Flowrate over the road : ");
Sc=input("Slope of existing channel : ");
Sp=input("Pipe slope : ");
Tc=input("Top width of flow in one pipe based on critical depth : ");
theta = 0;
Vc=input("Pipe velocity based on critical depth : ");
Yavg=input("Average water depth : ");
Yc=input("Critical water depth : ");
Yf=input("Fall : ");
Yh=input("Headwater depth : ");
Yo=input("Water outlet depth : ");
Yt=input("Tailwater depth : ");
Yv=input("Depth used for computing outlet velocity : ");
Z1=input("Left side slope of existing natural channel : ");
Z2=input("Right side slope of existing natural channel : ");
//General Equations
Qt=Qr+N*Qp;
Sp=Sc-Yf/Lp;
Ei=Lp*Sp;
Eh=Ei+Yh;
V=Qp/Av;
//Tailwater Depth
//Manning's Equation is used for computing Yt
Qt=((1.49*A*sqrt(Sc))/(nc))*(A/P)^(0.67);
A=Yt*b+(Yt^2/2)*(Z1+Z2);
P=b+Yt*(sqrt(1+Z1^2)+sqrt(1+Z2^2));
//Headwater depth
//Yh is computed Independently based on inlet and outlet control equations
//Inlet control-Outlet velocity(v) is computer based on what we call the velocity depth,Yv)
if Yh<D then
Yh=Yc+Vc^2/(2*g)+D*(C1*((4*Qp/(3.14*D^(2.5))))^C2+C3*Sp);
Yc=0.42195*sqrt(Qp)/(D*0.26);
Tc=2*sqrt(Yc*(D-Yc));
theta=2*asind(Tc/D);
elseif Yc>D/2 then
theta=2*3.14-theta;
Ac=((D^2)/8)*(theta-sin(theta));
Vc=Qp/Ac;
elseif Yh>=D then
Yh=D((4*((4*Qp/(3.14*D^2.5)))^2+C5+C3*Sp));
//outlet control
elseif Yt<=Y then
Yv=Yc;
elseif Yt>Yc & Yt<D
then Yv=Yt;
elseif Yt>=D
then Yv=D;
elseif Yh<0.93*D
then
T=2*sqrt(Yh*(D-Yh));
theta=2*asind(T/D);
elseif Yh>D/2
then theta=2*3.14-theta;
A=((D^2)/8)*(theta-sin(theta));
P=(theta*D)/2;
Qp=((1.49*A*sqrt(Sp))/np)*((A/P)^0.67);
elseif Yh>=0.93D then
H=[1+Ke+29*n^2*Lp*(4/D)^1.33]*(8*Qp^2)/(g*3.14*3.14*D^4);
elseif Yc<D
then Yavg=(Yc+D)/2;
elseif Yc>=D
then
Yavg=D;
Yo=Max(Yt,Yavg);
Yh=Yo+H-Ei;
end
//flow rate
Qr=3*Lw*((Eh-Er)^1.5);
//Error Messages and Validity
//Input checks in top half of calculation.
// If one of these messages appears, the calculation is halted.
if Qt>=0 & Qt<10000 then
disp("Total flow canot be negative or must be less than 10,000 m^3/s");
elseif N>0 & N<1001 then
disp("Must have at least one pipe,but no more than 1000 pipes");
elseif D>0 & D<100
disp("Pipe diameter must be positive and less than 100");
elseif Lp>0 & Lp<10000
disp("Pipe length must be positive and less than 10,000");
elseif np>0 & np<0.05
disp("Pipe Manning n must be positive and less than 0.05");
elseif Yt<Er
disp("Tailwater depth cannot be higher than the road crest");
elseif (Ei+D)<Er
disp("Upstream pipe invert plus culvert diameter cannot exceed road crest elevation");
elseif (Ei+D)>Er
disp("Not acceptable as the top of the culvert is pushing through the road");
elseif Lw>0 & Lw<10000
disp(" Weir length of road must be positive and less than 10,000m");
elseif Yt<10000
disp("Tailwater depth must be less than 10,000.Negative values are acceptable.Negatives simulate culverts discharging to a lower channel");
elseif Sc<0.5
disp("Channel bottom slope cannot exceed 0.5m/m.This is the longitdinal slope,not the sides slopes");
elseif Sc>0
disp("Channel cannot be horizontal");
elseif b>0 & b<10000
disp("Channel bottom width must be positive and less than 10,000");
elseif (Z1>0 & Z1<10000)|(Z2>0 & Z2>10000)
disp("Channel side slopes can be neither exactly vertical(z=0)nor nearly flat (z>10000) z is defined as horizontal to vertical ratio");
elseif Sp>10^-7 & Sp<0.5
disp("Pipe slope must be between these limits");
end
|
eea1ab22592932b9f7e53374732d900a3f1b84c6 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1073/CH3/EX3.37/3_37.sce | 23d8550868b67d75999bd4309559c4be1693fe44 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,247 | sce | 3_37.sce | clc;
clear;
//Example 3.37
k=0.03 //W/(m.K)
Npr=0.697 //Prandtl number
v=2.076*10^-6 //m^2/s
Beta=0.002915 //K^-1
D=25 ; //[Diameter in cm]
D=D/100 //[m]
Tf=343 //Film temperature in [K]
A=%pi*(D/2)^2 //Area in [m^2]
P=%pi*D //Perimeter [m]
T1=293 //[K]
T2=393 //[K]
g=9.81 //[m/s^2]
//Case (i) HOT SURFACE FACING UPWARD
L=A/P //Characteristic length in [m]
Beta=1/Tf; //[K^-1]
dT=T2-T1 //[K]
Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number
Nra=Ngr*Npr
Nnu=0.15*(Nra^(1.0/3.0)) //Nusselt number
h=Nnu*k/L //[W/m^2.K]
Q=h*A*dT //[W]
printf("\nHeat transferred when disc is horizontal with hot surface facing upward is %f W\n",Q);
//Case-(ii) HOT FACE FACING DOWNWARD
Nnu=0.27*(Nra^(1/4)) //Nusselt number
h=Nnu*k/L //W/(m^2.K)
Q=h*A*dT //[W]
printf("\nHeat transferred when disc is horizontal with hot surface facing downward is %f W\n",Q);
//Case-(iii)-For disc vertical
L=0.25 //Characteristic length[m]
D=L //dia[m]
A=%pi*((D/2)^2) //[sq m]
Ngr=(g*Beta*dT*(L^3))/(v^2) //Grashoff number
Npr=0.697
Nra=Ngr*Npr
Nnu=0.10*(Nra^(1/3)) //Nusselt number
h=Nnu*k/D //[W/(m^2.K)]
Q=h*A*dT //[W]
printf("For vertical disc,heat transferred is %f W",Q);
|
073122559c1d3581b7fd7ae1227eb3825648d64f | 449d555969bfd7befe906877abab098c6e63a0e8 | /2441/CH2/EX2.20/Ex2_20.sce | bbcac8e1564a44052e36c711970f15631a3d95f0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 406 | sce | Ex2_20.sce | //exa 2.20
clc;clear;close;
format('v',6);
//F1=0.004*P1^2+2*P1+80;//Rs./hr
//F2=0.006*P2^2+1.5*P2+100;//Rs./hr
P=250;//MW
P1=poly(0,'P1');P2=poly(0,'P2');
dF1bydP1=2*0.004*P1+2;
dF2bydP2=2*0.006*P2+1.5;
//Let loads are P1 & P-P1
//Economical loading lambda1=lambda2
eqn=2*0.004*P1+2-2*0.006*(P-P1)-1.5;
P1=roots(eqn);//MW
P2=P-P1;//MW
disp(P1,"Load P1(MW) : ");
disp(P2,"Load P2(MW) : ");
|
291700e7b1e6453af5951fc921c2306d16374f06 | e0124ace5e8cdd9581e74c4e29f58b56f7f97611 | /3913/CH9/EX9.3/Ex9_3.sce | abec6d1f4d24d8043eddbae9d54cd2deaef85fa7 | [] | no_license | psinalkar1988/Scilab-TBC-Uploads-1 | 159b750ddf97aad1119598b124c8ea6508966e40 | ae4c2ff8cbc3acc5033a9904425bc362472e09a3 | refs/heads/master | 2021-09-25T22:44:08.781000 | 2018-10-26T06:57:45 | 2018-10-26T06:57:45 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 775 | sce | Ex9_3.sce | //Chapter 9 : Eigenvalues and Eigenvectors
//Example 9.3
//Scilab 6.0.1
//Windows 10
clear;
clc;
A=[-3 1 -1;-7 5 -1;-6 6 -2];
disp(A,'A=')
eig=spec(A)
disp(eig,'eigen values are:')
e4=A-4*eye(3,3)
mprintf('\n(A-4I3)x=')
disp('*',e4)
mprintf(' [x\n y\n z]=')
z=zeros(3,1)
disp(z)
mprintf('\nthis reduces to x=0,y-z=0')
mprintf('\nE4 is spanned by ')
mprintf('\n x=\n [0\n y\n y]')
mprintf('eigenspace E4 is of dimension 1 with basis')
mprintf('\n [0\n 1\n 1]')
e2=A+2*eye(3,3)
mprintf('\n(A+2I3)x=')
disp('*',e2)
mprintf(' [x\n y\n z]=')
z=zeros(3,1)
disp(z)
mprintf('\nthis reduces to x=y,z=0')
mprintf('\nE2 is spanned by ')
mprintf('\n x=\n [x\n x\n 0]')
mprintf('\neigenspace E2 is of dimension 1 with basis')
mprintf('\n [1\n 1\n 0]')
|
4e0371c2896fea9567f1607729a523d93993acac | 449d555969bfd7befe906877abab098c6e63a0e8 | /32/CH17/EX17.02/17_02.sce | 16759b06db83566a6b2e67de9b28ceee06a50d8d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 453 | sce | 17_02.sce | //pathname=get_absolute_file_path('17.02.sce')
//filename=pathname+filesep()+'17.02-data.sci'
//exec(filename)
//Indicator diagram area & length(in m^2 & m):
A=40*10^(-4)
l=0.08
//Bore(in m):
D=0.15
//Stroke(in m):
L=0.20
//Rpm of motor:
N=100
//Spring constant(in Pa/m):
k=1.5*10^8
//Mep(in Pa):
mep=A*k/l
//Indicated power(in kW):
IP=(%pi*D^2/4*L*mep*N/60*2)/10^3
printf("\n RESULT \n")
printf("\nPower required to drive =%f kW",IP) |
0fded5ba01cadcba38a6419a7427c9cf12a67c52 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1970/CH6/EX6.12/Ch06Exa12.sce | c5d2891ff977176c01ac829277d84480b3330718 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 810 | sce | Ch06Exa12.sce | // Scilab code Exa6.12: : Page-244(2011)
clc; clear;
h_kt = 1.05457e-34; // Reduced planck's constant, joule sec
c = 3e+08; // velocity of light, metre per sec
m_e = 9.1e-31; // Mass of the electron, Kg
ft_O = 3162.28; // Comparative half life for oxygen
ft_n = 1174.90; // Comparative half life for neutron
M_f_sqr = 2 // Matrix element
g_f = sqrt(2*%pi^3*h_kt^7*log(2)/(m_e^5*c^4*ft_O*M_f_sqr)); // Coupling constant, joule cubic metre
C_ratio = (2*ft_O/(ft_n)-1)/3; // Ratio of coupling strength
printf("\nThe value of coupling constant = %6.4e joule cubic metre\nThe ratio of coupling constant = %5.3f", g_f, C_ratio);
// Result
// The value of coupling constant = 1.3965e-062 joule cubic metre
// The ratio of coupling constant = 1.461 |
ceb1ee947f561cb5b4db392a8418709f5f8af3bf | 449d555969bfd7befe906877abab098c6e63a0e8 | /1979/CH9/EX9.9/Ex9_9.sce | 13b06996a69a0bcad720b77a959e622d74ea638e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 675 | sce | Ex9_9.sce | //chapter-9 page 412 example 9.9
//==============================================================================
clc;
clear;
//For an IMPATT diode
Lp=0.5*10^(-9);//Inductance in Henry
Cj=0.5*10^(-12);//Capacitance in Farad
Ip=0.8;//RF peak current in A
Rl=2;//Load Resistance in ohms
Vbd=100;//Breakdown Voltage in V
Ib=0.1;//dc Bias current in A
//CALCULATION
f=(1/(2*(%pi)*sqrt(Lp*Cj)))/10^9;//Resonant Frequency in GHz
n=((Rl*Ip^2)/(2*Vbd*Ib))*100;//Efficiency in Percentage
//OUTPUT
mprintf('\nResonant Frequency is f=%2.0f GHz \nEfficiency is n=%1.1f percentage',f,n);
//=========================END OF PROGRAM===============================
|
dd95a6cb281dfe990dee8c1a63d04d50fb7310bd | 449d555969bfd7befe906877abab098c6e63a0e8 | /3872/CH14/EX14.2/EX14_2.sce | df7fb91ddc54f9b4759beb52958ddc286c56723c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,446 | sce | EX14_2.sce | //Book - Power System: Analysis & Design 5th Edition
//Authors - J. Duncan Glover, Mulukutla S. Sarma, and Thomas J. Overbye
//Chapter - 14 ; Example 14.2
//Scilab Version - 6.0.0 ; OS - Windows
clc;
clear;
MVAtr1=40; //MVA FOA rating of transformer 1
MVAtr2=40; //MVA FOA rating of transformer 2
normal=1.28; //Factor for normal summer operation
emergency2hr=1.70; //Factor for two hour emergency operation
emergency30day=1.55; //Factor for thirty days emergency operation
unequalloadingfactor=0.95; //Factor to account for unequal transformer loading
MVAstation=normal*(MVAtr1+MVAtr2)*unequalloadingfactor; //MVA rating of thr station
MVAstationemergency2hr=emergency2hr*MVAtr1; //MVA rating of a single transformer for two hour emergency
MVAstationemergency30day=emergency30day*MVAtr1; //MVA rating of a single transformer for thirty days emergency
printf('\nThe summer normal rating of the station is %f MVA',MVAstation);
printf('\nThe emergency rating of the single transformer for two hours is %f MVA',MVAstationemergency2hr);
printf('\nThe emergency rating of the single transformer for thirty days is %f MVA',MVAstationemergency30day)
|
d134852d495e34f3223ec0024f8bffd9e90d9dac | 449d555969bfd7befe906877abab098c6e63a0e8 | /2438/CH6/EX6.3/Ex6_3.sce | 34a47fcc2e091ed37aff3adced9a59e4c8583f48 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 621 | sce | Ex6_3.sce | //==========================================================================
// chapter 6 example 3
clc;
clear;
//input data
t1 = 20; // temperature in °C
alpha = 5*10^-3; //average temperature coefficient at 20°C
R1 = 8; //resistance in ohm
R2 = 140; //resistaance in ohm
//calculation
t2 = t1+((R2-R1)/(R1*alpha)); //temperature in C
//result
mprintf('Hence temperature under normal condition is %3.2f°C\n',t2);
//============================================================================
|
cc33f671cc87fec1a12d3a2ec959bbaefed414ac | 449d555969bfd7befe906877abab098c6e63a0e8 | /2339/CH7/EX7.5.1/Ex7_5.sce | ff9d8119b034a3b0668d3e15ad06a724bbef4e43 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 294 | sce | Ex7_5.sce | clc
clear
Vc=5*(10^-4);
D=0.15;
L=0.2;
Vs=(22/7)*D*D*L*(1/4);
r=(Vc+Vs)/Vc;
G=1.4;
Ea=[1-(1/(r^(G-1)))];
Eith=0.3;
Erel=Eith/Ea;
printf('Erel= %3.2f Percent',Erel*100);
printf('\n');
Pm=500; //in kPa
n=1000/2;
IP=(Pm*Vs*n)/60;
printf('IP= %3.2f kW',IP);
printf('\n');
|
c36897c296fed0095d35f74bf5e6b96feb5fb9f7 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1484/CH6/EX6.17/6_17.sce | d9bf1bd0f6ef06ed6d7c7555cd8200707edc8d49 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 415 | sce | 6_17.sce | clc
//initialisation of variables
f= 0.008
l= 2000 //ft
p1= 34 //ft
p2= 8 //ft
p3= 4 //ft
g= 32.2 //ft/sec^2
d= 18 //in
P= 140 //ft
l1= 9500 //ft
//CALCULATIONS
v= sqrt((p1-p2-p3)*2*g/((d/12)+(4*f*l/(d/12))))
Q= %pi*(d/12)^2*v/4
v1= sqrt(P*2*g/((d/12)+(4*f*l1/(d/12))))
Q1= %pi*(d/12)^2*v1/4
//RESULTS
printf ('Quantity discharge= %.f cuses',Q)
printf ('\n Quantity discharge= %.2f cuses',Q1)
|
206a90ea8a95b78d3380390a9293293aa3b37b87 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1673/CH1/EX1.8/1_8.sce | bb2bb3e3682eff83e064972a8af8bd07c6fe3f34 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 229 | sce | 1_8.sce | //difference in 3 significant figures
//example 1.8
//page 11
clc;clear;close;
X1=sqrt(6.37);
X2=sqrt(6.36);
d=X1-X2;//difference between two numbers
printf('the differencecorrected to 3 significant figures is %0.3g',d);
|
364d495cd6ae5537c05baebf024616054636a0d1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /61/CH2/EX2.10/ex2_10.sce | 031ba3f42b699296e7abfa5cd745ebca0ef438ea | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 909 | sce | ex2_10.sce | //Ex2.10
//let input wave be V_in=V_p_in*sin(2*%pi*f*t)
f=1; //Frequency is 1Hz
T=1/f;
R_1=100; //Resistances in ohms
R_L=1000; //Load
V_p_in=10; //Peak input voltage
V_th=0.7; //knee voltage of diode
clf();
V_p_out=V_p_in*(R_L/(R_L+R_1)); //peak output voltage
disp(V_p_out,'peak output voltage in volts')
//let n be double the number of cycles of output shown in graph
for n=0:1:6
t=T.*n/2:0.0005:T.*(n+1)/2 //time for each half cycle
V_in=V_p_in*sin(2*%pi*f.*t);
Vout=V_in*(R_L/(R_L+R_1));
if modulo(n,2)==0 then //positive half, diode reverse biased
y=Vout;
else //negative half, diode forward biased
a=bool2s(Vout<-0.7); //puts zero to elements for which diode will conduct
b=bool2s(Vout>-0.7);
y=-V_th*a+b.*Vout;
end
plot(t,y)
end
xtitle('Negative limiter graph') |
6fe780c4d843bf673636f81d796a3743c02e6296 | 449d555969bfd7befe906877abab098c6e63a0e8 | /632/CH4/EX4.5/example4_5.sce | 972bcf1b4e4d1be663dc2c02ba3445b2b10e88b6 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 160 | sce | example4_5.sce | //clc()
V = 250;//L
T = 300;//K
V1 = 1000;//L
P1 = 100;//kPa
T1 = 310;//K
P = T * P1 * V1 /(T1 * V);
disp("kPa",P,"Original pressure in the cylinder = ") |
84aadb739e4c2d9ce5108e1aeef3a1bc3f90736d | 449d555969bfd7befe906877abab098c6e63a0e8 | /3392/CH15/EX15.2/Ex15_2.sce | da2f42dbdf1d8ba8f7d6c8cc61f3eb4d28ef84ce | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 593 | sce | Ex15_2.sce | clc
// initialization of variables
clear
d=250 //mm
c=30 //mm
t=25 //mm
// part (a)
a=5 //mm
lambda=a/(2*c)
f1l=1.22 //from the tble
f2l=1.02
//We don't know P yet so say P=1
P=1
Sfl=P/(t*2*c)*f1l+3*280*P*f2l/(2*t*c^2)
K_IC=59*sqrt(1000)
P=K_IC/(Sfl*sqrt(a*%pi))
printf('part (a)')
printf('\n P = %.1f kN',P/10^3)
// part (b)
a=10 //mm
lambda=a/(2*c)
f1l=1.33 //from the tble
f2l=1.05
// We don't know P yet so say P=1
P=1
Sfl=P/(t*2*c)*f1l+3*280*P*f2l/(2*t*c^2)
K_IC=59*sqrt(1000)
P=K_IC/(Sfl*sqrt(a*%pi))
printf('\n part (b)')
printf('\n P = %.1f kN',P/10^3)
|
76d419cb99d60785cc1f67d7ddbdf9d6938cf79a | 449d555969bfd7befe906877abab098c6e63a0e8 | /29/CH1/EX1.6.4/exa1_6_4.sce | c18a9026b3190b58c0a15d60d6c37dc038c6fba8 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 349 | sce | exa1_6_4.sce | //Caption:solution_of_differential_equation
// example 1.6.4
//page 10
//after taking laplace transform and applying given condition, we get :
//Y(s)=(6*s+6)/((s-1)*(s+2)*(s+3))
s=%s;
syms t
[A]=pfss((6*s+6)/((s-1)*(s+2)*(s+3)))
F1 = ilaplace(A(1),s,t)
F2 = ilaplace(A(2),s,t)
F3 = ilaplace(A(3),s,t)
F=F1+F2+F3;
disp (F,"f(t)=")//result |
ebf2ad31e4de3ba900b6b852f76a31af7548d80b | 449d555969bfd7befe906877abab098c6e63a0e8 | /551/CH4/EX4.28/28.sce | 9e9f9002c072d89dae426611a2b658f42f3db664 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 392 | sce | 28.sce | clc
p1=1.02*10^5; //Pa
T1=295; //K
V1=0.015; //m^3
p2=6.8*10^5; //Pa
y=1.4;
disp("(i) Final temperature")
T2=T1*(p2/p1)^((y-1)/y);
t2=T2-273;
disp("t2=")
disp(t2)
disp("°C")
disp("(ii) Final volume :")
V2=V1*(p1/p2)^(1/y);
disp("V2=")
disp(V2)
disp("m^3")
disp("(iii)Work done")
R=287;
m=p1*V1/R/T1;
W=m*R*(T1-T2)/(y-1)/10^3;
disp("W=")
disp(W)
disp("kJ") |
66de03264c0f8ffabef559e24d4a5d9bf0e3b95c | 449d555969bfd7befe906877abab098c6e63a0e8 | /2912/CH6/EX6.9/Ex6_9.sce | 0269cc49188e9219784cf70a039cdf25382a5500 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 688 | sce | Ex6_9.sce | //chapter 6
//example 6.9
//Calculate average drift velocity of electrons
//page 149
clear;
clc;
//given
I=4; // in A (current in the conductor)
e=1.6E-19; // in C (charge of electron)
A=1E-6; // in m^2 (cross-sectional area)
N_A=6.02E23; // in atoms/gram-atom (Avogadro's number)
p=8.9; // in g/cm^3 (density)
M=63.6; // atomic mass of copper
//calculate
n=N_A*p/M; // Calculation of density of electrons in g/cm^3
printf('\nThe density of copper atoms is \tn=%1.2E atoms/m^3',n);
n=n*1E6; // changing unit from g/cm^3 to g/m^3
printf('\n\t\t\t\t =%1.2E atoms/m^3',n);
v_d=I/(n*A*e);
printf('\n\nThe average drift velocity of free electrons is \tv_d=%1.1E m/s',v_d);
|
4e20eaa2ca5f8972ae11899943961c72727bb475 | 449d555969bfd7befe906877abab098c6e63a0e8 | /257/CH7/EX7.14/example_7_14.sce | 3a71f7bb82c47d4d579097072eb3c830557d61e3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 137 | sce | example_7_14.sce | s=%s;
T=20/(s+10)
syms t s;
y=ilaplace(T,s,t);
T1=20/((s+10)*s)
c1=ilaplace(T1,s,t)
T2=20/((s+10)*s^2)
c2=ilaplace(T2,s,t)
|
6ceb8f69f67278800830eda199094f088b9276d3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1757/CH11/EX11.8/EX11_8.sce | f94436d4346641d6815985f377217140a76f0da3 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,790 | sce | EX11_8.sce | //Example11.8 // determine the feed back current If and analog output voltage
clc;
clear;
close;
Vref = 5 ;
BI = 101 ; BI = 011 ; BI = 100 ; BI = 001 ;
Rf = 25*10^3 ;
R = 0.2*Rf ;
// The output current of given R-2R ladder D/A converter is defined as
// If = -(Vref/2*R)*(2^0*b0+2^-1*b1+2^-2*b2) ;
// If = -(Vref/2*R)*(b0+2^-1*b1+2^-2*b2) ;
// for the given value Rf,R and Vref the output current
// If = (0.5*10^-3)*(b0+2^-1*b1+2^-2*b2) ;
// for the binary input 101 the feedback current If is given by
b2 = 1 ;
b1 = 0 ;
b0 = 1 ;
If = (0.5*10^-3)*(b0+2^-1*b1+2^-2*b2) ;
disp('for the binary input 101 analog output is = '+string(If)+ ' A ');
// An analog output voltage Vo is
Vo = -If*Rf ;
disp('An analog output voltage Vo is = '+string(Vo)+ ' V ');
// for the binary input 011 the feedback current If is given by
b2 = 0 ;
b1 = 1 ;
b0 = 1 ;
If = (0.5*10^-3)*(b0+2^-1*b1+2^-2*b2) ;
disp('for the binary input 011 analog output is = '+string(If)+ ' A');
// the An analog output voltage Vo is
Vo = -If*Rf ;
disp('An analog output voltage Vo is = '+string(Vo)+ ' V ');
// for the binary input 100 the feedback current If is given by
b2 = 1 ;
b1 = 0 ;
b0 = 0 ;
If = (0.5*10^-3)*(b0+2^-1*b1+2^-2*b2) ;
disp('for the binary input 100 analog output is = '+string(If)+ ' A ');
// the An analog output voltage Vo is
Vo = -If*Rf ;
disp('An analog output voltage Vo is = '+string(Vo)+ ' V ');
// for the binary input 001 the feedback current If is given by
b2 = 0 ;
b1 = 0 ;
b0 = 1 ;
If = (0.5*10^-3)*(b0+2^-1*b1+2^-2*b2) ;
disp('for the binary input 001 analog output is = '+string(If)+ ' A ');
// the An analog output voltage Vo is
Vo = -If*Rf ;
disp('An analog output voltage Vo is = '+string(Vo)+ ' V ');
|
dcfa9b9bde4e3329d07e6ec9501f5cdd2b24b894 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1529/CH21/EX21.10/21_10.sce | 7ddf8131b509f7d302131ce08207cfa674b70e68 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 517 | sce | 21_10.sce | //Chapter 21, Problem 10
clc;
f=50; //frequency
n1=25; //primary turns
n2=300; //secondary turns
A=300e-4; //cross-sectional area of the core
v1=250; //primary voltage
phim=v1/(4.44*f*n1); //flux
Bm=phim/A; //maximum flux density
v2=v1*(n2/n1); //secondary voltage
printf("(a) Maximum flux density= %.2f T\n\n",Bm);
printf("(b) Secondary winding voltage = %d V",v2);
|
b564374d1271f38a80413df2f44acb5c13b2451e | 449d555969bfd7befe906877abab098c6e63a0e8 | /32/CH11/EX11.04/11_04.sce | af55ee893eb6e87fa056827b36a4e45bde9347bb | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 889 | sce | 11_04.sce | //pathname=get_absolute_file_path('11.04.sce')
//filename=pathname+filesep()+'11.04-data.sci'
//exec(filename)
//Height of chimney(in m):
H=60
//Ambient air temperature(in K):
Ta=17+273
//Temperature of burnt gases(in K):
Tg=300+273
//Temperature of the artificial burnt gases(in K):
Tga=150+273
//Mass per kg of fuel required for complete combustion(in kg):
m=19
//Specific heat of hot gases(in kJ/kg.K):
Cpg=1.0032
//Calorific value of burnt fuel(in kJ/kg):
c=32604
//Draught (in mm of water column):
hw=353*H*(1/Ta-(m+1)/(m*Tg))
//Chimney efficiency:
n=9.81*H*(m/(m+1)*Tg/Ta-1)/(Cpg*(Tg-Tga)*10^3)*100
//Extra heat carried away by flue gases(in kJ):
Q=(m+1)*Cpg*(Tg-Tga)
printf("\n RESULT \n")
printf("\nDraught = %f mm of water",hw)
printf("\nChimney efficiency = %f percent",n)
printf("\nExtra heat carried away by flue gases per kg of fuel burnt = %f kJ",Q) |
71c90007065f65adadd62b0c1d8c1b91c795c2fb | 449d555969bfd7befe906877abab098c6e63a0e8 | /2534/CH1/EX1.10/Ex1_10.sce | b34a720bfe240f28c7d6ba15e3d140a28d42384c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 264 | sce | Ex1_10.sce | //Ex1.10
clc
B = 2*10^-6 //magnetic flux density
V = 4*10^6 //electron velocity
e= 1.6*10^-19//elcetron charge
disp("B ="+string(B)+"ax wb/m.sq")
disp("V ="+string(V)+"az m/s")
disp("e = "+string(e)+ "C")
disp("F = e[VxB] ="+string(e*V*B)+"ay N")//force
|
9364c0ec23a8e183a3faea2b8f2a05802f5b857d | 449d555969bfd7befe906877abab098c6e63a0e8 | /1439/CH9/EX9.4/9_4.sce | 4160b792f41ce7f0720492a4ffabbadf4b1f8931 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 252 | sce | 9_4.sce | clc
//initialisation of variables
M1= 208.3 //gms
g= 2.69 //gms
R= 0.08205 //l-atm mole^-1 deg^-1
T= 250 //C
P= 1 //atm
V= 1 //lit
//CALCULATIONS
M2= g*R*(273.1+T)/(P*V)
a= (M1-M2)/M2
Kp= a^2*P/(1-a^2)
//RESULTS
printf ('Kp= %.2f ',Kp)
|
7a8add09b650a5fd23cc08f3178bf11c134b743d | 449d555969bfd7befe906877abab098c6e63a0e8 | /3411/CH7/EX7.7.u1/Ex7_7_u1.sce | 33c3700a103cc2dd18d76a7dacd94174ffed6b00 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 263 | sce | Ex7_7_u1.sce | //Example 7_7_u1
clc();
clear;
//To calculate the fiber length
alpha=0.5 //units in db/KM
it=2*10^-6 //units in W
i0=1.5*10^-3 //units in W
l=-1*(10/alpha)*log10(it/i0) //units in KM
printf("The length of the fiber is L=%.1f KM",l)
|
49e809d35930124ed70bc2540bae7057abb4623c | 449d555969bfd7befe906877abab098c6e63a0e8 | /3838/CH6/EX6.4.c/EX6_4_C.sce | 1f3fa7788fac4f134b21e4fd60567cdb997342d1 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 227 | sce | EX6_4_C.sce | //example 6.4.C
//check the signal is periodic or not
clc ;
n=-15:0.01:15;
y =(1+cos(2*(%pi)*n/8)/2);
xlabel('n')
ylabel('x(n)')
plot(n,y);
disp ( 'Plot shows that given signal is periodic of fundamental period=4 samples' ) ;
|
c4e7b1829ff05a11989d74b65e49f1fc2a7baa9f | 449d555969bfd7befe906877abab098c6e63a0e8 | /2990/CH4/EX4.42/Ex4_42.sce | 9fc9b0cd8a963bc151cc258e3f13c76d01316e7d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 441 | sce | Ex4_42.sce |
funcprot(0);
// Initialization of Variable
function[dms]=degtodms(deg)
d = int(deg)
md = abs(deg - d) * 60
m = int(md)
sd = (md - m) * 60
sd=round(sd*100)/100
dms=[d m sd]
endfunction
Long=30.0;//longitude in degrees
GAT=13+15.0/60+10.0/3600;//GAT in hr
ET=6.0/60+15.35/3600+0.3/3600*1.25278;//ET in hr
//calculation
LMT=GAT+ET-Long/15.0;
LMT=degtodms(LMT);
disp(LMT,"LMT in hr min sec");
clear()
|
a4ce57e5d45d8a3115e282d76206538297d28049 | 99b4e2e61348ee847a78faf6eee6d345fde36028 | /Toolbox Test/rssq/rssq1.sce | a44db63105f04aa12e1202a143b18c34d547f67b | [] | no_license | deecube/fosseetesting | ce66f691121021fa2f3474497397cded9d57658c | e353f1c03b0c0ef43abf44873e5e477b6adb6c7e | refs/heads/master | 2021-01-20T11:34:43.535000 | 2016-09-27T05:12:48 | 2016-09-27T05:12:48 | 59,456,386 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 133 | sce | rssq1.sce | //check o/p when the i/p is a cosine value
t = 0:0.001:1-0.001;
X = cos(2*%pi*100*t);
r = rssq(X);
disp(r);
//output
// 22.36068
|
b18e7706d3e8d8deb7bfebc3fe415ee2b0f99ed1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2144/CH8/EX8.1/ex8_1.sce | 995376682b5a018183d653c0b272da1d25add3c7 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 463 | sce | ex8_1.sce | // Exa 8.1
clc;
clear;
close;
// Given data
C= 85;// in %
H= 12.5;// in %
H1 = 35000;// heat liberated by carbon in kJ
H2 = 143000;// heat liberated by hydrogen in kJ
HCV = (C*H1+H*H2)/100;// Higher calorific value in kJ/kg
disp(HCV,"Higher calorific value in kJ/kg is");
ms = 9;
LCV= HCV -(ms*H*2442)/100 ;// Lower calorific value in kJ/kg
disp(LCV,"Lower calorific value in kJ/kg is");
// Note: The calculated value in the book is not accurate
|
fa1e68d98aa8d8965109a5a9c39ef88b145e4c2a | 449d555969bfd7befe906877abab098c6e63a0e8 | /2384/CH3/EX3.2/ex3_2.sce | ce2081795c04d73210d1ecd07b0f6fba10fa1ca8 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 428 | sce | ex3_2.sce | // Exa 3.2
clc;
clear;
close;
format('v',7)
// Given data
Im = 141.4;// in A
t = 3;// in ms
t = t * 10^-3;// in sec
disp(Im,"The maximum value of current in A is");
omega = 314;// in rad/sec
// omega = 2*%pi*f;
f = round(omega/(2*%pi));// in Hz
disp(f,"The frequency in Hz is");
T = 1/f;// in sec
disp(T,"The time period in sec is");
i = 141.4 * sin(omega*t);// in A
disp(i,"The instantaneous value in A is");
|
df74f1eb59251b915a4e719678c837aa9629e576 | 449d555969bfd7befe906877abab098c6e63a0e8 | /545/CH3/EX3.5/ch_3_eg_5.sce | 9c10e1c204ee61d6628e352a767819be25f8fcea | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,125 | sce | ch_3_eg_5.sce | clc
disp("the soln of eg 3.5-->Flash calc. using Modified Raoult law");
a12=292.66*4.18, a21=1445.26*4.18, v1=74.05*10^-6, v2=18.07*10^-6, R=8.314
t=100,z1=.3,
z2=1-z1
a1=14.39155, a2=16.262, b1=2795.82, b2=3799.89, c1=230.002, c2=226.35
e1=1,e2=1,e3=1,e4=1,e5=1,e6=1,vnew=0
//calc of BPP
x1=z1, x2=z2
p1sat=exp(a1-(b1/(t+c1)))
p2sat=exp(a2-(b2/(t+c2)))
h12=v2*exp(-a12/(R*(t+273.15)))/v1
h21=v1*exp(-a21/(R*(t+273.15)))/v2
m=(h12/(x1+x2*h12))-(h21/(x2+x1*h21))
g1=exp(-log(x1+x2*h12)+x2*m)
g2=exp(-log(x2+x1*h21)-x1*m)
p=x1*g1*p1sat+x2*g2*p2sat
disp(p,"the bubble point pressure is");
bpp=p, gb1=g1, gb2=g2 //g1 & g2 are activity co-efficients
//calc of DPP
y1=z1, y2=z2
g1=1, g2=1
pnew=1/(y1/(g1*p1sat)+y2/(g2*p2sat))
g1n=g1, g2n=g2
while e1>.0001 do pold=pnew,while e2>.0001& e3>.0001 do g1=g1n, g2=g2n,
x1=y1*pold/(g1*p1sat)
x2=y2*pold/(g2*p2sat)
x1=x1/(x1+x2)
x2=1-x1
g1n=exp(-log(x1+x2*h12)+x2*m)
g2n=exp(-log(x2+x1*h21)-x1*m)
e2=abs(g1n-g1), e3=abs(g2n-g2)
end
pnew=1/(y1/(g1n*p1sat)+y2/(g2n*p2sat))
e1=abs(pnew-pold)
end
disp(pnew,"the dew point pressure is");
dpp=pnew, gd1=g1n, gd2=g2n
p=200
v=(bpp-p)/(bpp-dpp)
g1=((p-dpp)*(gb1-gd1))/(bpp-dpp)+gd1
g2=((p-dpp)*(gb2-gd2))/(bpp-dpp)+gd2
//calc of distribution co-efficients
while e4>.0001 & e5>.0001 do g1n=g1,g2n=g2,
k1=g1n*p1sat/p
k2=g2n*p2sat/p
while e6>.00001 do v=vnew,
function f=fv(v),
y1=(k1*z1)/(1-v+v*k1)
y2=(k2*z2)/(1-v+v*k2)
x1=y1/k1
x2=y2/k2
f=y1-x1+y2-x2
endfunction
derv=derivative(fv,v)
vnew=v-fv(v)/derv
e6=abs(vnew-v)
end
h12=v2*exp(-a12/(R*(t+273.15)))/v1
h21=v1*exp(-a21/(R*(t+273.15)))/v2
m=(h12/(x1+x2*h12))-(h21/(x2+x1*h21))
g1=exp(-log(x1+x2*h12)+x2*m)
g2=exp(-log(x2+x1*h21)-x1*m)
e4=abs(g1-g1n), e5=abs(g2-g2n)
end
disp(v,"the no. of moles in vapour phase is");
disp(y1,x1,"x1 and y1 respectively are"); |
0b4dc2dcb724d5caa04bbba04223a91c9f30b327 | 449d555969bfd7befe906877abab098c6e63a0e8 | /978/CH12/EX12.2/Example12_2.sce | 0ef0b12dd00c33a4e1280a5a7951d3e472d9d4a6 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 598 | sce | Example12_2.sce | //chapter-12,Example12_2,pg 383
fc=10^6//carrier frequency
m=0.4//modulation index
fs=100//signal frequency
V=2//(+/-)2V range
delfc1=m*fc//frequency deviation for FS(full scale)
//(+/-) 2V corresponds to delfc Hz deviation assuming linear shift, for (+/-)1V
delfc2=delfc1/V//frequency deviation for (+/-)1V range
sig=(delfc1/fs)//deviation factor
printf("frequency deviation for FS\n")
printf("delfc1=%.2f Hz\n",delfc1)
printf("frequency deviation for given range\n")
printf("delfc2=%.2f Hz\n",delfc2)
printf("deviation factor\n")
printf("sig=%.2f",sig) |
6964f90401f8b34c4a7d5eb50a88773058828968 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1394/CH4/EX4.2.2/Ex4_2_2.sce | 2097e2fe470d27c833b55730a8780e64518d4e80 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 323 | sce | Ex4_2_2.sce |
clc
//initialization of variables
d = 10 //cm
s = 3 // km
v = 500 //cm/sec
nu = 0.15 // cm^2/sec
//Calculations
E = 0.5*d*v // cm^2/sec
c1 = 1000 // m/km
c2 = 1/100 // m/cm
z = sqrt(4*E*c1*c2*s/v)
percent = z*100/(s*c1)
//Results
printf(" The percent of pipe containing mixed gases is %.1f percent",percent)
|
0a7dd69bd34bec7a0f74bdbfb8de12bb1e3156d9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1271/CH18/EX18.13/example18_13.sce | eb8a2cabf6018cd3f4123eb7f7fb96b7864af2c0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 552 | sce | example18_13.sce | clc
// Given that
N = 6.5e25 // no. of atom per m^3
T = 300 // room temperature in K
mu_ = 4 * %pi * 1e-7 // magnetic permittivity of space
k = 1.38e-23 // Boltzmann's constant in J/K
m = 9.1e-31 // mass of electron in kg
e = 1.6e-19 // charge in an electron in C
h = 6.62e-34 // Planck constant in J sec
// Sample Problem 13 on page no. 18.25
printf("\n # PROBLEM 13 # \n")
printf("Standard formula used \n ")
printf(" Chi = mu_0*N*M^2 /(3*k*t) \n")
M = (e * h) / (4 * %pi * m)
X = (mu_ * N * M^2) / (3 * k * T)
printf("\n Susceptibility is %e",X)
|
8de029f7d99477ed78c3ffbca7eaa5253bdfbb12 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2333/CH3/EX3.21/21.sce | 111430afcc187bfd10ed53277a811c546af9ae8d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 761 | sce | 21.sce | clc
// Given that
lambda = 6000 // wavelength of light in angstrom
N = 200 // Grating element
n = 3 // order
d = 0.025 // diameter of wire in mm
// Sample Problem 21 on page no. 165
printf("\n # PROBLEM 21 # \n")
printf(" Standard formula used \n")
printf(" n*lambda= sin(theta)/N \n")
theta = 180/%pi*asin(N*n*lambda*1e-8)
theta_deg = floor(theta)
theta_min = (theta - theta_deg)*60// Angle of diffraction
e = 1/N - d*1e-1 // width of slit
ratio = 1/(N*e)
m = 1
n1 = ratio*m
printf(" \n Angle of diffraction for third order spectrum is %d degree and %f minute.\n",theta_deg, theta_min )
printf("\n For n = %d, m = 1 is considered \n because the higher value of m results the order \nof absent spectrum more than given order %d.",n1,n)
|
7dfce70ef876bed495e928687b0ec789073379ad | 449d555969bfd7befe906877abab098c6e63a0e8 | /1226/CH20/EX20.48/EX20_48.sce | 4f7027e525678e8f4a76cf887d6d1b85f78769d5 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,903 | sce | EX20_48.sce | clc;funcprot(0);//EXAMPLE 20.48
// Initialisation of Variables
rp=4;........//Stagnation pressure ratio
etaisen=0.85;.....//Stagnation isentropic efficiency
p1=1;.............//Inlet stagnation pressure in bar
t1=300;...........//Inlet stagnation temperature in K
Rd=0.5;............//Degree of reaction
Cu=180;...........//Mean blade speed in m/s
Wd=0.9;...........//Work done factor
htr=0.42;.......//Hub tip ratio
al1=12;be2=al1;.......//Relative air angle at rotor inlet in degrees
al2=32;be1=al2;........//Relative air angle at rotor at outlet in degrees
ga=1.4;...........//Ratio of specific heats
cp=1.005;..........//Specific heat capacity at constant pressure in kJ/kgK
R=287;..........//Gas constant in J/kgK
m=19.5;..........//Mass flow in kg/s
//Calculations
tN1=t1*(rp^((ga-1)/ga));......//Temperature at the end of compression stage due to isentropic expansion in K
tN=((tN1-t1)/etaisen)+t1;
etap=log(rp^((ga-1)/ga))/log(tN/t1);...........//Stagnation polytropic efficiency
disp(etap*100,"Stagnation polytropic efficiency in %:")
Cf=Cu/(tan(al1*%pi/180)+tan(be1*%pi/180));
Cw1=Cf*tan(al1*%pi/180);Cw2=Cf*tan(al2*%pi/180);
wcps=Cu*(Cw2-Cw1)*Wd/1000;.............//Work consumed per stage in kJ/kg
wc=cp*(tN-t1);...............//Work consumed by compressor in kJ/kg
N=round(wc/wcps);.......//No of stages
disp(N,"No of stages:")
C1=Cf/cos(al1*%pi/180);.......//Absolute velocity at exit from guide vanes in m/s
ti=t1-((C1*C1)/(2*cp*1000));..........//Inlet temperature in K
disp(ti,"Inlet temperature in K:")
pi=p1*((ti/t1)^(ga/(ga-1)));......//Inlet pressure in bar
disp(pi,"Inlet pressure in bar:")
rho1=(pi*10^5)/(R*ti);.............//Density of air approaching the first stage
r1=sqrt(m/(rho1*%pi*Cf*(1-(htr^2))));rh=r1*htr;
l=r1-rh;............//Height of the blade in the first stage in m
disp(l*100,"Height of the blade in the first stage in cm:")
|
4900d58f73bba5b428f59f76d700c7a36f0c99ca | 449d555969bfd7befe906877abab098c6e63a0e8 | /2066/CH2/EX2.6/2_6.sce | 4126099f397e071d463f27ddb9a175edd6d38150 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 853 | sce | 2_6.sce | clc
clear
//Initialization of variables
gam=62.4
x1=4 //ft
x2=6 //ft
y1=6 //ft
z=8 //ft
dy=1 //ft
angle=60 //degrees
//calculations
A1=x1*x2
A2=1/2 *y1^2
yc = (A1*(x1+x2+dy) + A2*(x1+x2))/(A1+A2)
hc=yc*sind(angle)
F=hc*gam*(A1+A2)
ic1=1/12 *x1*y1^3
ic2=1/36*y1*x2^3
ad1=A1*(x1+x2+dy-yc)^2
ad2=A2*(x1+x2-yc)^2
It=ic1+ic2+ad1+ad2
ydc=It/(yc*(A1+A2))
function m= momen(u)
m= gam*sind(angle) *(2*x1+u)*0.5*(x2-u)*(y1-u)
endfunction
MED=intg(0, y1, momen)
FEDC=gam*sind(angle) *A2*(x1+x2)
xed=MED/FEDC
xp= (A1*2*(x1+x2+dy) + (x1+x2)*(A2)*(x1+xed))/(A1*(x1+x2+dy) + A2*(x1+x2))
//results
printf("Magnitude of total force = %d lb",F)
printf("\n Vertical location of force = %.3f ft",ydc)
printf("\n Horizontal location of force = %.2f ft from AB",xp)
printf("\n Direction of force is perpendicular to the plane surface")
|
a01999cd5e35ae3407ffa7795c48265415339436 | a557f90da8513f81cafd8f65e37e2c0d66449a2f | /Bilinear_trans_using_butterworth.sce | 0c2b967545c6149576294b3026543c9fafdf46e7 | [] | no_license | Sahil966121/SCI | 484cd77d6247e54fe87d36b4f112965c83ab5d96 | cf2921861486a4f2e2e83c3ca813a4e7710d3508 | refs/heads/main | 2023-03-03T17:43:08.236000 | 2021-02-03T05:19:43 | 2021-02-03T05:19:43 | 324,413,192 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 631 | sce | Bilinear_trans_using_butterworth.sce | clc;
F1=input("Enter the pass band edge (Hz)=");
F2=input("Enter the stop band edge (Hz)=");
kp=input("Enter the pass band attenuation (-dB)=");
ks=input("Enter the stop band attenuation (-dB)=");
Fs=input("Enter the sampling rate (Hz)=");
w1=2*%pi*F1*1/Fs;
w2=2*%pi*F2*1/Fs;
o1=2*Fs*tan(w1/2);
o2=2*Fs*tan(w2/2);
num=log10(((10^(-kp/10))-1)/((10^(-ks/10))-1));
den=2*log10(o1/o2);
N=ceil(num/den);
oc=o2/((10^(-ks/10)-1)^(1/(2*N)));
hs=analpf(N,'butt',[],oc);
wc=2*atan(oc/(2*Fs));
cutoff=wc/(2*%pi);
hz=iir(N,'lp','butt',cutoff,[]);
[hzm fr]=frmag(hz,256);
fr_rad=fr* 2*%pi;
gain_db=20*log10(hzm);
figure;plot2d(fr_rad,gain_db);
|
5f05c21d78e65afcd8faa263c9c0da6cdb6b4309 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2384/CH4/EX4.23/ex4_23.sce | 56d82aa21193a958df308357f16b763f6c761741 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 582 | sce | ex4_23.sce | // Exa 4.23
clc;
clear;
close;
format('v',6)
// Given data
V=230;// in V
f= 50;// in Hz
Z1= 10*expm(-30*%i*%pi/180);// in ohm
Z2= 20*expm(60*%i*%pi/180);// in ohm
Z3= 40*expm(0*%i*%pi/180);// in ohm
Y1= 1/Z1;// in S
Y2= 1/Z2;// in S
Y3= 1/Z3;// in S
Y= Y1+Y2+Y3;// in S
phi= atand(imag(Y),real(Y));// in °
Z=1/Y;// in ohm
P= V^2*abs(Y);// in W
disp("The circuit admittance is : "+string(abs(Y))+" mho");
disp("The circuit impedance is : "+string(abs(Z))+" Ω");
disp(P,"The power consumed in W is : ")
disp("The power factor is : "+string(cosd(phi))+" lead")
|
cb1315e1acf1fabacc94e04514cbded7d47f6b26 | 449d555969bfd7befe906877abab098c6e63a0e8 | /278/CH24/EX24.14/ex_24_14.sce | 1ca9da8cb805d1da6c5f6573b21d322730207d6b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 438 | sce | ex_24_14.sce | //find..
clc
//solution
//given
P=15000//W
N=900//rpm
n=4
R=0.15//m
u=0.25
//let m be the mass
w=2*%pi*N/60//rad/s
w1=(3/4)*w//rad/s
r=0.12//m
//Pc=m*w^2*r=1066*m//N
//Ps=m*w1^2*r=600m//N
T=P*60/(2*%pi*N)//N-m
//T=u*(Pc-Ps)*R*n=70m
m=T/70//kg
printf("mass of shoes is,%f kg\n",m)
a=%pi/3
l=R*a*1000//mm
//A=l*n=157*b//mm^2
//F=A*p=15.7*b//N
//15.7*b=Pc-Ps=466m
b=466*m/(15.7)//mm
printf("face width is,%f mm\n",b) |
33047c0153624020c0db34d1fd6e9064924ec0b1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /572/CH9/EX9.12/c9_12.sce | bd0679c9ec2bc5e2d22a80fa675eae27bfe88b26 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 3,249 | sce | c9_12.sce | //(9.12) Air enters a turbojet engine at 0.8 bar, 240K, and an inlet velocity of 1000 km/h (278 m/s). The pressure ratio across the compressor is 8. The turbine inlet temperature is 1200K and the pressure at the nozzle exit is 0.8 bar. The work developed by the turbine equals the compressor work input. The diffuser, compressor, turbine, and nozzle processes are isentropic, and there is no pressure drop for flow through the combustor. For operation at steady state, determine the velocity at the nozzle exit and the pressure at each principal state. Neglect kinetic energy at the exit of all components except the nozzle and neglect potential energy throughout.
//solution
//variable initialization
Ta = 240 //in kelvin
pa = .8 //in bar
Va = 278 //in m/s
PR = 8 //pressure ratio across the compressor
T3 = 1200 //in kelvin
p5 = .8 //in bar
//from table A-22
ha = 240.02 //in kj/kg
h1 = ha + ((Va^2)/2)*10^-3 //in kj/kg
//Interpolating in Table A-22 gives
pr1 = 1.070
pra = .6355
p1 = (pr1/pra)*pa //in bars
p2 = PR*p1 //in bars
//Interpolating in Table A-22, we get
h2 = 505.5 //in kj/kg
//At state 3 the temperature is given as T3 = 1200 K. From Table A-22
h3 = 1277.79 //in kj/kg
//using assumption 'There is no pressure drop for flow through the combustor',
p3 = p2
//with the help of assumption, 'The turbine work output equals the work required to drive the compressor.',
h4 = h3+h1-h2 //in kj/kg
//Interpolating in Table A-22 with h4, gives
pr4 = 116.8
//pr data from table A-22 gives
pr4 = 116
pr3 = 238
p4 = p3*(pr4/pr3) //in bars
//The expansion through the nozzle is isentropic to
p5 = .8 //in bars
pr5 = pr4*(p5/p4)
//from table A-22
h5 = 621.3 //in kj/kg
V5 = sqrt(2*(h4-h5)*10^3) //the velocity at the nozzle exit in m/s
printf('the velocity at the nozzle exit in m/s is: %f',V5)
printf('\npa in bars = %f',pa)
printf('\np1 in bars = %f',p1)
printf('\np2 in bars = %f',p2)
printf('\np3 in bars = %f',p3)
printf('\np4 in bars = %f',p4)
printf('\np5 in bars = %f',p5)
|
e6be3abeefb0737c0c00e2664504c39f8c3915f5 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2132/CH7/EX7.15/Example7_15.sce | 68584c633bda08faafc864d2d6b0cb195f6dd8bd | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 600 | sce | Example7_15.sce | ////Example 7.15
clc;
clear;
close;
format('v',6);
//Given data :
g=9.81;//gravity constant
D1=50/1000;//meter
D2=100/1000;//meter
l1=100;l2=100;//meter
hf1=10;//meter(level difference)
f=0.008;//coeff. of friction
Q2BYQ1=sqrt((l1/l2)*(D2/D1)^5);//as hf1=hf2
Q1=sqrt(hf1/f/l1*(3.0257*D1^5));//m^3/sec
Q2=Q2BYQ1*Q1;//m^3/sec or cumec
disp(Q1,"Rate of flow of pipe 1(m^3/sec)");
disp(Q2,"Rate of flow of pipe 2(m^3/sec)");
Q=Q1+Q2;//m^3/sec(Total Discharge)
d=(f*l1*Q^2/3.0257/hf1)^(1/5);//meter
disp(d*1000,"Diameter of single pipe(mm) : ");
//Answer in the book is not accurate.
|
c21977d99074045cb5c20ce45a9b6afa2225a994 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2234/CH1/EX1.20/ex1_20.sce | e9ab6f732e8629fe0887063df8d9a4df73cf917e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 239 | sce | ex1_20.sce | clc;
p=200; //power in Watt
v=12; //voltage in volt
i=p/v; //calculating current in Ampere
I=p/6; //calculating
disp(i,"Current in Ampere = "); //displaying
disp(I,"Current in Ampere if voltage were 6V = "); //displaying result |
b464a20cb3150de1266184dfcc709566e4057454 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3772/CH4/EX4.9/Ex4_9.sce | 71d2696cbbd2ca8822a1e2b6c4b5288f7e3ab6e2 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,551 | sce | Ex4_9.sce | // Problem no 4.4.9,Page No.99
clc;clear;
close;
M_C=40 //KNM //Moment at Pt C
w=20 //KNm //u.d.l on L_AD
L=10 //m //Length of beam
L_CB=5 //m //Length of CB
L_DC=1 //m //Length of DC
L_AD=4 //m //Length of AD
//Calculations
//Let R_A & R_B be the reactions at A & B
//R_A+R_B=80
//Taking Moment at A
//M_A=0=R_B*L-M-w*L_AD**2*2**-1
R_B=(w*L_AD**2*2**-1+M_C)*L**-1
R_A=80-R_B
//Shear Force Calculations
//Shear Force at B
V_B=R_B
//Shear Force at C
V_C=V_B
//Shear Force at D
V_D=V_C
//Shear Force at A
V_A=V_D-w*L_AD
//Pt of contraflexure
//Let E be the pt and BE=x
//V_E=0=R_B-w*(L_BE-L_DC-L_CB)
L_BE=R_B*w**-1+L_DC+L_CB;
x=L_BE
//Bending Moment Calculations
//Bending Moment at B
M_B=0
//Bending Moment at C
M_C1=R_B*L_CB
M_C2=M_C1-M_C
//Bending Moment at D
M_D=R_B*(L_CB+L_DC)-M_C
//Bending Moment at A
M_A=R_B*L-M_C-w*L_AD**2*2**-1
//Bending Moment at E
L_ED=L_BE-(L_DC+L_CB)
M_E=R_B*L_BE-M_C-w*L_ED**2*2**-1
//Result
printf("The Shear Force and Bending Moment Diagrams are the results")
//Plotting the Shear Force Diagram
subplot(2,1,1)
X1=[0,L_CB,L_CB+L_DC,L_CB+L_DC+L_AD,L_CB+L_DC+L_AD]
Y1=[V_B,V_C,V_D,V_A,0]
Z1=[0,0,0,0,0]
plot(X1,Y1,X1,Z1)
xlabel("Length x in m")
ylabel("Shear Force in kN")
title("the Shear Force Diagram")
//Plotting the Bending Moment Diagram
subplot(2,1,2)
X2=[0,L_CB,L_CB,L_CB+L_DC,L_CB+L_DC+L_ED,L_CB+L_DC+L_AD]
Y2=[M_B,M_C1,M_C2,M_D,M_E,M_A]
Z2=[0,0,0,0,0,0]
plot(X2,Y2,X2,Z2)
xlabel("Length in m")
ylabel("Bending Moment in kN.m")
title("the Bending Moment Diagram")
|
75f89fd75cab350ac75b271a11c9b9c16955a9c2 | 449d555969bfd7befe906877abab098c6e63a0e8 | /132/CH5/EX5.1/Example5_1.sce | 6605ed6a4c994e5fa6982158d2ee813896e3991f | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 434 | sce | Example5_1.sce | //Example 5.1
//Program to Calculate Collector and Base Currents
clear;
clc ;
close ;
//Given Circuit Data
alpha=0.98; //alpha(dc)
Ico=1*10^(-6); //Ampere
Ie=1*10^(-3); //Ampere
//Calculation
Ic=alpha*Ie+Ico; //Collector Current
Ib=Ie-Ic; //Base Current
//Displaying The Results in Command Window
printf("\n\t The Collector Current is Ic= %f mA .",Ic/10^(-3));
printf("\n\t The Base Current is Ib= %f uA .",Ib/10^(-6)); |
f0419efb110b2039ef1e682411b3c5a3deb9b526 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2132/CH11/EX11.3/Example11_3.sce | c87c3830bdf2137ccc81b736c0f07615c6803d5d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 590 | sce | Example11_3.sce | //Example 11.3
clc;
clear;
close;
format('v',9);
//Given data :
l=2;//meter
d0=0;//meter
d1=0.3;//meter
d2=1.0;//meter
d3=1.2;//meter
d4=1.6;//meter
d5=2.0;//meter
d6=1.4;//meter
d7=1.0;//meter
d8=0.4;//meter
d9=0.3;//meter
d10=0.2;//meter
V0=0;//meter
V1=0.5;//meter
V2=0.7;//meter
V3=0.8;//meter
V4=1.0;//meter
V5=1.2;//meter
V6=0.9;//meter
V7=0.8;//meter
V8=0.6;//meter
V9=0.5;//meter
V10=0.3;//meter
Q=l/3*(d0*V0+4*d1*V1+2*d2*V2+4*d3*V3+2*d4*V4+4*d5*V5+2*d6*V6+4*d7*V7+2*d8*V8+4*d9*V9+2*d10*V10+d0*V0);//cum/sec
disp(Q,"Rate of discharge in cum/sec : ");
|
7c60b0891c0012538e5e95dd888b419b7fb8ad9a | 449d555969bfd7befe906877abab098c6e63a0e8 | /2699/CH3/EX3.12/Ex3_12.sce | 498e170cefe44f3678549637c71e288e2a0226eb | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 636 | sce | Ex3_12.sce | //EX3_12 PG-3.39
clc
Rl=5e3;
N1toN2=2;//transformer turns ratio
Ep=460;//rms value of primary voltage
Es=Ep/N1toN2;
Esm=sqrt(2)*Es;//peak value of the secondary voltage
Im=Esm/Rl;//We neglect forward diode resistance
Idc=2*Im/%pi;
printf("\n Therefore DC load current is %f A \n",Idc)
Edc=Idc*Rl;
printf("\n DC load voltage is %.3f V \n",Edc)
Rf=.482;//ripple factor for full bridge rectifier
Vrip=Rf*Edc;//ripple voltage
printf("\n Therefore ripple voltage is %.1f V \n",Vrip)
disp(" Peak value of bridge rectifier=PIV rating of each diode")
PIV=Esm;
printf("\n Therefore PIV rating of each diode is %.2f V",PIV)
|
02d79903aed34eee323d806c0b6a8946e01e82d8 | 8712e7b4614b1ab648f19bcce8ca17e378876546 | /Scilab Com Interface Grafica/Engine/B8_Salva_Dados.sce | 4b0be306c31fc2e32c47771d2fea838434a5cfbb | [] | no_license | Diogo-Rossi/Mestrado-Diogo-Rossi | d0d476d878c729c44778ea8f364c50c5464fc751 | d544d3bce094931eb96a6031aaa1ae1a833d2b04 | refs/heads/master | 2022-08-26T22:28:04.339000 | 2022-07-11T00:25:21 | 2022-07-11T00:25:21 | 236,889,761 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 1,182 | sce | B8_Salva_Dados.sce | Arquivo = uiputfile(["*.dinam","Arquivos de Análise Dinâmica"], ...
fileparts(pwd()),"Salvar dados da análise");
if ~isempty(Arquivo) then
[Path,Name,Extension] = fileparts(Arquivo);
Arquivo = Path + Name + ".dinam"
EditBoxData = []
Campos = {MaterialData SectionData DampingData NewmarkBeta DeltaT_CTS ATS_Bergan ATS_Hulbert ATS_Cintra}
k=1
for i=1:size(Campos,"*")
for j=1:size(Campos{i},"*")
EditBoxData(k) = Campos{i}(j).string
k=k+1
end
end
if ~isempty(EditBoxData);
save(Arquivo, "EditBoxData","-append")
end
if ~isempty(Barras);
BarrasData = Barras.data;
save(Arquivo, "BarrasData","-append")
end
if ~isempty(Barras);
BarrasData = Barras.data;
save(Arquivo, "BarrasData","-append")
end
if ~isempty(Cargas);
CargasData = Cargas.user_data;
save(Arquivo, "CargasData","-append")
end
if ~isempty(Restricoes);
ApoiosData = {Restricoes.data Restricoes.user_data};
save(Arquivo, "ApoiosData","-append")
end
end
|
5339f60f7ed9a444ea1abfab1e86821092f24754 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1448/CH11/EX11.1.e/E11_1.sce | 68195150d98657422881f261b8b2ecc0eb60a072 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 666 | sce | E11_1.sce | clc
//Initialization of variables
S=[10 20 40 80 120 180 300]
v=[0.32 0.58 0.9 1.22 1.42 1.58 1.74]
//calculations
bys=1000/S
byv=1/v
n=size(S)
x=bys
y=byv
disp("From graph,")
m=26.17
c=0.476
//Sx =sum(x);
//Sxx =sum(x.*x);
//Sy =sum(y);
//Syy =sum(y.*y);
//Sxy =sum(x.*y);
//m =(n*Sxy-(Sx*Sy))/(n*Sxx-(Sx*Sx));
//c =(Sy/n)-(m*Sx/n);
//disp(m)
//disp(c)
//y=zeros(7)
//for i =1:n(1)
// y(i)=m*bys(i)+c
//end
//clf();
//plot(x,y);
//xtitle("","x ","y ");
//legend(["measure points", "fitted curve"], 2);
vmax=1/c
Km=m/c
//results
printf("Max. velocity = %.2f mumol/L s",vmax)
printf("\n Michaelis constant = %.1f mumol/L",Km)
|
93d6ee64777cfad107046ff6d8871919d5469680 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1574/CH3/EX3.18/M_Ex_3_18.sce | 4279b01a7fdb308e1c5330bec26eca76efe0744b | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 246 | sce | M_Ex_3_18.sce | clc
//Chapter3: Modulation
//Example3.18, page no 172
//Given
deltaF=1e6// max freq deviation
fm=10e3//modulating freq
mf=(2*deltaF)/fm// modulation coefficient
BW=mf*fm// bandwidth
mprintf('The approximate bandwidth is: %d MHz',BW/1e6)
|
4f62ac48898f867be73af51096a8f40c12458719 | 449d555969bfd7befe906877abab098c6e63a0e8 | /67/CH6/EX6.27.b/example627b.sce | 580c868503b7f48ac8fde4cdf8252bcdecc493d0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 82 | sce | example627b.sce | //Example 6.27b
//x(t)=(cos(3t))^3
clc;
syms t;
x=(cos(3*t))^3;
X=laplace(x); |
f69c340853016af21b55ad40e188a876d7bc0fa6 | 262ac6443426f24d5d9b13945d080affb0bd6d9b | /opgaves/vpw-pole-position/edit-me.sce | d834508e6b8dda8b6946d4d232fc334577f5a428 | [] | no_license | slegers/Scilab | 9ebd1d486f28cf66e04b1552ad6e94ea4bc98a0b | 1b5dc3434def66355dafeb97c01916736a936301 | refs/heads/master | 2021-01-12T01:42:01.493000 | 2017-01-09T10:54:09 | 2017-01-09T10:54:09 | 78,420,343 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 391 | sce | edit-me.sce | function [rs] = solve(ns,ds)
// Reken de startpositie uit van de wagens
rs = ns
a = length(ns)
b = max(ns)
for i = 1:a
for u = 1:b
if ds(1,i) == u then
x = rs(1,i)
rs(1,i) = rs(1,i+u)
rs(1,i+u) = x
end
end
end
// Dummy toekenningen aan outputvariabelen
endfunction
|
0b6ba3d5cec9fce4344a6538e51cdf80a34ef8ba | 449d555969bfd7befe906877abab098c6e63a0e8 | /1571/CH4/EX4.20/Chapter4_Example20.sce | 14c57c54e3f9a8ef1a3ef0fca979a61afff51460 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 289 | sce | Chapter4_Example20.sce | clc
clear
//INPUT
k=5.64*10^-14;//kinetic energy of the hydrogen molecule ergs
t=273;//temperature of the oxygen molecule in K
r=8.32*10^7;//universal gas constant in ergs
//CALCULATIONS
N=(3/2)*(r*t/k);//avagadro number
//OUTPUT
mprintf('the avagadro number is %3.2f',N)
|
767f2a8c0d5d416b23cd0fe61004c6eab7083197 | a62e0da056102916ac0fe63d8475e3c4114f86b1 | /set9/s_Engineering_Physics_K._V._Kumar_3537.zip/Engineering_Physics_K._V._Kumar_3537/CH5/EX5.16/Ex5_16.sce | 4a16c64b6d407f0991d614b42ecc5b335da1c0e2 | [] | no_license | hohiroki/Scilab_TBC | cb11e171e47a6cf15dad6594726c14443b23d512 | 98e421ab71b2e8be0c70d67cca3ecb53eeef1df6 | refs/heads/master | 2021-01-18T02:07:29.200000 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 236 | sce | Ex5_16.sce | errcatch(-1,"stop");mode(2);//Example 5_16
;
;
//To calculate the distane between (110) planes
a=0.38 //units in nm
h=1
k=1
l=0
d=a/sqrt(h^2+k^2+l^2)
printf("Distance between (110) planes d = %.2f nm",d)
exit();
|
a63c7f89ffcb35999d2020dad0d022556bf2333d | 449d555969bfd7befe906877abab098c6e63a0e8 | /1244/CH10/EX10.5/Example105.sce | 07f74858c716f58eb4f8ae1e4aac31b94619ff02 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,139 | sce | Example105.sce |
// Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clc;
disp("Principles of Heat transfer, Seventh Edition, Frank Kreith, Raj M Manglik and Mark S Bohn, Chapter 10, Example 5")
//Acceleration due to gravity in m/s^2
g=9.81;
//Length of the tube in meters
L=1.5;
//Temperature of saturated vapour in Kelvin
T_sv=349;
//Average tube wall temperature in Kelvin
T_s=325;
//Average temperature of the condensate film in Kelvin
Tf=(T_sv+T_s)/2;
//Thermal conductivity of liquid in W/m-K
k_l=0.661;
//Viscosity of liquid in N s/m^2
mu_l=4.48e-4;
//Dendity of liquid in kg/m^3
rho_l=980.9;
//Specific heat of liquid in J/kg K
c_pl=4184;
//Latent heat of condensation in J/kg
h_fg=2.349e6;
//Density of vapor in kg/m^3
rho_v=0.25;
//Modified latent heat of condensation in J/kg
h_fg_dash=h_fg+(3/8)*c_pl*(T_sv-T_s);
disp("Reynolds number at the lower edge")
//Reynolds number
Re=(4/3)*(((4*k_l*L*(T_sv-T_s)*rho_l^(2/3)*g^(1/3))/(mu_l^(5/3)*h_fg_dash))^0.75)
disp("Since the Reynolds number at the lower edge of the tube is below 2000, the flow of the condensate is laminar")
|
ca27a4ab017038c3ca46c0f1b206a13d0ec57797 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1910/CH2/EX2.9/Chapter29.sce | 1fdf9084994deffdb3da55d99c88ea5d44c1da43 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,067 | sce | Chapter29.sce | //Display mode
mode(0);
// Display warning for floating point exception
ieee(1);
clear;
clc;
disp("Introduction to heat transfer by S.K.Som, Chapter 2, Example 09")
//A thin walled copper tube of outside metal radius r=0.01m carries steam at temprature, T1=400K.It is inside a room where the surrounding air temprature is Tinf=300K.
T1=400;
Tinf=300;
r=0.01;
//The tube is insulated with magnesia insulation of an approximate thermal conductivity of k=0.07W/(m*K)
k=0.07;
//External convective Coefficient h=4W/(m^2*K)
h=4;
//Critical thickness(rc) is given by k/h
disp("The critical thickness of insulation in metre is")
rc=k/h
//We use the rate of heat transfer per metre of tube length as Q=(Ti-Tinf)/((ln(r2/r1)/(2*%pi*L*k))+(1/(h*2*%pi*r2*L))) where length,L=1m
L=1;
//When 0.002m thick layer of insulation r1=0.01m,r2=0.01+0.002=0.012m
r1=0.01;//inner radius
r2=0.012;//outer radius
//Let ln(r2/r1)=X
X=log(r2/r1)/log(2.718);
//The heat transfer rate per metre of tube length is Q
disp("The heat transfer rate Q per metre of tube length in W/m is ")
Q=(T1-Tinf)/(((X)/(2*%pi*L*k))+(1/(h*2*%pi*r2*L)))
//When critical thickness of insulation r1=0.01m,r2=0.0175m
r2=0.0175;//outer radius
r1=0.01;//inner radius
//Let ln(r2/r1)=X
X=log(r2/r1)/log(2.718);
//The heat transfer rate per metre of tube length is Q
disp("The heat transfer rate per metre of tube length Q in W/m is ")
Q=(T1-Tinf)/(((X)/(2*%pi*L*k))+(1/(h*2*%pi*r2*L)))
//When there is a 0.05 m thick layer of insulation r1=0.01m,r2=.01+0.05=0.06m
r1=0.01;//inner radius
r2=0.06;//outer radius
//Let ln(r2/r1)=X
X=log(r2/r1)/log(2.718);
//The heat transfer rate per metre of tube length is Q
disp("The heat transfer rate per metre of tube length Q in W/m is ")
Q=(T1-Tinf)/(((X)/(2*%pi*L*k))+(1/(h*2*%pi*r2*L)))
//It is important to note that Q increases by 5.2% when the insulation thickness increases from 0.002m to critical thickness.
//Addition of insulation beyond the critical thickness decreases the value of Q (The heat loss).
|
79c1a1daf074dc886260d3f0fa17051ed2df2ea9 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2438/CH9/EX9.5/Ex9_5.sce | 8f4de96bc4c94e490d23ef1f9bf27f3b7256075e | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 496 | sce | Ex9_5.sce | //=========================================================================
// chapter 9 example 5
clc;
clear;
// Variable declaration
dr = 12.8 // original diameter of steel wire in mm
df = 10.7; // diameter at fracture in mm
// Calculations
percent_red = (((%pi*dr*dr) - (%pi*df*df))/(%pi*dr*dr))*100;
// Result
mprintf('Percent reduction in area = %3.2f percent',percent_red);
//========================================================================
|
2c418d1b531e5b5ee18bfda5cd9113b157b340f1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2414/CH3/EX3.8/Ex3_8.sce | 6858826b3595e66491b5255bee14f5eb1cddb6d5 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 309 | sce | Ex3_8.sce | clc;
clear all;
//chapter 3
//page no 90
//example 3.8
mprintf('(a) The RF burst frequency is 500 MHz\n');
mprintf(' (b) The pulse repetition rate is 1 MHz\n');
f0=10*10^6; //Zero crossing frequency in Hz
tau=1/f0; //in second
mprintf(' (c) The pulse width is %.1f micro second\n',tau*10^6);
|
5d3f13a6edfb6439baa87aa3bdb1ded07b4260e5 | 59ca8642f974b397e1747edc1015fce8b8e6c59f | /puntofijo.sce | 313644e08136b4051d973102f6ace4525370b36f | [] | no_license | mcortex/scilab-code | c6a367b216e531d0ebe3cda5d4a84156b23d2085 | 2709299d60d9e72294b274773bdadb4126a25ba9 | refs/heads/master | 2020-05-26T05:49:42.441000 | 2019-12-06T02:06:49 | 2019-12-06T02:06:49 | 188,126,346 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 751 | sce | puntofijo.sce | function y=g(x)
//y=x^4+2*x^2-x-3;
//y=(-2*x^2+x+3)^(1/4);
//y=2 ./(3*x)+(2/3)*x; // Si pongo 2/x oscila y no termina ojo!
//y=%pi+0.5*sin(x/2);
//y=3/(x^3-3)
//y=(x+((3*x+3)/x^3))/2
//y=(x+1)./x^2;
//y=(3*x+3)^(1/4)
//y=(4*x+1)^(1/4)
//y=(3+x-2*x^2)^(1/4)
y=((3*x^2.+3)/x)^(1/3)
endfunction
//Grafico f(x)
x=-10:0.1:10; // desde -5 hasta 5 yendo de 1 en 1
//plot2d(x, g(x));
//muestra grilla
xgrid(3,1,7);
function x=puntofijo(x0,E)
i=1;
Error(1)=100;
x(1)=x0;
while (abs(Error(i))>=E)&i<100
x(i+1) = g(x(i));
Error(i+1) = abs(x(i+1)-x(i));
i=i+1;
end
printf(' i \t X(i) Error aprox (i) \n');
for j=1:i;
printf('%2d \t %11.7f \t %7.3f \n',j-1,x(j),Error(j));
end
endfunction
|
d6cd551b7e00312db434549eca43fc249069f3c7 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3511/CH6/EX6.10/Ex6_10.sce | c50ed2574dac480649f0f6aaf368020398f2e871 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 673 | sce | Ex6_10.sce | clc;
eff_C=0.85; // Isentropic efficiency of the compressor
rp=4; // Pressure ratio
r=1.4; // specific heat ratio
eff_pc=(((r-1)/r)*log (rp))/log (((rp^((r-1)/r)-1)/eff_C)+1);
disp ("%",eff_pc*100,"Polytropic efficiency = ");
disp ("variation of compressor efficiency with compression ratio is shown in window1");
xset('window',1);
function eff_c=f(rc)
eff_c=(rc^0.286-1)/(rc^0.326-1);
endfunction
rc=linspace (2,10,4);
plot(rc,f);
title ("variation of compressor efficiency with compression ratio","fontsize",4,"color","blue");
xlabel("compression ratio (rc)","fontsize",4,"color","blue");
ylabel ("Compressor efficiency","fontsize",4,"color","blue");
|
9d91aa709773672508556bb9140678391a18f641 | 449d555969bfd7befe906877abab098c6e63a0e8 | /839/CH27/EX27.1/Example_27_1.sce | 856e8ce70ce1c6fd17a123466b2e05959051e350 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 780 | sce | Example_27_1.sce | //clear//
clear;
clc;
//Example 27.1
//Given
T = 60; //[F]
wA = 0.30; //[MgSO4]
wB = 0.70; //[H2O]
//Solution
//From Fig. 27.3 it is noted that the crystals are MgSO4.7H2O
//and that the concentration of the mother liquid is
xA = 0.245; //[anhydrous MgSO4]
xB = 0.755; //[H2O]
//Bases:
F_in = 1000; //[kg]
H2O_in = F_in*wB; //[kg]
H2O_evp = 0.05*H2O_in; //[kg]
M1 = 120.4; //[MgSO4 molecular weight]
M2 = 246.5; //[MgSO4.7H2O molecular weight]
M2_in = wA*F_in*M2/M1; //[kg]
H2O_free = F_in-H2O_evp-M2_in; //[kg]
ML = 100; //[kg]
M2_in100 = ML*xA*M2/M1; //[kg]
H2O_free100 = ML - M2_in100; //[kg]
M2_ML = M2_in100/H2O_free100*H2O_free; //[kg]
FC = M2_in - M2_ML; //[kg]
disp(FC,'kilograms of crystals obtained per kilogram of original mixture = ')
|
b579feaf69a9e78d38df53a0887d0e2c8cef95b3 | 449d555969bfd7befe906877abab098c6e63a0e8 | /43/CH5/EX5.2.a/ex5_2a.sce | fa459c101f6f1334cda543f598084985836891e0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 129 | sce | ex5_2a.sce | //Ex 5.2a
clc;
syms T;
disp('x(t)=1+cos(20%pi*t)');
w=20*%pi;
f=w/(2*%pi);
T=1/(2*f);
disp(T,'minimun sampling interval'); |
5bb51dec62ee1bd3f7f60d6473829abd0234186a | 449d555969bfd7befe906877abab098c6e63a0e8 | /773/DEPENDENCIES/ztransfer.sce | 87a5dc9c1c0a2486237df87d00d78ceb562f005d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 144 | sce | ztransfer.sce | //function//
function [Ztransfer]=ztransfer(sequence)
z = poly(0, 'z', 'r')
Ztransfer=sequence*(1/z)^[0:(length(sequence)-1)]'
endfunction
|
406991da88ce00f3161b39320dcbe481952c2b89 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1754/CH5/EX5.9/Exa5_9.sce | 859a3a7c09a903cfa8a46a9014b6d70aa3d92adc | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 476 | sce | Exa5_9.sce | //Exa 5.9
clc;
clear;
close;
//Given data :
A=200;//gain without feedback(unitless)
Ri=2;//in kOhm
Ro=12;//in kOhm
Beta=0.02;//feedbak ratio(unitless)
//Part (i) :
Af=A/(1+A*Beta);//gain with feedback(unitless)
disp(Af,"(i) Gain with Negative Feedback :");
//Part (ii) :
Rif=Ri*(1+A*Beta);//in kOhm
disp(Rif,"(ii) Input resistance with feedback in kOhm :");
//Part (ii) :
Rof=Ro/(1+A*Beta);//in kOhm
disp(Rof,"(ii) Output resistance with feedback in kOhm :"); |
d285afeaa0ba026f61e6dbf5c80892a662cd380e | 449d555969bfd7befe906877abab098c6e63a0e8 | /2870/CH8/EX8.7/Ex8_7.sce | 3b2e0f1ed043a89980d2d182007ab16f353281aa | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 331 | sce | Ex8_7.sce | clc;clear;
//Example 8.7
//given data
P1=1000;
V=200;
T1=300;
T0=T1;
P0=100;
//constants used
R=0.287;//in kPa m^3/kg K
//calculations
m1=P1*V/(R*T1);
O1=R*T0*(P0/P1-1)+R*T0*log(P1/P0);// O refers to exergy
X1=m1*O1/1000;//factor of 1000 for converting kJ into MJ
X1=round(X1);
disp(X1,'work obtained in MJ')
|
e7070ae68aa093f2bf1957a7c8a6aae1733d8339 | 41b430ed87baf53ab2b4470a5e52b2bf9c644716 | /main.sce | fd67c7da808796cc3ead78e8c6b3051bc86c3a81 | [] | no_license | Julestevez/Quadrotor-simulator | 85db4260a2a3fcb95fcf79e72c4e53a806cb8aac | a775a00fa72fe6e9b0587522b0a09e0e7fd42042 | refs/heads/master | 2023-07-21T07:30:41.954000 | 2023-07-19T16:09:18 | 2023-07-19T16:09:18 | 251,404,243 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 25,393 | sce | main.sce | clc; clear();close();
exec("catenaria3.sce");
exec("quadrotor.sce");
exec("descenso.sce");
exec("TensVerticales.sci");
exec("quadrotor_izq.sce");
exec("quadrotor_izqmov.sce");
exec("quadrotor_dcha2.sce");
exec("seguidores.sce");
Circuito_x=linspace(0,500,600);
Circuito_y=zeros(1,400);
Circuito_y(1:150)=linspace(0,50,150);
Circuito_y(151:300)=ones(1,150)*50;
Circuito_y(300:500)=linspace(50,-100,201);
Circuito_y(500:600)=linspace(-100,50,101);
//Circuito_y(500:600)=linspace(-100,-50,101);
//Circuito_y(500:600)=ones(1,101)*(-100);
dt=0.1; dif_tiempo=0.1;
angulotheta_objetivo_dch=zeros(1,100);
angulotheta_objetivo_cen=zeros(1,100);
angulotheta_objetivo_izq=zeros(1,100);
//***PARAMÉTROS DINÁMICOS DE DRONES****
L=25; b = 1e-5; I = diag([0.5, 0.5, 1]); //L esta en centimetros
k=3e-5; m=0.5; //el momento de inercia está en [N·cm·s2]
Sab=240;
//PARROT
//L=17; b = 3.13e-5; I = diag([86, 86, 172]); //L esta en centimetros
//k=7.5e-5; m=0.38;
//b=[N·cm·s2] //k=[N·s2]
N=600; //N= número de elementos
angulo_max=0.7; //estaba 0.7
//***************************//
//DRONE DERECHA: defino parametros
phi_dcha=zeros(1,N); angulotheta_dcha=zeros(1,N); psi_dcha=zeros(1,N);
phi_vel_dcha=zeros(1,N);angulotheta_vel_dcha=zeros(1,N); psi_vel_dcha=zeros(1,N);
x_pos_dcha=zeros(1,N); y_pos_dcha=zeros(1,N); x_vel_dcha=zeros(1,N); y_vel_dcha=zeros(1,N);
x_acel_dcha=zeros(1,N); y_acel_dcha=zeros(1,N);
x_pos_dcha(1)=0; x_pos_dcha(2)=0; x_pos_dcha(3)=0;
y_pos_dcha(1)=0; y_pos_dcha(2)=0; y_pos_dcha(3)=0;
Thrust_dcha=zeros(1,N);
Thrust_dcha(1)=11;
Thrust_dcha(2)=11;
Thrust_dcha(3)=11;
z_dcha=zeros(1,N); z_vel_dcha=zeros(1,N); z_acel_dcha=zeros(1,N);
//***************************//
//DRONE CENTRAL: defino parametros
//CONDICIONES INICIALES DE INESTABILIDAD
//phi mueve en eje Y
//angulotheta mueve en eje X
phi=zeros(1,N); angulotheta=zeros(1,N); psi=zeros(1,N);
phi_vel= zeros(1,N); angulotheta_vel= zeros(1,N); psi_vel= zeros(1,N);
phi_acel= 0; angulotheta_acel= 0; psi_acel= 0;
x_vel2=zeros(1,N); x_pos2=zeros(1,N); x_acel2=zeros(1,N);
//x_pos2(1)=120; x_pos2(2)=120; x_pos2(3)=120;
//x_pos2(1)=x_pos_dcha(1)-90; x_pos2(2)=x_pos_dcha(2)-90; x_pos2(3)=x_pos_dcha(3)-90;
x_pos2(1)=x_pos_dcha(1)-60; x_pos2(2)=x_pos_dcha(2)-60; x_pos2(3)=x_pos_dcha(3)-60;
y_acel2=zeros(1,N); y_vel2=zeros(1,N); y_pos=zeros(1,N);
y_pos(1)=0; y_pos(2)=0; y_pos(3)=0;
z_pos2=zeros(1,N); z_vel2=zeros(1,N); z_acel2=zeros(1,N);
//z_pos2(1)=-64.5; z_pos2(2)=-64.5; z_pos2(3)=-64.5;
Thrust=zeros(1,N);
y_acel=zeros(1,N); y_vel=zeros(1,N);
//**********************************//
//***************************//
//DRON IZQUIERDA: defino parámetros
phi_izq=zeros(1,N); angulotheta_izq=zeros(1,N); psi_izq=zeros(1,N);
phi_vel_izq=zeros(1,N); angulotheta_vel_izq=zeros(1,N); psi_vel_izq=zeros(1,N);
z_vel_izq=zeros(1,N); z_pos_izq=zeros(1,N);
z_acel_izq=zeros(1,N); phi_vel_izq=zeros(1,N); angulotheta_vel_izq=zeros(1,N); psi_vel_izq=zeros(1,N);
x_acel_izq=zeros(1,N); x_vel_izq=zeros(1,N); x_pos_izq=zeros(1,N); x_vel_izq=zeros(1,N);
//x_pos_izq(1)=x_pos_dcha(1)-180; x_pos_izq(2)=x_pos_dcha(2)-180; x_pos_izq(3)=x_pos_dcha(3)-180;
x_pos_izq(1)=x_pos_dcha(1)-120; x_pos_izq(2)=x_pos_dcha(2)-120; x_pos_izq(3)=x_pos_dcha(3)-120;
y_acel_izq=zeros(1,N); y_vel_izq=zeros(1,N); y_pos_izq=zeros(1,N);
//y_pos_izq(1)=-226.27; y_pos_izq(2)=-226.27; y_pos_izq(3)=-226.27;
//y_pos_izq(1)=-210; y_pos_izq(2)=-210; y_pos_izq(3)=-210;//modificar por aquí
y_pos_izq(1)=0; y_pos_izq(2)=0; y_pos_izq(3)=0;//modificar por aquí
//**********************************///
//4º DRONE
phi4=zeros(1,N); angulotheta4=zeros(1,N); psi4=zeros(1,N);
phi_vel4= zeros(1,N); angulotheta_vel4= zeros(1,N); psi_vel4= zeros(1,N);
phi_acel4= 0; angulotheta_acel4= 0; psi_acel4= 0;
x_vel4=zeros(1,N); x_pos4=zeros(1,N); x_acel4=zeros(1,N);
//x_pos2(1)=120; x_pos2(2)=120; x_pos2(3)=120;
x_pos4(1)=x_pos_dcha(1)-270; x_pos4(2)=x_pos_dcha(2)-270; x_pos4(3)=x_pos_dcha(3)-270;
y_acel4=zeros(1,N); y_vel4=zeros(1,N); y_pos4=zeros(1,N);
y_pos4(1)=165; y_pos4(2)=165; y_pos4(3)=165;
z_pos4=zeros(1,N); z_vel4=zeros(1,N); z_acel4=zeros(1,N);
//z_pos2(1)=-64.5; z_pos2(2)=-64.5; z_pos2(3)=-64.5;
Thrust4=zeros(1,N);
//**********************************///
//5º DRONE
phi5=zeros(1,N); angulotheta5=zeros(1,N); psi5=zeros(1,N);
phi_vel5= zeros(1,N); angulotheta_vel5= zeros(1,N); psi_vel5= zeros(1,N);
phi_acel5= 0; angulotheta_acel5= 0; psi_acel5= 0;
x_vel5=zeros(1,N); x_pos5=zeros(1,N); x_acel5=zeros(1,N);
//x_pos2(1)=120; x_pos2(2)=120; x_pos2(3)=120;
x_pos5(1)=x_pos_dcha(1)-360; x_pos5(2)=x_pos_dcha(1)-360; x_pos5(3)=x_pos_dcha(1)-360;
y_acel5=zeros(1,N); y_vel5=zeros(1,N); y_pos5=zeros(1,N);
y_pos5(1)=165; y_pos5(2)=165; y_pos5(3)=165; //por pitagoras
z_pos5=zeros(1,N); z_vel5=zeros(1,N); z_acel5=zeros(1,N);
//z_pos2(1)=-64.5; z_pos2(2)=-64.5; z_pos2(3)=-64.5;
Thrust5=zeros(1,N);
x_vel_deseado=2;
//valores del controlador PID
Kp=140.6659; Kd=41.36; Ki=0;
w=0.01;
//Kp=2.008; Kd=4.9687; Ki=0;
xB1=120; xB2=120; xB3=120; xB4=120; //DRONE 3+4
vectorX1=linspace(0,xB1,150);
vectorX2=linspace(0,xB2,150);
vectorX3=linspace(0,xB3,150); //DRONE 3+4
vectorX4=linspace(0,xB4,150); //DRONE 3+4
yB1=0; yB2=0; yB3=0;
z1=zeros(1,length(vectorX1));
z2=zeros(1,length(vectorX2));
z3=zeros(1,length(vectorX3));
matriz_y1=zeros(20,150);
matriz_y2=zeros(20,150);
matriz_y3=zeros(20,150);
[y1,x01,y01,c1] = catenaria3(xB1, yB1, Sab, vectorX1);
[y2,x02,y02,c2] = catenaria3(xB2, -yB1, Sab, vectorX2);
//vectorX2=vectorX1+120;
[y3,x03,y03,c3] = catenaria3(xB3, -yB1, Sab, vectorX3); //catenaria nueva
[y4,x04,y04,c4] = catenaria3(xB4, yB1, Sab, vectorX4); //catenaria nueva
y2=y2+y1(150);
[yB2]= descenso(Sab, xB2,w);
yB2=-64.54; //OBTENIDO CON WOLFRAMALPHA
yB1=yB2;
//yB1=-7.5; EL CONTROLADOR PID SIRVE PARA TODAS LAS ALTURAS, Y TAMBIÉN PARA TODAS LAS MASAS
//yB2=-7.5;
NudoBaja=yB1;
vectorX2=linspace(0, xB2, 150);
[y1,x01,y01,c1] = catenaria3(xB1, NudoBaja, Sab, vectorX1);
[y2,x02,y02,c2] = catenaria3(xB2, -NudoBaja, Sab, vectorX2);
vectorX2=vectorX1+120;
y2=y2+y1(150);
vectorX3=vectorX2+120;
//tensiones verticales de los extremos [kg]
[TensV_A, TensV_B1, TensH_A, TensH_B1]= TensVerticales(c1,y01,yB1);
[TensV_B2, TensV_C, TensH_B2, TensH_C]= TensVerticales(c2,y02,yB2);
Thrust(1)=TensV_B1+TensV_B2;
Thrust(2)=TensV_B1+TensV_B2;
Thrust(3)=TensV_B1+TensV_B2;
Thrust_izq(1)=TensV_A;
Thrust_izq(2)=TensV_A;
Thrust_izq(3)=TensV_A;
Thrust4(1)=TensV_A;
Thrust4(2)=TensV_A;
Thrust4(3)=TensV_A;
Thrust5(1)=TensV_A;
Thrust5(2)=TensV_A;
Thrust5(3)=TensV_A;
//*********************************
//********************************
//*******************************
Matriz_O=zeros(2,1);
matriz_x=zeros(2,1);
Kxd1=0.76; Kxp1=0.22; Kxd2=0.76; Kxp2=0.22; Kxd3=0.76; Kxp3=0.22; Kxd4=0.76; Kxp4=0.22; Kxd5=0.76; Kxp5=0.22;
Kyd1=0.76; Kyp1=0.22; Kyd2=0.76; Kyp2=0.22; Kyd3=0.76; Kyp3=0.22; Kyd4=0.76; Kyp4=0.22; Kyd5=0.76; Kyp5=0.22;
//Kxd=0.1; Kxp=0.1;
//Kyd=0.1; Kyp=0.1;
//matriz_controlador(1)=Kxp;
//matriz_controlador(2)=Kxd;
dist1=zeros(1,N);
dist2=zeros(1,N);
dist3=zeros(1,N);
altura_nudo_central=zeros(1,N);
valores_Kxp1=zeros(1,N); valores_Kxd1=zeros(1,N); valores_Kyp1=zeros(1,N); valores_Kyd1=zeros(1,N);
valores_Kxp2=zeros(1,N); valores_Kxd2=zeros(1,N); valores_Kyp2=zeros(1,N); valores_Kyd2=zeros(1,N);
valores_Kxp3=zeros(1,N); valores_Kxd3=zeros(1,N); valores_Kyp3=zeros(1,N); valores_Kyd3=zeros(1,N);
valores_Kxp4=zeros(1,N); valores_Kxd4=zeros(1,N); valores_Kyp4=zeros(1,N); valores_Kyd4=zeros(1,N);
valores_Kxp5=zeros(1,N); valores_Kxd5=zeros(1,N); valores_Kyp5=zeros(1,N); valores_Kyd5=zeros(1,N);
x_deseado=340;
y_deseado=60;
x_actual=x_pos_dcha(1);
y_actual=y_pos_dcha(1);
x_actual2=x_pos2(1)-90;
y_actual2=y_pos(1);
x_actual3=x_pos_izq(1)-180;
y_actual3=y_pos_izq(1);
x_actual4=x_pos_dcha(1)-270;
y_actual4=y_pos_dcha(1);
x_actual5=y_pos_dcha(1)-360;
y_actual5=y_pos_dcha(1);
y_vel_deseado=2; //por poner algo
yB3=114;
//valores de inicialización
alpha1 = 0;
phi_seguidor1 = 0;
alpha2 = 0;
phi_seguidor2 = 0;
rho1=40; rho2=40;
prevLeaderAngle = 0;
followerAngle = 0;
//estas variables las he creado para el viento. Tienen que estar inicializadas para la primera iteración
orient1=%pi/2; orient2=%pi/2; orient3=%pi/2; orient4=%pi/2; orient5=%pi/2;
//theta_objetivo=0.2;
j=2;
beta2=%pi/2; beta3=%pi/2;
while (x_vel_dcha(j) ~= x_vel_deseado)
while (x_pos_dcha(j)~=x_deseado)
while (y_vel_dcha(j) ~= y_vel_deseado)
while (y_pos_dcha(j)~=y_deseado)
j=j+1;
Viento=0;
//DRON LÍDER
//nuevo
x_deseado=Circuito_x(j);
y_deseado=Circuito_y(j);
//y_deseado=x_deseado-240;
x_vel_deseado=(x_deseado-x_actual)/(10*dt);
//x_acel_deseado=(x_deseado-x_actual)/(100*dt*dt);
x_acel_deseado=(x_vel_deseado-x_vel_dcha(j-1))/(100*dt);
//DIRECCIÓN Y
y_vel_deseado=(y_deseado-y_actual)/(10*dt);
//y_acel_deseado=(y_deseado-y_actual)/(100*dt*dt);
y_acel_deseado=(y_vel_deseado-y_vel_dcha(j-1))/(100*dt);
theta_objetivo(j)=0.2;
//Kd1=1; Kp1=0.8; //valores muy buenos
Ux_dcha(j)=x_acel_deseado + Kxd1*(x_vel_deseado - x_vel_dcha(j-1)) + Kxp1*(x_deseado-x_pos_dcha(j-1));
//
// a(j)=Ux_dcha(j)*m/(Thrust_dcha(j-1)*cos(angulotheta_dcha(j-1))); así estaba antes
a(j)=Ux_dcha(j)*m/(Thrust_dcha(j-1)*cos(phi_dcha(j-1)));
//chapuza
if (a(j))>angulo_max then
a(j)=angulo_max;
elseif a(j)<-angulo_max then
a(j)=-angulo_max;
end
theta_objetivo(j)=asin(a(j));
Uy_dcha(j)=y_acel_deseado + Kyd1*(y_vel_deseado - y_vel_dcha(j-1)) + Kyp1*(y_deseado-y_pos_dcha(j-1));
a_(j)=Uy_dcha(j)*m/(Thrust_dcha(j-1));
if a_(j)>angulo_max then
a_(j)=angulo_max;
elseif a_(j)<-angulo_max then
a_(j)=-angulo_max;
end
phi_objetivo(j)=-asin(a_(j));
//MUEVO EL DRON DCHA
//*********************************
//calculo tension variable TensV_A
xB1=sqrt((x_pos_dcha(j-1)-x_pos2(j-2))^2 + (y_pos_dcha(j-1)-y_pos(j-2))^2);
yB1=descenso(Sab, xB1,w);
altura_nudo_central(j)=yB1;
vectorX1=linspace(0,xB1,150);
//PRIMER TRAMO: Catenaria o Spline según distancia
if ((xB1<75)|(xB1>165))
//Cubic Spline
disp("Cubic spline");
dist1(j)=xB1;
else
[y1,x01,y01,c1] = catenaria3(xB1, -yB1, Sab, vectorX1);
dist1(j)=xB1;
[TensV_A, TensV_B1, TensH_A, TensH_B1]= TensVerticales(c1,y01,yB1);
//plot(sqrt((x_pos_dcha(j)-x_pos2(j-1))^2 - (y_pos_dcha(j)-y_pos(j-1))^2),'or'); //sirve para ver la distancia real de los hilos
end
[z_acel_dcha(j), phi_dcha(j), angulotheta_dcha(j), psi_dcha(j), phi_vel_dcha(j), angulotheta_vel_dcha(j), psi_vel_dcha(j), Thrust_dcha(j)] = quadrotor_dcha2(phi_dcha(j-1), angulotheta_dcha(j-1), psi_dcha(j-1), phi_vel_dcha(j-1),phi_vel_dcha(j-2), angulotheta_vel_dcha(j-1),angulotheta_vel_dcha(j-2), psi_vel_dcha(j-1),psi_vel_dcha(j-2), 0, TensV_A, z_vel_dcha(j-1),z_vel_dcha(j-2),z_dcha(j-1), TensH_B1, 0,theta_objetivo(j),phi_objetivo(j-1),Viento,orient1);
// Thrust_dcha(j)=Thrust_dcha(j)+(sin(orient1)*sin(angulotheta_dcha(j))*cos(phi_dcha(j))-cos(orient1)*sin(phi_dcha(j)))*Viento;
if abs(Thrust_dcha(j))>20
Thrust_dcha(j)=20;
end
x_acel_dcha(j)=(cos(psi_dcha(j))*cos(angulotheta_dcha(j)))*(TensH_B1)/m + (sin(psi_dcha(j))*sin(phi_dcha(j))+cos(psi_dcha(j))*sin(angulotheta_dcha(j))*cos(phi_dcha(j)))*Thrust_dcha(j)/m + Viento*cos(orient1);
x_vel_dcha(j)=x_vel_dcha(j-1)+ x_acel_dcha(j)/2*dt;
//x_vel_dcha(j)=x_vel_dcha(j-1)+(x_acel_dcha(j)-x_acel_dcha(j-1))*dt;
x_pos_dcha(j)=x_pos_dcha(j-1)+ x_vel_dcha(j)/2*dt;
x_actual=x_pos_dcha(j);
//muevo en Y
y_acel_dcha(j)=(sin(psi_dcha(j))*sin(angulotheta_dcha(j))*cos(phi_dcha(j))-cos(psi_dcha(j))*sin(phi_dcha(j)))*Thrust_dcha(j)/m - Viento*sin(orient1);
y_vel_dcha(j)=y_vel_dcha(j-1)+ y_acel_dcha(j)/2*dt;
y_pos_dcha(j)=y_pos_dcha(j-1)+ y_vel_dcha(j)/2*dt;
y_actual=y_pos_dcha(j);
//orientación drone
orient1=atan((y_pos_dcha(j)-y_pos_dcha(j-1)),(x_pos_dcha(j)-x_pos_dcha(j-1)));
if j>4 then
P_ex= (theta_objetivo(j)-angulotheta_dcha(j))/(theta_objetivo(j))*100;
if abs(P_ex)> 1 & abs(P_ex)<=3
mu=0.5*P_ex-0.5;
Kxd1=abs(Kxd1 + 0.5*mu*(theta_objetivo(j)-angulotheta_dcha(j)));
elseif abs(P_ex)>3 & abs(P_ex)<=5
mu=-0.5*P_ex+2.5;
Kxd1=abs(Kxd1 + 0.5*mu*(theta_objetivo(j)-angulotheta_dcha(j)));
elseif abs(P_ex)>4 & abs(P_ex)<=6.5
mu=(P_ex-4)/2.5;
Kxp1=abs(Kxp1 + 0.5*mu*(theta_objetivo(j)-angulotheta_dcha(j)));
elseif abs(P_ex)>6.5 & abs(P_ex)<=9
mu=(9-P_ex)/2.5;
Kxp1=abs(Kxp1 + 0.5*mu*(theta_objetivo(j)-angulotheta_dcha(j)));
end
end
if j>4 then
P_ey=(phi_objetivo(j)-phi_dcha(j))/(phi_objetivo(j))*100;
if abs(P_ey)> 1 & abs(P_ey)<=3
mu=0.5*P_ey-0.5;
Kyd1=abs(Kyd1 + 0.5*mu*(phi_objetivo(j)-phi_dcha(j)));
elseif abs(P_ey)>3 & abs(P_ey)<=5
mu=-0.5*P_ey+2.5;
Kyd1=abs(Kyd1 + 0.5*mu*(phi_objetivo(j)-phi_dcha(j)));
elseif abs(P_ey)>4 & abs(P_ey)<=6.5
mu=(P_ey-4)/2.5;
Kyp1=abs(Kyp1 + 0.5*mu*(phi_objetivo(j)-phi_dcha(j)));
elseif abs(P_ey)>6.5 & abs(P_ey)<=9
mu=(9-P_ey)/2.5;
Kyp1=abs(Kyp1 + 0.5*mu*(phi_objetivo(j)-phi_dcha(j)));
end
end
valores_Kxp1(j)=Kxp1;
valores_Kxd1(j)=Kxd1;
valores_Kyp1(j)=Kyp1;
valores_Kyd1(j)=Kyd1;
disp(j);
//*********************************
//LE SIGUE EL DRON CENTRAL
// x_deseado2=x_pos_dcha(j-1)-120; //si pongo x_deseado=x_pos_dcha(j-1)-120 -> el angulo tetha me sale muy irregular
// y_deseado2=y_deseado; //esto lo pongo para inicializar
//nuevo
x_deseado2=x_pos_dcha(j);
y_deseado2=y_pos_dcha(j);
//platoon
if j>4
//funcion chuck domingo
[x_deseado2,y_deseado2,alpha1,phi_seguidor1,rho1]=seguidores(x_pos_dcha(j),x_pos2(j-1),y_pos_dcha(j),y_pos(j-1),x_pos_dcha(j-1),y_pos_dcha(j-1),alpha1, phi_seguidor1,rho1);
plot(x_deseado2,y_deseado2,'or');
end
x_vel_deseado2=(x_deseado2-x_actual2)/(10*dt);
x_acel_deseado2=(x_vel_deseado2-x_vel2(j-1))/(100*dt);
y_vel_deseado2=(y_deseado2-y_actual2)/(10*dt);
// y_acel_deseado2=(y_deseado2-y_actual2)/(100*dt*dt);
y_acel_deseado2=(y_vel_deseado2-y_vel(j-1))/(100*dt);
//theta_objetivo=0.2;
//CALCULO TENSIONES VARIABLES POR ESTAR MOVIÉNDOSE LOS DRONES
xB2=sqrt((x_pos2(j-1)-x_pos_izq(j-2))^2 + (y_pos(j-1)-y_pos_izq(j-2))^2);
//yB2=abs(yB1)-abs(yB3);
yB2=descenso(Sab,xB2,w); //ponia 200
vectorX2=linspace(0, xB2, 150);
//SEGUNDO TRAMO: Catenaria o Spline según distancia
if ((xB2<75)|(xB2>150))
//Cubic Spline
dist2(j)=xB2;
disp("segunda cubic");
else
//catenaria
[y2,x02,y02,c2] = catenaria3(xB2, yB1, Sab, vectorX2);
dist2(j)=xB2;
[TensV_B2, TensV_C, TensH_B2, TensH_C]= TensVerticales(c2,y02,yB2);
end
theta_objetivo2(j)=0.2;
//Kd1=1; Kp1=0.8; //valores muy buenos
Ux(j)=x_acel_deseado2 + Kxd2*(x_vel_deseado2 - x_vel2(j-1)) + Kxp2*(x_deseado2-x_pos2(j-1));
//
a2(j)=Ux(j)*m/(Thrust(j-1)*cos(angulotheta(j-1)));
//chapuza
if a2(j)>angulo_max then
a2(j)=angulo_max;
elseif a2(j)<-angulo_max then
a2(j)=-angulo_max;
end
theta_objetivo2(j)=asin(a2(j));
Uy(j)=y_acel_deseado2 + Kyd2*(y_vel_deseado2 - y_vel(j-1)) + Kyp2*(y_deseado2-y_pos(j-1));
a_2(j)=Uy(j)*m/(Thrust(j-1));
if a_2(j)>angulo_max then
a_2(j)=angulo_max;
elseif a_2(j)<-angulo_max then
a_2(j)=-angulo_max;
end
phi_objetivo2(j)=-asin(a_2(j));
[z_acel2(j), phi(j), angulotheta(j), psi(j), phi_vel(j), angulotheta_vel(j), psi_vel(j), Thrust(j)] = quadrotor_dcha2(phi(j-1), angulotheta(j-1), psi(j-1), phi_vel(j-1),phi_vel(j-2), angulotheta_vel(j-1),angulotheta_vel(j-2), psi_vel(j-1),psi_vel(j-2), 0, TensV_B2+TensV_B1, z_vel2(j-1),z_vel2(j-2),z_pos2(j-1), TensH_B1, TensH_B2 ,theta_objetivo2(j),phi_objetivo2(j),Viento,orient2);
// Thrust(j)=Thrust(j)+(sin(orient2)*sin(angulotheta(j))*cos(phi_dcha(j))-cos(orient2)*sin(phi_dcha(j)))*Viento;
if Thrust(j)>20
Thrust(j)=20;
end
x_acel2(j)=(cos(psi(j))*cos(angulotheta(j)))*(TensH_B1-TensH_B2)/m + (sin(psi(j))*sin(phi(j))+cos(psi(j))*sin(angulotheta(j))*cos(phi(j)))*Thrust(j)/m + Viento*cos(orient2);
x_vel2(j)=x_vel2(j-1)+ x_acel2(j)/2*dt;
//x_vel_dcha(j)=x_vel_dcha(j-1)+(x_acel_dcha(j)-x_acel_dcha(j-1))*dt;
x_pos2(j)=x_pos2(j-1)+ x_vel2(j)/2*dt;
x_actual2=x_pos2(j);
distancia1(j)=x_pos_dcha(j)-x_pos2(j); //distancia entre el dron derecho y el central. Me sirve para calcular la tensión de la catenaria.
//DIRECCIÓN Y
y_acel(j)=(sin(psi(j))*sin(angulotheta(j))*cos(phi(j))-cos(psi(j))*sin(phi(j)))*Thrust(j)/m - Viento*sin(orient2);
y_vel(j)=y_vel(j-1)+ y_acel(j)/2*dt;
y_pos(j)=y_pos(j-1)+ y_vel(j)/2*dt;
y_actual2=y_pos(j);
//orientación drone
orient2=atan((y_pos(j)-y_pos(j-1))/(x_pos2(j)-x_pos2(j-1)));
if j>4 then
P_ex= (theta_objetivo2(j)-angulotheta(j))/(theta_objetivo2(j))*100;
if abs(P_ex)> 1 & abs(P_ex)<=3
mu=0.5*P_ex-0.5;
Kxd2=abs(Kxd1 + 0.5*mu*(theta_objetivo2(j)-angulotheta(j)));
elseif abs(P_ex)>3 & abs(P_ex)<=5
mu=-0.5*P_ex+2.5;
Kxd2=abs(Kxd1 + 0.5*mu*(theta_objetivo2(j)-angulotheta(j)));
elseif abs(P_ex)>4 & abs(P_ex)<=6.5
mu=(P_ex-4)/2.5;
Kxp2=abs(Kxp1 + 0.5*mu*(theta_objetivo2(j)-angulotheta(j)));
elseif abs(P_ex)>6.5 & abs(P_ex)<=9
mu=(9-P_ex)/2.5;
Kxp2=abs(Kxp1 + 0.5*mu*(theta_objetivo2(j)-angulotheta(j)));
end
end
if j>4 then
P_ey=(phi_objetivo2(j)-phi(j))/(phi_objetivo2(j))*100;
if abs(P_ey)> 1 & abs(P_ey)<=3
mu=0.5*P_ey-0.5;
Kyd2=abs(Kyd1 + 0.5*mu*(phi_objetivo2(j)-phi(j)));
elseif abs(P_ey)>3 & abs(P_ey)<=5
mu=-0.5*P_ey+2.5;
Kyd2=abs(Kyd1 + 0.5*mu*(phi_objetivo2(j)-phi(j)));
elseif abs(P_ey)>4 & abs(P_ey)<=6.5
mu=(P_ey-4)/2.5;
Kyp2=abs(Kyp1 + 0.5*mu*(phi_objetivo2(j)-phi(j)));
elseif abs(P_ey)>6.5 & abs(P_ey)<=9
mu=(9-P_ey)/2.5;
Kyp2=abs(Kyp1 + 0.5*mu*(phi_objetivo2(j)-phi(j)));
end
// disp(P_ex,P_ey);
end
valores_Kxp2(j)=Kxp2;
valores_Kxd2(j)=Kxd2;
valores_Kyp2(j)=Kyp2;
valores_Kyd2(j)=Kyd2;
//LE SIGUE EL DRON IZQUIERDO
//************************************
x_deseado3=x_pos2(j);
y_deseado3=y_pos(j);
if j>4
[x_deseado3,y_deseado3,alpha2,phi_seguidor2,rho2]=seguidores(x_pos2(j),x_pos_izq(j-1),y_pos(j),y_pos_izq(j-1),x_pos2(j-1),y_pos(j-1),alpha2,phi_seguidor2,rho2);
//calculo el ángulo que forman el drone líder y el siguiente
end
x_vel_deseado3=(x_deseado3-x_actual3)/(10*dt);
//x_acel_deseado3=(x_deseado3-x_actual3)/(100*dt*dt);
x_acel_deseado3=(x_vel_deseado3-x_vel_izq(j-1))/(100*dt);
y_vel_deseado3=(y_deseado3-y_actual3)/(10*dt);
//y_acel_deseado3=(y_deseado3-y_actual3)/(100*dt*dt);
y_acel_deseado3=(y_vel_deseado3-y_vel_izq(j-1))/(100*dt);
theta_objetivo3(j)=0.2;
//Kd1=1; Kp1=0.8; //valores muy buenos
Ux_izq(j)=x_acel_deseado3 + Kxd3*(x_vel_deseado3 - x_vel_izq(j-1)) + Kxp3*(x_deseado3-x_pos_izq(j-1));
a3(j)=Ux_izq(j)*m/(Thrust_izq(j-1)*cos(angulotheta(j-1)));
//chapuza
if a3(j)>angulo_max then
a3(j)=angulo_max;
elseif a3(j)<-angulo_max then
a3(j)=-angulo_max;
end
theta_objetivo3(j)=asin(a3(j));
//DIRECCIÓN Y
Uy_izq(j)=y_acel_deseado3 + Kyd3*(y_vel_deseado3 - y_vel_izq(j-1)) + Kyp3*(y_deseado3-y_pos_izq(j-1));
a_3(j)=Uy_izq(j)*m/(Thrust_izq(j-1));
if a_3(j)>angulo_max then
a_3(j)=angulo_max;
elseif a_3(j)<-angulo_max then
a_3(j)=-angulo_max;
end
phi_objetivo3(j)=-asin(a_3(j));
[z_acel_izq(j), phi_izq(j), angulotheta_izq(j), psi_izq(j), phi_vel_izq(j), angulotheta_vel_izq(j), psi_vel_izq(j), Thrust_izq(j)] = quadrotor_dcha2(phi_izq(j-1), angulotheta_izq(j-1), psi_izq(j-1), phi_vel_izq(j-1),phi_vel_izq(j-2), angulotheta_vel_izq(j-1),angulotheta_vel_izq(j-2), psi_vel_izq(j-1),psi_vel_izq(j-2), 0, TensV_B2+TensV_B1, z_vel_izq(j-1),z_vel_izq(j-2),z_pos_izq(j-1), 0, TensH_B2 ,theta_objetivo3(j),phi_objetivo3(j),Viento,orient3);
// Thrust_izq(j)=Thrust_izq(j)+(sin(orient3)*sin(angulotheta_izq(j))*cos(phi_izq(j))-cos(orient3)*sin(phi_izq(j)))*Viento;
if Thrust_izq(j)>20
Thrust_izq(j)=20;
end
x_acel_izq(j)=(cos(psi_izq(j))*cos(angulotheta_izq(j)))*(-TensH_B2)/m + (sin(psi_izq(j))*sin(phi_izq(j))+cos(psi_izq(j))*sin(angulotheta_izq(j))*cos(phi_izq(j)))*Thrust_izq(j)/m + Viento*cos(orient3);
x_vel_izq(j)=x_vel_izq(j-1)+ x_acel_izq(j)/2*dt;
//x_vel_dcha(j)=x_vel_dcha(j-1)+(x_acel_dcha(j)-x_acel_dcha(j-1))*dt;
x_pos_izq(j)=x_pos_izq(j-1)+ x_vel_izq(j)/2*dt;
x_actual3=x_pos_izq(j);
distancia2(j)=x_pos2(j)-x_pos_izq(j); //distancia entre el dron central y el izquierdo. Me sirve para calcular la tensión vertical de las catenarias.
y_acel_izq(j)=(sin(psi_izq(j))*sin(angulotheta_izq(j))*cos(phi_izq(j))-cos(psi_izq(j))*sin(phi_izq(j)))*Thrust_izq(j)/m - Viento*sin(orient3);
y_vel_izq(j)=y_vel_izq(j-1)+ y_acel_izq(j)/2*dt;
y_pos_izq(j)=y_pos_izq(j-1)+ y_vel_izq(j)/2*dt;
y_actual3=y_pos_izq(j);
//orientación drone
orient3=atan((y_pos_izq(j)-y_pos_izq(j-1))/(x_pos_izq(j)-x_pos_izq(j-1)));
if j>4 then
//calculo beta3
if (x_pos_izq(j)-x_pos_izq(j-1))<0
if (y_pos_izq(j)-y_pos_izq(j-1))>0
beta3=%pi - atan(abs((y_pos_izq(j)-y_pos_izq(j-1))/(x_pos_izq(j)-x_pos_izq(j-1))));
else
beta3=%pi + atan(abs((y_pos_izq(j)-y_pos_izq(j-1))/(x_pos_izq(j)-x_pos_izq(j-1))));
end
else
if (y_pos_izq(j)-y_pos_izq(j-1))>0
beta3=atan((y_pos_izq(j)-y_pos_izq(j-1))/(x_pos_izq(j)-x_pos_izq(j-1)));
else
beta3=atan((y_pos_izq(j)-y_pos_izq(j-1))/(x_pos_izq(j)-x_pos_izq(j-1)));
end
end
P_ex= (theta_objetivo3(j)-angulotheta_izq(j))/(theta_objetivo3(j))*100;
if abs(P_ex)> 1 & abs(P_ex)<=3
mu=0.5*P_ex-0.5;
Kxd3=abs(Kxd3 + 0.5*mu*(theta_objetivo3(j)-angulotheta_izq(j)));
elseif abs(P_ex)>3 & abs(P_ex)<=5
mu=-0.5*P_ex+2.5;
Kxd3=abs(Kxd3 + 0.5*mu*(theta_objetivo3(j)-angulotheta_izq(j)));
elseif abs(P_ex)>4 & abs(P_ex)<=6.5
mu=(P_ex-4)/2.5;
Kxp3=abs(Kxp3 + 0.5*mu*(theta_objetivo3(j)-angulotheta_izq(j)));
elseif abs(P_ex)>6.5 & abs(P_ex)<=9
mu=(9-P_ex)/2.5;
Kxp3=abs(Kxp3 + 0.5*mu*(theta_objetivo3(j)-angulotheta_izq(j)));
end
end
if j>4 then
P_ey=(phi_objetivo3(j)-phi_izq(j))/(phi_objetivo3(j))*100;
if abs(P_ey)> 1 & abs(P_ey)<=3
mu=0.5*P_ey-0.5;
Kyd3=abs(Kyd3 + 0.5*mu*(phi_objetivo3(j)-phi_izq(j)));
elseif abs(P_ey)>3 & abs(P_ey)<=5
mu=-0.5*P_ey+2.5;
Kyd3=abs(Kyd3 + 0.5*mu*(phi_objetivo3(j)-phi_izq(j)));
elseif abs(P_ey)>4 & abs(P_ey)<=6.5
mu=(P_ey-4)/2.5;
Kyp3=abs(Kyp3 + 0.5*mu*(phi_objetivo3(j)-phi_izq(j)));
elseif abs(P_ey)>6.5 & abs(P_ey)<=9
mu=(9-P_ey)/2.5;
Kyp3=abs(Kyp3 + 0.5*mu*(phi_objetivo3(j)-phi_izq(j)));
end
end
valores_Kxp3(j)=Kxp3;
valores_Kxd3(j)=Kxd3;
valores_Kyp3(j)=Kyp3;
valores_Kyd3(j)=Kyd3;
end
end
end
end
|
8bcafc5164fa9a0db75258d05c5ab7de462f91eb | 449d555969bfd7befe906877abab098c6e63a0e8 | /2093/CH3/EX3.14/exa_3_14.sce | 09e5fe2c3322fd390f11dbd1dd0786ae295ef248 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 530 | sce | exa_3_14.sce | // Exa 3.14
clc;
clear;
close;
// Given data
bita=100;
hFE= 100;
VCEsat= 0.2;// in V
VBEsat= 0.8;// in V
VBEactive= 0.7;// in V
VBB= 5;// in V
VCC= 10;// in V
R_C= 3;// in kΩ
R_C=R_C*10^3;// in Ω
R_B= 50;// in kΩ
R_B=R_B*10^3;// in Ω
// Formula VCC= ICsat*R_C+VCEsat
ICsat= (VCC-VCEsat)/R_C;//A
disp(ICsat*10^3,"The value of IC(sat) in mA is : ")
IBmin= ICsat/bita;// in A
// Apply KVL to input circuit, VBB= IB*R_B+VBEsat
IB= (VBB-VBEsat)/R_B;// in A
disp(IB*10^6,"Actual base current in µA is : ")
|
924bb9625d30be28e24373a6c17a0afcbdf0240b | 449d555969bfd7befe906877abab098c6e63a0e8 | /2300/CH9/EX9.12.9/Ex9_9.sce | 50130ecbaf56fb1a5983358f93f1c25f0c115cfd | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 774 | sce | Ex9_9.sce | //scilab 5.4.1
//Windows 7 operating system
//chapter 9 Basic Voltage and Power Amplifiers
clc
clear
Vorms=2//Vorms=rms output voltage in the midband region of an amplifier
Pa=42//Pa=power gain in dB
Pol=0.4//Pol=power output in W at the lower cut-off frequency 100Hz
Ri=10^3//Ri=input resistance in ohms
VOrms=2/sqrt(2)//VOrms=rms output voltage at 100Hz
format("v",6)
disp("V",VOrms,"1. The rms output voltage at 100Hz,which is the lower cutoff frequency,is =")
Po=2*Pol//Po=output power in the midband region
disp("W",Po,"2. The output power in the midband region is =")
//Let Pi=input power
//10*log10(Po/Pi)=Pa
Pi=Po/(10^(Pa/10))
//Pi=(Vi^2)/Ri where Vi=rms input voltage
Vi=sqrt(Pi*Ri)
format("v",7)
disp("V",Vi,"3. The rms input voltage is =")
|
084a8491f091ffdd50105a8a604a0a768aef3647 | 449d555969bfd7befe906877abab098c6e63a0e8 | /3825/CH6/EX6.12/Ex6_12.sce | 7e6810fcc424e4457ea8615aff7417e2adcc357d | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 2,322 | sce | Ex6_12.sce | clc
m1=1000 //mass of wet steam in kg
vg1=0.06663
vf1=0.0012163
V=(2*m1)/((1/vf1)+(1/vg1))
P1=3*10^5
mprintf("V=%fmetre-cube\n",V)//ans vary due to roundoff error\n
mf=V/(2*vf1)
mg=V/(2*vg1)
mprintf("mass of liquid=%fkg\n",mf)//ans vary due to roundoff erorr
mprintf("mass of steam=%fkg\n",mg)//ans vary due to roundoff error
m2=900 //mass in kg
X1=mg/m1
mprintf("X1=%f\n",X1)//ans vary due to roundoff error
hg1=2802.3
hf1=1008.4
h1=(X1*hg1)+((1-X1)*hf1)
mprintf("h1=%fkJ/kg\n",h1)//ans vary due to roundoff error
u1=(h1*10^3)-(P1*(V/m1))
mprintf("u1=%fkJ/kg\n",u1/1000)//ans vary due to roundoff error
P2=15*10^5 //pressure assumed
vg2=0.1317
vf2=0.0011538
v2=V/m2
mprintf("v2=%fmetre-cube/kg\n",v2)//ans vary due to roundoff error
X=(v2-vf2)/(vg2-vf2)
mprintf("X=%f\n",X)//ans vary due to roundoff error
hg2=2789.8
hf2=844.67
h2=(X*hg2)+((1-X)*hf2)
mprintf("h2=%fkJ/kg\n",h2)//ans vary due to roundoff error
u2=(h2*10^3)-(P2*v2)
mprintf("u2=%fkJ/kg\n",u2/1000)//ans vary due to roundoff error
he=(hg1+hg2)/2
LHS=(m1-m2)*he
RHS=(m1*u1)-(m2*u2)
mprintf("RHS=%fkJ\n",RHS/1000)//ans in textbook is wrong
mprintf("LHS=%fkJ\n",LHS)//ans vary due to roundoff error
P3=14*10^5 //pressure assumed
hg3=2787.8
hf3=830.08
vg3=0.1407
vf3=0.0011489
X=(v2-vf3)/(vg3-vf3)
mprintf("X=%f\n",X)//ans vary due to roundoff error
h2=(X*hg3)+((1-X)*hf3)
mprintf("h2=%fkJ/kg\n",h2)//ans vary due to roundoff error
u2=(h2*10^3)-(P3*v2)
mprintf("u2=%fkJ/kg\n",u2/1000)//ans vary due to roundoff error
he=(hg1+hg3)/2
LHS=(m1-m2)*he
RHS=(m1*u1)-(m2*u2)
mprintf("LHS=%fkJ\n",LHS)//ans vary due to roundoff error
mprintf("RHS=%fkJ\n",RHS/1000)//ans in the textbook is wrong
P4=13.8*10^5 //pressure assumed
hg4=2787.32
hf4=827
vg4=0.1428
vf4=0.0011478
X=(v2-vf4)/(vg4-vf4)
mprintf("X=%f\n",X)//ans vary due to roundoff error
h2=(X*hg4)+((1-X)*hf4)
mprintf("h2=%fkJ/kg\n",h2)//ans vary due to roundoff error
u2=(h2*10^3)-(P4*v2)//ans may vary due to roundoff error
mprintf("u2=%fkJ/kg\n",u2/1000)//ans vary due to roundoff error
he=(hg1+hg4)/2
LHS=(m1-m2)*he
RHS=(m1*u1)-(m2*u2)
mprintf("LHS=%fkJ\n",LHS)//ans vary due to roundoff error
mprintf("RHS=%fkJ\n",RHS/1000)//ans in textbook is wrong
mprintf("Final pressure=%fbar",P4*10^-5)//since LHS and RHS differ by 0.2 percent
|
0505bf51d1048709ece6c4ff708f08d70dc97a20 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1364/CH6/EX6.3.1/6_3_1.sce | 8708d737964b30cdb636a19f9e615f8d24067234 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 207 | sce | 6_3_1.sce | clc
//initialisation of variables
p= 60 //lbf/in^2
w= 62.4 //lbf/ft^3
l= 1 //ft
g= 32.2 //ft/sec^2
//CALCULATIONS
i= p*144/(w*l)
a= i*g
//RESULTS
printf ('accelaration of fluid = %.f ft/sec^2',a)
|
d5a0d6b61c0e17e4874831843c1f8f3a40186640 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1319/CH1/EX1.7/1_7.sce | d1ef873aa256deff19880b95c249d104cb8454a8 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 377 | sce | 1_7.sce | // To determine circuit impedance and current in a parallel connection of a resistor and capacitor.
clc;
clear;
R=4700;
V=240;
f=60;
w=2*%pi*f;
C=2*(10^-6);
Xc=-(1/(C*w))*%i;// Reactance in polar form
Ir=V/R;
Ic=V/Xc;
I=Ir+Ic;// Total current
Z=V/I;
theta=atand(imag(Z)/real(Z));
mprintf('Impedance of the circuit = %f /_ %f ohms',abs(Z),theta)
|
30306b91fdca304817812d453fb11bf97bd0aa85 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1802/CH5/EX5.12/Exa5_12.sce | 6c7651f4126081c99f63c2b228fd06d30bfc12c0 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 507 | sce | Exa5_12.sce | //Exa 5.12
clc;
clear;
close;
//Given Data :
format('v',8);
R=2;//in ohm
X=3;//in ohm
VR=10*1000;//in volt
P=1000*10^3;//in watt(power delivered)
cos_fir=0.8;//unitless
I=P/(VR*cos_fir);//in Ampere
Vs=sqrt((VR*cos_fir+I*R)^2+(VR*sqrt(1-cos_fir^2)+I*X)^2);//in volt
Reg=(Vs-VR)*100/VR;//in %
disp(Reg,"% Regulation : ");
losses=I^2*R;//in watts
Pr=P*cos_fir;//in wats(Receiving end power)
Psend=Pr+losses;//in watts
Eff=Pr*100/Psend;//unitless
disp(Eff,"Transmission efficiency (in %) :"); |
f29756631dd04343469b7ad4458bb22ef62c8e22 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1553/CH11/EX11.10/11Ex10.sce | 29047e6d9dce5c66efb0acbbdd43e6034627fcad | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 212 | sce | 11Ex10.sce | //Ex 10
clc;
clear;
close;
n1=6;c=10;
n2=4;s=6;
n=double(lcm(int32([4,6]))); //Number of bananas
cp=(c/n1)*n;
sp=(s/n2)*n;
lossPercent=(cp-sp)/cp*100;
printf("The loss is %d percent",lossPercent);
|
315bd84043c6b6bb578897f271fdf88d1bdcca63 | 449d555969bfd7befe906877abab098c6e63a0e8 | /2417/CH11/EX11.10/Ex11_10.sce | d43f2bc55df3940ad80affb4141ea71d67f4ab35 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 619 | sce | Ex11_10.sce | //scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 11.10\n\n\n");
// Chapter 11 : Heat Transfer
// Problem 11.10 (page no. 566)
// Solution
//A bare steel pipe
ro=90; //Outside diameter //Unit:mm
ri=75; //inside diameter //Unit:mm
Ti=110; //Inside temperature //Unit:Celcius
To=40; //Outside temperature //Unit:Celcius
L=2; //Length //Unit:m
deltaT=Ti-To; //Change in temperature //Unit:Celcius
k=45 //Unit:W/(m*C) //k=proportionality constant //k=thermal conductivity
Q=(2*%pi*k*L*deltaT)/log(ro/ri); //The heat loss from the pipe //unit:W
printf("The heat loss from the pipe is %f W",Q);
|
f131963beb4acb31a8df91940dcc425a53e7d32c | 449d555969bfd7befe906877abab098c6e63a0e8 | /215/CH14/EX14.2/ex14_2.sce | 9ea9a089ac4aaf7bb154f1bbb9637b132fad5b66 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 174 | sce | ex14_2.sce | //Example 14.2
//Install Symbolic toolbox
//Find the Laplace transform
syms t s
clc
z=integ(2*exp(-s*t),t,3,%inf)
//The second term will result in zero
disp(z,'F(s)=') |
4672559cd318de1dda7bd6dbafaf5a51d412460e | 6e257f133dd8984b578f3c9fd3f269eabc0750be | /ScilabFromTheoryToPractice/CreatingPlots/testcolorbar.sce | 26421b3e9b8f1f85f2ec6cc84518bb6028d7528a | [] | no_license | markusmorawitz77/Scilab | 902ef1b9f356dd38ea2dbadc892fe50d32b44bd0 | 7c98963a7d80915f66a3231a2235010e879049aa | refs/heads/master | 2021-01-19T23:53:52.068000 | 2017-04-22T12:39:21 | 2017-04-22T12:39:21 | 89,051,705 | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 189 | sce | testcolorbar.sce | // define a grid
x=[-1:0.1:1];y=x;
// surface computation
[X,Y]=meshgrid(x,y);
Z=X.^2-Y.^2;
//surface display
clf;
F=gcf();F.color_map=jetcolormap(64);
surf(x,y,Z)
colorbar(min(Z),max(Z))
|
507cbc216be31b77d0bbbb1005e48d872e729ce1 | 449d555969bfd7befe906877abab098c6e63a0e8 | /770/CH1/EX1.9/1_9.sce | e6ffcf941ffab6a2c64323ad53c70a7130e06c58 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 872 | sce | 1_9.sce | clear;
clc;
//Example - 1.9
//Page number - 26
printf("Example - 1.9 and Page number - 26\n\n");
//Given
//Antoine equation for water ln(Psat)=16.262-(3799.89/(T_sat + 226.35))
P = 2;//[atm] - Pressure
P = (2*101325)/1000;//[kPa]
P_sat = P;// Saturation pressure
T_sat = (3799.89/(16.262-log(P_sat)))-226.35;//[C] - Saturation temperature
//Thus boiling at 2 atm occurs at Tsat = 120.66 C.
//From steam tables,at 2 bar,Tsat = 120.23 C and at 2.25 bar,Tsat = 124.0 C
//From interpolation for T_sat = 120.66 C,P = 2.0265 bar
//For P_= 2.0265 bar,T_sat, from steam table by interpolation is given by
//((2.0265-2)/(2.25-2))=((Tsat-120.23)/(124.0-120.23))
T_sat_0 = (((2.0265-2)/(2.25-2))*(124.0-120.23))+120.23;//[C]
printf(" Saturation temperature (Tsat) = %f C which is close to %f C as determined from Antoine equation",T_sat_0,T_sat);
|
64eec65cf32a7eebfe97520adb3817aac3b1e29c | 449d555969bfd7befe906877abab098c6e63a0e8 | /1865/CH3/EX3.5/prob_5.sce | ff690addafcf37ff3035daf60595183bc17ab7b4 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 413 | sce | prob_5.sce |
//Problem 5
//calculate the glancing angle for third order reflection
clear
clc
w=0.842*(10)^(-10)//wavelength in m
x=8.5833//glancing angle(in degrees) for the first order reflection
a=1,b=3//a=1 for 1st order b=3 for 3rd order reflection
d=(a*w)/(2*sind(x))//inerplanar spacing for first order reflection
y=asind((b*w)/(2*d))
printf('Glancing angle for the third order reflection = %.2f degrees',y)
|
01f49c3a1affd06f9c6a721b6892f3c80c207a6e | 449d555969bfd7befe906877abab098c6e63a0e8 | /1964/CH12/EX12.19/ex12_19.sce | 2b5671f045138cd6fae8cc4fb502dac9caa856ff | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 523 | sce | ex12_19.sce | //Chapter-12, Example 12.19, Page 367
//=============================================================================
clc
clear
//INPUT DATA
Rh=200;//Hall-coefficient in cubiccentimeter/C
a=10;//conductivity in s/m
//CALCULATIONS
un=a*Rh;//electron mobility in cm^2/V-s
mprintf("electron mobility is %d cm^2/V-s",un)
//note:answer given is wrong in textbook
//=================================END OF PROGRAM=======================================================================================================
|
42b02caa2fa0f20f285e05a39b9307119fb6359c | 449d555969bfd7befe906877abab098c6e63a0e8 | /1826/CH18/EX18.2/ex18_2.sce | 069ecb4019a8a35b9b90be8d0dcb358d85fd9b69 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 188 | sce | ex18_2.sce | // Example 18.2, page no-460
clear
clc
r=0.12*10^-9//m
eps=8.854*10^-12
alf=4*%pi*eps*r^3
printf("The electronic polarisability of an isolated Se is %.4f * 10^-40 F m^2",alf*10^40)
|
978fc08fd78a2d130de08169029b592eba49e549 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1655/CH4/EX4.15.2/Example_4_15_2.sce | dcce8401bdeda4a113cc72a193b7bd4db7a15f51 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 830 | sce | Example_4_15_2.sce | // Example 4.15.2 page 4.36
clc;
clear;
L=10; //fiber length in km
Pin=100d-6; //input power
Pout=5d-6; //output power
len=12; //length of optical link
interval=1; //splices after interval of 1 km
l=0.5; //loss due to 1 splice
attenuation=-10*log10(Pin/Pout); //computing attenuation
alpha=attenuation/L;
signal_attenuation=-alpha*L; //computing signal attenuation
splices_loss=(len-interval)*l; //computing splices loss
attenuation_loss=-len*alpha //computing attenuation loss
total_attenuation=attenuation_loss+splices_loss; //computing total attenuation
printf("\nSignal attenuation is %.1f dB/Km.\nOverall attenuation is %d dB for 10 km.\nTotal attenuation is %.1f dBs for 12km.",alpha,signal_attenuation,total_attenuation);
|
9be2406e79f85cacd71471fc71016053977b031c | 449d555969bfd7befe906877abab098c6e63a0e8 | /1592/CH4/EX4.4/example_4_4.sce | f69d151a050fbff4cc0ee24b99f1f34c58221643 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 442 | sce | example_4_4.sce | //Scilab Code for Example 4.4 of Signals and systems by
//P.Ramakrishna Rao
clear;
clc;
//X(f)=A*T/1+j*2*pi*f*T
syms f w;
A=1;
T=1;
X=(A^2*T^2)/(1+4*%pi^2*f^2*T^2)
disp('Putting f = tan @');
disp('Total Energy:');
Ex=integrate('(A^2*T)/(2*%pi)','w',-%pi/2,%pi/2)
disp('Energy Contained in the Output Signal');
Ey=integrate('(A^2*T)/(2*%pi)','w',-%pi/4,%pi/4)
e=Ey*100/Ex;
disp(e,'Percentage Energy Contained in the Output:');
|
11b5df2d6822d996da50790c87c27cab3dc0033a | a62e0da056102916ac0fe63d8475e3c4114f86b1 | /set9/s_Engineering_Physics_M._R._Srinivasan_3411.zip/Engineering_Physics_M._R._Srinivasan_3411/CH7/EX7.2.u1/Ex7_2_u1.sce | b27e602778d52e4cf502b297e00a0053f5ac31c4 | [] | no_license | hohiroki/Scilab_TBC | cb11e171e47a6cf15dad6594726c14443b23d512 | 98e421ab71b2e8be0c70d67cca3ecb53eeef1df6 | refs/heads/master | 2021-01-18T02:07:29.200000 | 2016-04-29T07:01:39 | 2016-04-29T07:01:39 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 509 | sce | Ex7_2_u1.sce | errcatch(-1,"stop");mode(2);//Example 7_2_u1
;
;
//To find the fraction of initial intensity
alpha=-2.2 //units in db/Kilo meters
//When l=2 Kilo meters
l=2 //units in Kilo meters
//Case (a) when L=2 Kilo meters
It_I0=10^(alpha*l/10)
printf("The fraction of initial intensity left when L=2 It/I0=%.3f\n",It_I0)
//Case (b) when L=6 Kilo meters
l=6 //units in Kilo meters
It_I0=10^(alpha*l/10)
printf("The fraction of initial intensity left when L=6 It/I0=%.3f\n",It_I0)
exit();
|
0385f3ebf5b2c9e8801cdef5a2c527b992e0da26 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1226/CH17/EX17.8/EX17_8.sce | b6c2ae4a00f21433391f6a0353862b4f03d1fa39 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 338 | sce | EX17_8.sce | clc;funcprot(0);//EXAMPLE 17.8
// Initialisation of Variables
T=175;.......................//Torque due to brake load in Nm
N=500;.........................//Engine speed in rpm
//calcuations
BP=(2*%pi*N*T)/(60*1000);.......................//Brake power developed by engine in kW
disp(BP,"Brake power developed by engine (in kW):")
|
c62468a313db1a6f4a2ec193bd4f74ddcd53644f | 449d555969bfd7befe906877abab098c6e63a0e8 | /69/CH15/EX15.16/15_16.sce | 05d55968dd8429d20fdd7cf3e49818b17d5e6234 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 126 | sce | 15_16.sce | clear; clc; close;
Vo = 1.25*(1+ (1.8*10^3/240)) + (100*10^(-6))*(1.8*10^3);
disp(Vo,'Regulated Output voltage = ');
|
fd21533a07c14bfd6eea3d76212e1e4b63441896 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1241/CH4/EX4.5/exa4_5.sce | 8edc219cbfee9a6c84e3cd63dbae7ae8fe051013 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 731 | sce | exa4_5.sce | //Example 4-5//
//Reduce a given expression//
clc
//clears the window//
clear
//clears all existing variables//
//the given expression is as follows//
disp(' Given Expression- ((AB''+ABC)''+A(B+AB''))'' ')
disp('factorise')
disp(' ((A(B''+BC))''+A(B+AB''))'' ')
//reduce using laws 18 and 20//
disp(' ((A(B''+C))''+A(B+A))'' ')
disp('multiply')
disp(' ((AB''+AC)''+AA+AB)'' ')
//reduce using laws 7,8,11,18//
disp(' ((AB''+AC)''+A)'' ')
disp('demorganize')
disp(' ((A''+B)(A''+C'')+A)'' ')
disp('multiply')
disp(' (A''A''+A''C''+A''B+BC''+A)'' ')
//Reduce using laws 18,8//
disp(' (A''(1+C''+B)+BC''+A)'' ')
//reduce using law 18,7,11//
disp(' 1'' ')
disp(' 0 ')
//final reduced expression is displayed//
|
e11de9cbe941ffdc3dfe6cb21d8cc5c6a2a02b7f | 449d555969bfd7befe906877abab098c6e63a0e8 | /405/CH7/EX7.11/7_11.sce | 67d09cc49c5fb44ab05c4ab1cef5423d80ebc72a | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,243 | sce | 7_11.sce | clear;
clc;
printf("\t\t\tExample Number 7.11 \n\n\n");
// reduction of convection in ar gap
// Example 7.11 (page no.-347)
// solution
Tm = 300;// [K] mean temperature of air
dT = 20;// [degree celsius] temperature difference
R = 287;// [] universal gas constant
g = 9.81;// [m/s^(2)] acceleration due to gravity
p_atm = 101325;// [Pa] atmospheric pressure
// consulting table 7-13(page no.-344), we find that for gases, a value Grdel_into_Pr<2000 is necessary to reduce the system to one of pure conduction.
// at 300 K the properties of air are
k = 0.02624;// [W/m degree celsius]
Pr = 0.7;// prandtl no.
mu = 1.846*10^(-5);// [Kg/m s]
Beta = 1/300;
// we have
Grdel_into_Pr = 2000;
// Part A for spacing of 1cm
del = 0.01;// [m] spacing between plate
p = sqrt((Grdel_into_Pr*((R*Tm)^(2))*mu^(2))/(g*Beta*dT*del^(3)*Pr));// [Pa]
// or vacuum
vacuum = p_atm-p;// [Pa]
printf("vacuum necessary for glass spacings of 1 cm is %f Pa",vacuum);
// Part B for spacing of 2cm
del1 = 0.02;// [m] spacing between plate
p1 = sqrt(Grdel_into_Pr*(R*Tm)^(2)*mu^(2)/(g*Beta*dT*del1^(3)*Pr));// [Pa]
// or vacuum
vacuum1 = p_atm-p1;// [Pa]
printf("\n\n vacuum necessary for glass spacings of 2 cm is %f Pa",vacuum1); |
831e6bbeb2c1c1518fb906d021985714d2de4ae0 | 449d555969bfd7befe906877abab098c6e63a0e8 | /1670/CH10/EX10.3/10_3.sce | cc27ccb042db964194d1c8f759473a6e6d45297c | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 727 | sce | 10_3.sce | //Example 10.3
//Taylor Method
//Page no. 304
clc;clear;close;
deff('y=f1(x,y)','y=1')
deff('y=f2(x,y)','y=x*y')
deff('y=f3(x,y)','y=x*f1(x,y)+y')
deff('y=f4(x,y)','y=x*f2(x,y)+2*f1(x,y)')
deff('y=f5(x,y)','y=x*f3(x,y)+3*f2(x,y)')
h=0.5;y=0;
x=[0.5,1]
for i=1:2
if i==1 then
k=y;
end
for j=1:5
if j==1 then
k=k+(h^j)*f1((i-1)*h,y)/factorial(j)
elseif j==2
k=k+(h^j)*f2((i-1)*h,y)/factorial(j)
elseif j==3
k=k+(h^j)*f3((i-1)*h,y)/factorial(j)
elseif j==4
k=k+(h^j)*f4((i-1)*h,y)/factorial(j)
elseif j==5
k=k+(h^j)*f5((i-1)*h,y)/factorial(j)
end
end
printf('\ny(%g) = %g\n\n',x(i),k)
y=k
end
|
e581c781fedcd7ef1332bb4a101f0b8e2bb9436e | 449d555969bfd7befe906877abab098c6e63a0e8 | /1802/CH2/EX2.12/Exa2_12.sce | 079a148226b8203875a3ea9bfbc897e3b7797874 | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 973 | sce | Exa2_12.sce | //Exa 2.12
clc;
clear;
close;
//Given Data :
format('v',8);
//Vcon=V;//in volt
//pf=cosfi;//unitless
//Rcon=R;//in ohm
//Part (i) : single phase system
disp("Single phase system :");
P1=5*10^6;//in watt
//I1=P1/(V*cosfi);//in Ampere
disp("Line current,I1="+string(P1)+"/V*cosfi");
//W1=2*I1^2*R;//in Wats(Line losses)
disp("Line Losses,W1="+string(2*P1^2)+"R/(V*cosfi)^2");
//Lloss_percent=W1*P1/100;//in % eqn(1)
disp("% Line Losses="+string(2*P1^2*100/P1)+"R/(V*cosfi)^2");
//Part (ii) : 3 phase 3 wire system
disp("3 phase 3 wire system :");
//I2=P2/(V*cossfi*sqrt(3));//in Ampere
disp("Line current,I2="+string(10^6/sqrt(3))+"P2/V*cosfi");
//W1=2*I2^2*R;//in Wats(Line losses)
disp("Line Losses,W2="+string(2*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
//Lloss_percent=W2*P2/100;//in % eqn(2)
disp("% Line Losses="+string(3*(10^6/sqrt(3))^2)+"R*P2^2/(V*cosfi)^2");
P2=2*P1;//in watts
disp("3 phase load in MW :"+string(P2/10^6)); |
90f8831c5e51cab4becff3cf1e3690e93f02db5b | 449d555969bfd7befe906877abab098c6e63a0e8 | /704/CH3/EX3.33/ex3_33.sce | d8f34f1e4cd18fcd0fc8ce3bdf33248e23c7a9ee | [] | no_license | FOSSEE/Scilab-TBC-Uploads | 948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1 | 7bc77cb1ed33745c720952c92b3b2747c5cbf2df | refs/heads/master | 2020-04-09T02:43:26.499000 | 2018-02-03T05:31:52 | 2018-02-03T05:31:52 | 37,975,407 | 3 | 12 | null | null | null | null | UTF-8 | Scilab | false | false | 1,296 | sce | ex3_33.sce | //Caption:In a transformer find all day efficiency
//Exam:3.33
clc;
clear;
close;
KVA=15;//Rating of the transformer(in KVA)
E_f=0.98;//Efficiency of the transformer
P_F=1;//for unity power factor
O_P=KVA*P_F;//Output of the transformer at unity power factor(in KW)
I_P=O_P/E_f;//Input to the transformer(in KW)
P_T=I_P-O_P;//Total losses(in KW)
//At Maximum efficiency
P_C=P_T/2;//copper loss for maximum efficiency(in KW)
P_I=P_C;//iron losss at maximum efficiency copper loss=iron loss
L_1=2;//load for 12 hours (in KW)
L_2=12;//load for 6 hours (in KW)
L_3=18;//load for next 6 hours (in KW)
P_f1=0.5;//Power factor at L_1 load
P_f2=0.8;//Power factor at L_2 load
P_f3=0.9;//Power factor at L_3 load
T_1=12;//Time when L_1 working(in hours)
T_2=6;//Time when L_2 working(in hours)
T_3=6;//Time when L_3 working(in hours)
O_p1=L_1*T_1+L_2*T_2+L_3*T_3;//All day output(in KWh)
P_i1=P_I*24;//Iron losses for 24 hours(in KWh)
P_c1=T_1*P_C*((L_1/P_f1)/KVA)^2+T_2*P_C*((L_2/P_f2)/KVA)^2+T_3*P_C*((L_3/P_f3)/KVA)^2;//Copper loss for 24 hours(in KWh)
P_t=P_c1+P_i1;//Total losses of transformer for 24 hours(in KWh)
I_p1=O_p1+P_t;//All day input(in KWh)
E_f1=(O_p1/I_p1)*100;//All day efficiency of transformer
disp(ceil(E_f1),'All day efficiency of transformer(in %)='); |
20fb914c2c0f6686f89db81172da0eb14b3cd20c | d7245f1541674d166d966fddabad26a985a0bbd9 | /doc/qpsk_modulation.sce | 34ec2de95b6b16ccaf639de780b8276c98980613 | [] | no_license | ivan-khavantsev/radio | 2c30bd6d659a629dc0ff257241cc55410d5e0d6b | 16ea8061070d2f13e7f95ddf62d495d4439f5b23 | refs/heads/master | 2021-01-16T01:02:07.097000 | 2014-01-19T13:59:36 | 2014-01-19T13:59:36 | null | 0 | 0 | null | null | null | null | UTF-8 | Scilab | false | false | 2,007 | sce | qpsk_modulation.sce | clc
clear
close
b=[0 1 1 0 1 1 1 0]
one=ones(1,100)
zero=-ones(1,100)
//generation of bodd signal
bodd=[]
for i=1:2:length(b)
if(b(i)==1)
bodd=[bodd one]
bodd=[bodd one]
else
bodd=[bodd zero]
bodd=[bodd zero]
end
end
//generation of beven signal
beven=[]
for i=2:2:length(b)
if(b(i)==1) then
beven=[beven one]
beven=[beven one]
else
beven=[beven zero]
beven=[beven zero]
end
end
beven=[zeros(1,100) beven]
//resizing bodd n beven signals
bodd=bodd(1:length(b)*100)
beven=beven(1:length(b)*100)
//sin and cos carriers
f=1
t=0:0.01:(length(b)-0.01)
coscar=cos(2*%pi*f*t)
sincar=sin(2*%pi*f*t)
//Idata & Qdata
idata=beven.*coscar
qdata=bodd.*sincar
//Qpsk output
qpsk=idata+qdata
//plot 1 bodd
subplot(7,1,1)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,bodd)
title('bodd','color','blue','edgecolor','red')
//plot 2 beven
subplot(7,1,2)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,beven)
title('beven','color','blue','edgecolor','red')
//coscarrier
subplot(7,1,3)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,coscar)
title('coscar','color','blue','edgecolor','red')
//sincarrier
subplot(7,1,4)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,sincar)
title('sincar','color','blue','edgecolor','red')
//Idata
subplot(7,1,5)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,idata)
title('idata','color','blue','edgecolor','red')
//Qdata
subplot(7,1,6)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,qdata)
title('qdata','color','blue','edgecolor','red')
//QPSK
subplot(7,1,7)
a=gca()
a.data_bounds=[0,-2;length(b),2]
a.grid=[1 -1]
t=0:0.01:(length(b)-0.01)
plot(t,qpsk)
title('qpsk','color','blue','edgecolor','red')
end |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 39