metadata
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- config_name: embedding_all-MiniLM-L12-v2
data_files:
- split: train
path: embedding_all-MiniLM-L12-v2/train-*
- split: test
path: embedding_all-MiniLM-L12-v2/test-*
- config_name: embedding_all-mpnet-base-v2
data_files:
- split: train
path: embedding_all-mpnet-base-v2/train-*
- split: test
path: embedding_all-mpnet-base-v2/test-*
- config_name: embedding_multi-qa-mpnet-base-dot-v1
data_files:
- split: train
path: embedding_multi-qa-mpnet-base-dot-v1/train-*
- split: test
path: embedding_multi-qa-mpnet-base-dot-v1/test-*
dataset_info:
- config_name: default
features:
- name: text
dtype: string
- name: labels
dtype:
class_label:
names:
'0': World
'1': Sports
'2': Business
'3': Sci/Tech
- name: uid
dtype: int64
splits:
- name: train
num_bytes: 30777303
num_examples: 120000
- name: test
num_bytes: 1940274
num_examples: 7600
download_size: 20531429
dataset_size: 32717577
- config_name: embedding_all-MiniLM-L12-v2
features:
- name: uid
dtype: int64
- name: embedding_all-MiniLM-L12-v2
sequence: float32
splits:
- name: train
num_bytes: 185760000
num_examples: 120000
- name: test
num_bytes: 11764800
num_examples: 7600
download_size: 276467219
dataset_size: 197524800
- config_name: embedding_all-mpnet-base-v2
features:
- name: uid
dtype: int64
- name: embedding_all-mpnet-base-v2
sequence: float32
splits:
- name: train
num_bytes: 370080000
num_examples: 120000
- name: test
num_bytes: 23438400
num_examples: 7600
download_size: 472647323
dataset_size: 393518400
- config_name: embedding_multi-qa-mpnet-base-dot-v1
features:
- name: uid
dtype: int64
- name: embedding_multi-qa-mpnet-base-dot-v1
sequence: float32
splits:
- name: train
num_bytes: 370080000
num_examples: 120000
- name: test
num_bytes: 23438400
num_examples: 7600
download_size: 472640830
dataset_size: 393518400
task_categories:
- text-classification
language:
- en
size_categories:
- 100K<n<1M
This dataset has been created as an artefact of the paper AnchorAL: Computationally Efficient Active Learning for Large and Imbalanced Datasets (Lesci and Vlachos, 2024).
More info about this dataset in the appendix of the paper.
This is the same dataset as fancyzhx/ag_news
.
The only differences are:
Addition of a unique identifier,
uid
Addition of the indices, that is 3 columns with the embeddings of 3 different sentence-transformers
all-mpnet-base-v2
multi-qa-mpnet-base-dot-v1
all-MiniLM-L12-v2
Renaming of the
label
column tolabels
for easier compatibility with the transformers library