Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 8 new columns ({'-maoolmiKi0', '0.0', '0.6384628295898438', '0.2788799709743924', '0.6011223793029785', '-maoolmiKi0:0:0', '-maoolmiKi0:0', '0.3613415188259549'}) and 8 missing columns ({'0.3313398361206054', '-ASZexdSdWE', '0.4594538794623481', '0.16', '0.9237054824829102', '-ASZexdSdWE:0', '-ASZexdSdWE:0:0', '0.9796500205993652'}).

This happened while the csv dataset builder was generating data using

hf://datasets/plnguyen2908/UniTalk-ASD/csv/train/-maoolmiKi0.csv (at revision 0c0f80331c91b57ce772bc674f81d40a24247383)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1871, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 643, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2293, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2241, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              -maoolmiKi0: string
              0.0: double
              0.6011223793029785: double
              0.2788799709743924: double
              0.6384628295898438: double
              0.3613415188259549: double
              NOT_SPEAKING: string
              -maoolmiKi0:0: string
              0: int64
              -maoolmiKi0:0:0: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1519
              to
              {'-ASZexdSdWE': Value(dtype='string', id=None), '0.16': Value(dtype='float64', id=None), '0.9237054824829102': Value(dtype='float64', id=None), '0.3313398361206054': Value(dtype='float64', id=None), '0.9796500205993652': Value(dtype='float64', id=None), '0.4594538794623481': Value(dtype='float64', id=None), 'NOT_SPEAKING': Value(dtype='string', id=None), '-ASZexdSdWE:0': Value(dtype='string', id=None), '0': Value(dtype='int64', id=None), '-ASZexdSdWE:0:0': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1428, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 989, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1742, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1873, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 8 new columns ({'-maoolmiKi0', '0.0', '0.6384628295898438', '0.2788799709743924', '0.6011223793029785', '-maoolmiKi0:0:0', '-maoolmiKi0:0', '0.3613415188259549'}) and 8 missing columns ({'0.3313398361206054', '-ASZexdSdWE', '0.4594538794623481', '0.16', '0.9237054824829102', '-ASZexdSdWE:0', '-ASZexdSdWE:0:0', '0.9796500205993652'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/plnguyen2908/UniTalk-ASD/csv/train/-maoolmiKi0.csv (at revision 0c0f80331c91b57ce772bc674f81d40a24247383)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

-ASZexdSdWE
string
0.16
float64
0.9237054824829102
float64
0.3313398361206054
float64
0.9796500205993652
float64
0.4594538794623481
float64
NOT_SPEAKING
string
-ASZexdSdWE:0
string
0
int64
-ASZexdSdWE:0:0
string
-ASZexdSdWE
0.2
0.923952
0.328611
0.980176
0.461758
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.24
0.923125
0.329036
0.980767
0.461767
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.28
0.922738
0.332406
0.980203
0.463286
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.32
0.9234
0.334192
0.979988
0.463199
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.36
0.923646
0.334681
0.980114
0.463327
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.4
0.923819
0.334628
0.979975
0.463113
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.44
0.923972
0.335117
0.979997
0.463623
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.48
0.923109
0.335312
0.979166
0.462377
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.52
0.922121
0.335033
0.978581
0.464846
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.56
0.922119
0.335066
0.978614
0.464863
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.6
0.921232
0.333588
0.978177
0.464079
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.64
0.920601
0.332815
0.97755
0.464153
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.68
0.919407
0.332764
0.976551
0.460609
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.72
0.919253
0.332919
0.976454
0.459651
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.76
0.918504
0.331208
0.976135
0.459506
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.8
0.917415
0.328388
0.974889
0.459111
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.84
0.916593
0.328692
0.974043
0.459009
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.88
0.914405
0.333239
0.971603
0.459431
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.92
0.913225
0.333219
0.970366
0.459656
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
0.96
0.91267
0.334773
0.969205
0.460162
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1
0.911945
0.333891
0.968266
0.46105
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.04
0.911446
0.3353
0.967927
0.461336
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.08
0.911454
0.334845
0.967936
0.461636
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.12
0.911453
0.334527
0.968015
0.46152
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.16
0.911641
0.332969
0.96842
0.460229
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.2
0.911915
0.33258
0.968875
0.45998
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.24
0.911878
0.332209
0.96894
0.459835
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.28
0.912379
0.331173
0.969261
0.45972
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.32
0.912647
0.332228
0.969991
0.458983
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.36
0.913106
0.331893
0.970758
0.45975
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.4
0.913038
0.331985
0.970817
0.459554
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.44
0.912909
0.334393
0.97041
0.460525
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.48
0.911971
0.339234
0.969437
0.464506
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.52
0.911268
0.338777
0.969161
0.465758
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.56
0.911257
0.338944
0.9689
0.466424
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.6
0.910479
0.340498
0.967626
0.46948
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.64
0.909393
0.340232
0.966876
0.471262
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.68
0.909223
0.345607
0.967064
0.475829
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.72
0.909191
0.345563
0.967073
0.4759
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.76
0.909237
0.346793
0.967279
0.477041
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.8
0.910013
0.349216
0.968337
0.477567
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.84
0.910108
0.349151
0.968759
0.478033
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.88
0.910274
0.350135
0.968751
0.479171
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.92
0.910871
0.351663
0.968859
0.479187
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
1.96
0.911129
0.353376
0.969236
0.480137
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2
0.911169
0.353587
0.969227
0.480269
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.04
0.911568
0.353247
0.969551
0.480512
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.08
0.912015
0.351663
0.969365
0.480778
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.12
0.912098
0.350812
0.969731
0.481055
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.16
0.911678
0.349848
0.96928
0.479383
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.2
0.9114
0.348323
0.968815
0.478096
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.24
0.911256
0.349277
0.968986
0.478394
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.28
0.909867
0.346826
0.968085
0.479017
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.32
0.909832
0.346554
0.967862
0.478885
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.36
0.909647
0.344976
0.967418
0.478462
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.4
0.909754
0.344865
0.967391
0.477396
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.44
0.909383
0.342458
0.96745
0.477542
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.48
0.910009
0.342265
0.966486
0.471908
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.52
0.910644
0.341885
0.966491
0.468622
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.56
0.910626
0.341358
0.96651
0.468496
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.6
0.908779
0.338536
0.966459
0.46436
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.64
0.908377
0.338188
0.965491
0.462994
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.68
0.908162
0.33525
0.965699
0.4576
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.72
0.908116
0.334586
0.965694
0.457674
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.76
0.908077
0.331575
0.966353
0.455989
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.8
0.908319
0.328463
0.965831
0.454465
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.84
0.908386
0.326956
0.966158
0.455024
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.88
0.909225
0.327225
0.96593
0.454769
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.92
0.90906
0.326252
0.965447
0.454884
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
2.96
0.908374
0.325679
0.965698
0.455228
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3
0.909038
0.326569
0.96586
0.457202
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.04
0.909497
0.328003
0.966489
0.456543
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.08
0.909577
0.327957
0.966862
0.456729
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.12
0.909602
0.328371
0.967292
0.456529
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.16
0.909883
0.329173
0.966725
0.458209
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.2
0.909815
0.329927
0.966312
0.457852
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.24
0.909739
0.32973
0.966271
0.458333
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.28
0.907984
0.330658
0.965541
0.45786
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.32
0.905459
0.333016
0.963986
0.459592
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.36
0.904916
0.335305
0.96251
0.460449
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.4
0.904967
0.335594
0.96254
0.460386
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.44
0.904168
0.335736
0.96208
0.461722
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.48
0.902493
0.337155
0.960806
0.463706
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.52
0.897997
0.342331
0.956199
0.469398
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.56
0.898067
0.342389
0.956148
0.469401
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.6
0.895865
0.344209
0.954393
0.472566
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.64
0.894267
0.34684
0.953207
0.476394
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.68
0.892893
0.350785
0.951468
0.479077
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.72
0.89141
0.354379
0.949413
0.482265
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.76
0.890304
0.353719
0.948638
0.48199
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.8
0.891163
0.346379
0.948477
0.478034
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.84
0.892267
0.341009
0.950144
0.470336
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.88
0.894882
0.336175
0.952155
0.461839
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.92
0.899107
0.331698
0.954867
0.455034
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
3.96
0.902205
0.327032
0.957855
0.451031
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
4
0.904471
0.326203
0.9599
0.448724
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
4.04
0.905664
0.325846
0.961625
0.447076
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
4.08
0.905549
0.325619
0.961742
0.44716
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
4.12
0.90331
0.3288
0.959894
0.448729
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
-ASZexdSdWE
4.16
0.901348
0.334018
0.956317
0.45166
NOT_SPEAKING
-ASZexdSdWE:0
0
-ASZexdSdWE:0:0
End of preview.

Data storage for the Active Speaker Detection Dataset: UniTalk

Le Thien Phuc Nguyen*, Zhuoran Yu*, Khoa Cao Quang Nhat, Yuwei Guo, Tu Ho Manh Pham, Tuan Tai Nguyen, Toan Ngo Duc Vo, Lucas Poon, Soochahn Lee, Yong Jae Lee

(* Equal Contribution)

Storage Structure

Since the dataset is large and complex, we zip the video_id folder and store on Hugging Face.

Here is the raw structure on Hungging face:

root/
├── csv/
│   ├── val
|   |    |_ video_id1.csv
|   |    |_ video_id2.csv
|   |
│   └── train
|        |_ video_id1.csv
|        |_ video_id2.csv
|
├── clips_audios/
│   ├── train/
│   │   └── <video_id>1.zip
|   |   |── <video_id>2.zip
│   |
|   |── val/
│       └── <video_id>.zip
│           
└── clips_videos/
    ├── train/
    │   └── <video_id>1.zip
    |   |── <video_id>2.zip
    |
    |── val/
        └── <video_id>.zip

Download the dataset

You can yse provided code in https://github.com/plnguyen2908/UniTalk-ASD-code/tree/main. The repo's url is also provided in the paper. You just need to clone, download pandas, and run in around 800-900 seconds:

python download_dataset.py --save_path /path/to/the/dataset

After running that script, the structure of the dataset in the local machine is:

root/
├── csv/
│   ├── val_orig.csv
│   └── train_orig.csv
├── clips_audios/
│   ├── train/
│   │   └── <video_id>/
│   │       └── <entity_id>.wav
│   └── val/
│       └── <video_id>/
│           └── <entity_id>.wav
└── clips_videos/
    ├── train/
    │   └── <video_id>/
    │       └── <entity_id>/
    │           ├── <time>.jpg (face)
    │           └── <time>.jpg (face)
    └── val/
        └── <video_id>/
            └── <entity_id>/
                ├── <time>.jpg (face)
                └── <time>.jpg (face)

Exploring the dataset

  • Inside the csv folder, there are 2 csv files for training and testing. In each csv files, each row represents a face, and there are 10 columns where:
    • video_id: the id of the video
    • frame_timestamp: the timestamp of the face in video_id
    • entity_box_x1, entity_box_y1, entity_box_x2, entity_box_y2: the relative coordinate of the bounding box of the face
    • label: SPEAKING_AUDIBLE or NOT_SPEAKING
    • entity_id: the id of the face tracks (a set of consecutive faces of the same person) in the format video_id:number
    • label_id: 1 or 0
    • instance_id: consecutive faces of an entity_id which are always not speaking are speaking. It is in the format entity_id:number
  • Inside clips_audios, there are 2 folders which are train and val splits. In each split, there will be a list of video_id folder which contains the audio file (in form of wav) for each entity_id.
  • Inside clips_videos, there are 2 folders which are train and val splits. In each split, there will be a list of video_id folder in which each contains a list of entity_id folder. In each entity_id folder, there are images of the face of that entity_id person.
  • We sample the video at 25 fps. So, if you want to use other cues to support the face prediction, we would recommend checking the video_list folder which contains the link to the list of videos we use. You can download it and sample at 25 fps.

Loading each entity's id information from Huggging Face

We also provide a way to load the information of each entity_id (i.e, face track) through the hub of huggingface. However, this method is less flexible and cannot be used for models that use multiple face tracks like ASDNet or LoCoNet. You just need to run:

from datasets import load_dataset
dataset = load_dataset("plnguyen2908/UniTalk", split = "train|val", trust_remote_code=True)

This method is more memory-efficient. However, its drawback is speed (around 20-40 hours to read all instances of face tracks) and less flexible than the first method.

For each instance, it will return:

{
    "entity_id": the id of the face track
    "images": list of images of face crops of the face_track
    "audio": the audio that has been read from wavfile.read
    "frame_timestamp": time of each face crop in the video
    "label_id": the label of each face (0 or 1)
}

Remarks

Downloads last month
155