Refine task categories and tags

#2
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +16 -24
README.md CHANGED
@@ -2,10 +2,11 @@
2
  language:
3
  - en
4
  license: mit
5
- pretty_name: VCRBench
 
6
  task_categories:
7
- - video-text-to-text
8
- - visual-question-answering
9
  tags:
10
  - video
11
  - multimodal
@@ -14,15 +15,11 @@ tags:
14
  - multi-step-reasoning
15
  - long-form-reasoning
16
  - large-video-language-model
17
- - large-multimodal-model
18
- - multimodal-large-language-model
19
- size_categories:
20
- - n<1K
21
  configs:
22
  - config_name: default
23
  data_files:
24
  - split: test
25
- path: "data.json"
26
  ---
27
 
28
  # VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models
@@ -36,42 +33,37 @@ configs:
36
 
37
  Authors: [Pritam Sarkar](https://pritamsarkar.com) and [Ali Etemad](https://www.aiimlab.com/ali-etemad)
38
 
39
- This repository provides the official implementation of **[VCRBench](https://arxiv.org/abs/2505.08455)**.
40
 
41
  ![](./sample.png)
42
 
43
  ## Usage
44
 
45
- Please check our GitHub repo for the details of usage: [VCRBench](https://github.com/pritamqu/VCRBench)
46
 
47
- ```
 
 
48
  from dataset import VCRBench
49
- dataset=VCRBench(question_file="data.json",
50
- video_root="./",
51
- mode='default',
52
- )
53
-
54
  for sample in dataset:
55
- print(sample['question'], )
56
- print(sample['answer'], )
57
  print('*'*10)
58
-
59
  break
60
-
61
  ```
62
 
63
 
64
  ### Licensing Information
65
 
66
- This dataset incorporates samples from [CrossTask](https://github.com/DmZhukov/CrossTask/blob/master/LICENSE) that are subject to their respective original licenses. Users must adhere to the terms and conditions specified by these licenses.
67
- This project does not impose any additional constraints beyond those stipulated in the original licenses. Users must ensure their usage complies with all applicable laws and regulations.
68
- This repository is released under the **MIT**. See [LICENSE](LICENSE) for details.
69
 
70
  ### Citation Information
71
 
72
  If you find this work useful, please use the given bibtex entry to cite our work:
73
 
74
- ```
75
  @misc{sarkar2025vcrbench,
76
  title={VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models},
77
  author={Pritam Sarkar and Ali Etemad},
 
2
  language:
3
  - en
4
  license: mit
5
+ size_categories:
6
+ - n<1K
7
  task_categories:
8
+ - video-classification
9
+ pretty_name: VCRBench
10
  tags:
11
  - video
12
  - multimodal
 
15
  - multi-step-reasoning
16
  - long-form-reasoning
17
  - large-video-language-model
 
 
 
 
18
  configs:
19
  - config_name: default
20
  data_files:
21
  - split: test
22
+ path: data.json
23
  ---
24
 
25
  # VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models
 
33
 
34
  Authors: [Pritam Sarkar](https://pritamsarkar.com) and [Ali Etemad](https://www.aiimlab.com/ali-etemad)
35
 
36
+ This repository provides the official implementation of **[VCRBench](https://arxiv.org/abs/2505.08455)**. VCRBench is a benchmark dataset for evaluating the causal reasoning capabilities of Large Video Language Models (LVLMs) in visually grounded, goal-driven scenarios. It consists of procedural videos with shuffled steps, requiring LVLMs to identify, reason about, and correctly sequence events to achieve a specific goal.
37
 
38
  ![](./sample.png)
39
 
40
  ## Usage
41
 
42
+ For detailed usage instructions, please refer to the GitHub repository: [VCRBench](https://github.com/pritamqu/VCRBench)
43
 
44
+ A basic example:
45
+
46
+ ```python
47
  from dataset import VCRBench
48
+ dataset = VCRBench(question_file="data.json", video_root="./", mode='default')
 
 
 
 
49
  for sample in dataset:
50
+ print(sample['question'])
51
+ print(sample['answer'])
52
  print('*'*10)
 
53
  break
 
54
  ```
55
 
56
 
57
  ### Licensing Information
58
 
59
+ This dataset incorporates samples from [CrossTask](https://github.com/DmZhukov/CrossTask/blob/master/LICENSE) and is subject to their respective original licenses. This repository is released under the **MIT License**. See [LICENSE](LICENSE) for details. Users must adhere to the terms and conditions specified by these licenses.
60
+
 
61
 
62
  ### Citation Information
63
 
64
  If you find this work useful, please use the given bibtex entry to cite our work:
65
 
66
+ ```bibtex
67
  @misc{sarkar2025vcrbench,
68
  title={VCRBench: Exploring Long-form Causal Reasoning Capabilities of Large Video Language Models},
69
  author={Pritam Sarkar and Ali Etemad},