
prithivMLmods/Brain3-Anomaly-SigLIP2
Image Classification
•
0.1B
•
Updated
•
7
image
imagewidth (px) 512
512
| label
class label 3
classes |
---|---|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
|
0brain_glioma
|
The Brain3-Anomaly-Classification dataset is a curated collection of brain MRI scans categorized into three types of brain anomalies. It is designed for use in machine learning applications related to medical imaging, especially in the detection and classification of brain tumors.
train
split is providedEach image in the dataset represents an MRI scan and is annotated with a label indicating the type of brain anomaly.
Label | Class Name |
---|---|
0 | brain_glioma |
1 | brain_menin |
2 | brain_tumor |
This dataset can be used for:
Each row in the dataset includes:
image
: A brain MRI image of size 512x512 pixelslabel
: An integer representing the class (0, 1, or 2)The dataset is available in Hugging Face's Parquet format for easy loading and use with the datasets
library.
from datasets import load_dataset
dataset = load_dataset("prithivMLmods/Brain3-Anomaly-Classification")
This will load the dataset with images and corresponding labels, which can be directly used for training models in PyTorch, TensorFlow, or other ML frameworks.