Datasets:

Modalities:
Image
ArXiv:
Libraries:
Datasets
License:
Dataset Viewer (First 5GB)
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
40
5.33k
label
class label
322 classes
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
0000080e0acde0e211ba6f74aa7f4eb04
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
50004e63084e48e25a6982f11c7a77115
700067fb9daab729350a7c79a8af42850
700067fb9daab729350a7c79a8af42850
700067fb9daab729350a7c79a8af42850
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
11000d0d269285f4a0c99d3213f10c4b14
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
160013fccdc710bed726bcb1efdd5f7592
3000327d62d37100d65a6a243eda7bc7ad
End of preview. Expand in Data Studio

cover.png

Testing Code:

The GitHub repo for testing code: VisR-Bench

Data Download

This is the page images of all documents of the VisR-Bench dataset.

git lfs install
git clone https://huggingface.co/datasets/puar-playground/VisR-Bench

The code above will download the VisR-Bench folder, which is required for testing.

Reference

@misc{chen2025visrbenchempiricalstudyvisual,
      title={VisR-Bench: An Empirical Study on Visual Retrieval-Augmented Generation for Multilingual Long Document Understanding}, 
      author={Jian Chen and Ming Li and Jihyung Kil and Chenguang Wang and Tong Yu and Ryan Rossi and Tianyi Zhou and Changyou Chen and Ruiyi Zhang},
      year={2025},
      eprint={2508.07493},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2508.07493}, 
}

@misc{chen2025svragloracontextualizingadaptationmllms,
      title={SV-RAG: LoRA-Contextualizing Adaptation of MLLMs for Long Document Understanding}, 
      author={Jian Chen and Ruiyi Zhang and Yufan Zhou and Tong Yu and Franck Dernoncourt and Jiuxiang Gu and Ryan A. Rossi and Changyou Chen and Tong Sun},
      year={2025},
      eprint={2411.01106},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.01106}, 
}
Downloads last month
607