|
--- |
|
dataset_info: |
|
- config_name: issue_comments |
|
features: |
|
- name: user |
|
dtype: string |
|
- name: created_at |
|
dtype: timestamp[us] |
|
- name: body |
|
dtype: string |
|
- name: issue_number |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 4224585 |
|
num_examples: 8587 |
|
download_size: 1677910 |
|
dataset_size: 4224585 |
|
- config_name: issues |
|
features: |
|
- name: number |
|
dtype: int64 |
|
- name: title |
|
dtype: string |
|
- name: user |
|
dtype: string |
|
- name: state |
|
dtype: string |
|
- name: created_at |
|
dtype: timestamp[us] |
|
- name: closed_at |
|
dtype: timestamp[us] |
|
- name: comments_count |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 271785 |
|
num_examples: 2550 |
|
download_size: 159333 |
|
dataset_size: 271785 |
|
- config_name: models |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: created_at |
|
dtype: timestamp[us, tz=UTC] |
|
- name: likes |
|
dtype: int64 |
|
- name: downloads |
|
dtype: int64 |
|
- name: tags |
|
sequence: string |
|
splits: |
|
- name: train |
|
num_bytes: 15140938 |
|
num_examples: 47246 |
|
download_size: 2231569 |
|
dataset_size: 15140938 |
|
- config_name: models_likes |
|
features: |
|
- name: user |
|
dtype: string |
|
- name: model_id |
|
dtype: string |
|
- name: liked_at |
|
dtype: timestamp[s, tz=UTC] |
|
splits: |
|
- name: train |
|
num_bytes: 339920.0 |
|
num_examples: 5528 |
|
download_size: 154071 |
|
dataset_size: 339920.0 |
|
- config_name: pypi_downloads |
|
features: |
|
- name: day |
|
dtype: date32 |
|
- name: num_downloads |
|
dtype: int64 |
|
splits: |
|
- name: train |
|
num_bytes: 19440.0 |
|
num_examples: 1620 |
|
download_size: 15052 |
|
dataset_size: 19440.0 |
|
- config_name: stargazers |
|
features: |
|
- name: starred_at |
|
dtype: timestamp[s, tz=UTC] |
|
- name: user |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 231495 |
|
num_examples: 10828 |
|
download_size: 224543 |
|
dataset_size: 231495 |
|
configs: |
|
- config_name: issue_comments |
|
data_files: |
|
- split: train |
|
path: issue_comments/train-* |
|
- config_name: issues |
|
data_files: |
|
- split: train |
|
path: issues/train-* |
|
- config_name: models |
|
data_files: |
|
- split: train |
|
path: models/train-* |
|
- config_name: models_likes |
|
data_files: |
|
- split: train |
|
path: models_likes/train-* |
|
- config_name: pypi_downloads |
|
data_files: |
|
- split: train |
|
path: pypi_downloads/train-* |
|
- config_name: stargazers |
|
data_files: |
|
- split: train |
|
path: stargazers/train-* |
|
--- |
|
|
|
## Stars |
|
|
|
```python |
|
import requests |
|
from datetime import datetime |
|
from datasets import Dataset |
|
import pyarrow as pa |
|
import os |
|
|
|
def get_stargazers(owner, repo, token): |
|
# Initialize the count and the page number |
|
page = 1 |
|
stargazers = [] |
|
while True: |
|
# Construct the URL for the stargazers with pagination |
|
stargazers_url = f"https://api.github.com/repos/{owner}/{repo}/stargazers?page={page}&per_page=100" |
|
|
|
# Send the request to GitHub API with appropriate headers |
|
headers = {"Accept": "application/vnd.github.v3.star+json", "Authorization": "token " + token} |
|
response = requests.get(stargazers_url, headers=headers) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Failed to fetch stargazers with status code {response.status_code}: {response.text}") |
|
|
|
stargazers_page = response.json() |
|
|
|
if not stargazers_page: # Exit the loop if there are no more stargazers to process |
|
break |
|
|
|
stargazers.extend(stargazers_page) |
|
page += 1 # Move to the next page |
|
|
|
return stargazers |
|
|
|
token = os.environ.get("GITHUB_PAT") |
|
stargazers = get_stargazers("huggingface", "trl", token) |
|
stargazers = {key: [stargazer[key] for stargazer in stargazers] for key in stargazers[0].keys()} |
|
dataset = Dataset.from_dict(stargazers) |
|
|
|
def clean(example): |
|
starred_at = datetime.strptime(example["starred_at"], "%Y-%m-%dT%H:%M:%SZ") |
|
starred_at = pa.scalar(starred_at, type=pa.timestamp("s", tz="UTC")) |
|
return {"starred_at": starred_at, "user": example["user"]["login"]} |
|
|
|
dataset = dataset.map(clean, remove_columns=dataset.column_names) |
|
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="stargazers") |
|
``` |
|
|
|
|
|
## Pypi downloads |
|
|
|
```python |
|
from datasets import Dataset |
|
from google.cloud import bigquery |
|
import os |
|
|
|
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "propane-tree-432413-4c3e2b5e6b3c.json" |
|
|
|
# Initialize a BigQuery client |
|
client = bigquery.Client() |
|
|
|
# Define your query |
|
query = """ |
|
#standardSQL |
|
WITH daily_downloads AS ( |
|
SELECT |
|
DATE(timestamp) AS day, |
|
COUNT(*) AS num_downloads |
|
FROM |
|
`bigquery-public-data.pypi.file_downloads` |
|
WHERE |
|
file.project = 'trl' |
|
-- Filter for the last 12 months |
|
AND DATE(timestamp) BETWEEN DATE_SUB(CURRENT_DATE(), INTERVAL 54 MONTH) AND CURRENT_DATE() |
|
GROUP BY |
|
day |
|
) |
|
SELECT |
|
day, |
|
num_downloads |
|
FROM |
|
daily_downloads |
|
ORDER BY |
|
day DESC |
|
""" |
|
|
|
# Execute the query |
|
query_job = client.query(query) |
|
|
|
# Fetch the results |
|
results = query_job.result() |
|
|
|
# Convert the results to a pandas DataFrame and then to a Dataset |
|
df = results.to_dataframe() |
|
dataset = Dataset.from_pandas(df) |
|
|
|
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="pypi_downloads") |
|
``` |
|
|
|
## Models tagged |
|
|
|
|
|
```python |
|
from huggingface_hub import HfApi |
|
from datasets import Dataset |
|
|
|
api = HfApi() |
|
models = api.list_models(tags="trl") |
|
dataset_list = [{"id": model.id, "created_at": model.created_at, "likes": model.likes, "downloads": model.downloads, "tags": model.tags} for model in models] |
|
dataset_dict = {key: [d[key] for d in dataset_list] for key in dataset_list[0].keys()} |
|
dataset = Dataset.from_dict(dataset_dict) |
|
dataset.push_to_hub("qgallouedec/trl-metrics", config_name="models") |
|
``` |
|
|
|
|
|
## Issues and comments |
|
|
|
```python |
|
import requests |
|
from datetime import datetime |
|
import os |
|
from datasets import Dataset |
|
from tqdm import tqdm |
|
|
|
token = os.environ.get("GITHUB_PAT") |
|
|
|
def get_full_response(url, headers, params=None): |
|
page = 1 |
|
output = [] |
|
params = params or {} |
|
while True: |
|
params = {**params, "page": page, "per_page": 100} |
|
response = requests.get(url, headers=headers, params=params) |
|
|
|
if response.status_code != 200: |
|
raise Exception(f"Failed to fetch issues: {response.text}") |
|
|
|
batch = response.json() |
|
if len(batch) == 0: |
|
break |
|
output.extend(batch) |
|
page += 1 |
|
return output |
|
|
|
# GitHub API URL for issues (closed and open) |
|
issues_url = f"https://api.github.com/repos/huggingface/trl/issues" |
|
|
|
# Set up headers for authentication |
|
headers = {"Authorization": f"token {token}", "Accept": "application/vnd.github.v3+json"} |
|
|
|
# Make the request |
|
issues = get_full_response(issues_url, headers, params={"state": "all"}) |
|
|
|
issues_dataset_dict = { |
|
"number": [], |
|
"title": [], |
|
"user": [], |
|
"state": [], |
|
"created_at": [], |
|
"closed_at": [], |
|
"comments_count": [], |
|
} |
|
comments_dataset_dict = { |
|
"user": [], |
|
"created_at": [], |
|
"body": [], |
|
"issue_number": [], |
|
} |
|
for issue in tqdm(issues): |
|
# Extract relevant information |
|
issue_number = issue["number"] |
|
title = issue["title"] |
|
created_at = datetime.strptime(issue["created_at"], "%Y-%m-%dT%H:%M:%SZ") |
|
comments_count = issue["comments"] |
|
comments_url = issue["comments_url"] |
|
|
|
comments = get_full_response(comments_url, headers=headers) |
|
for comment in comments: |
|
comments_dataset_dict["user"].append(comment["user"]["login"]) |
|
comments_dataset_dict["created_at"].append(datetime.strptime(comment["created_at"], "%Y-%m-%dT%H:%M:%SZ")) |
|
comments_dataset_dict["body"].append(comment["body"]) |
|
comments_dataset_dict["issue_number"].append(issue_number) |
|
|
|
issues_dataset_dict["number"].append(issue_number) |
|
issues_dataset_dict["title"].append(title) |
|
issues_dataset_dict["user"].append(issue["user"]["login"]) |
|
issues_dataset_dict["state"].append(issue["state"]) |
|
issues_dataset_dict["created_at"].append(datetime.strptime(issue["created_at"], "%Y-%m-%dT%H:%M:%SZ")) |
|
issues_dataset_dict["closed_at"].append(datetime.strptime(issue["closed_at"], "%Y-%m-%dT%H:%M:%SZ") if issue["closed_at"] else None) |
|
issues_dataset_dict["comments_count"].append(comments_count) |
|
|
|
issues_dataset = Dataset.from_dict(issues_dataset_dict) |
|
comments_dataset = Dataset.from_dict(comments_dataset_dict) |
|
|
|
issues_dataset.push_to_hub("qgallouedec/trl-metrics", config_name="issues") |
|
comments_dataset.push_to_hub("qgallouedec/trl-metrics", config_name="issue_comments") |
|
``` |
|
|
|
|
|
|