Dataset Viewer
prompt
stringlengths 283
622
| ground_truth
stringlengths 384
1.41k
| task_name
stringlengths 4
4
| description
stringlengths 149
222
| level
stringclasses 1
value |
---|---|---|---|---|
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 0] -> []
[3, 2, 9, 7] -> [9]
[8, 9, 2, 6, 5, 0] -> [2]
[9, 1] -> []
[0, 8, 4, 3, 2, 5, 9, 7, 6] -> [4]
[6] -> []
[8, 4, 5, 6, 7, 3, 2, 9] -> [5]
[6, 4, 8, 1, 7, 0, 2] -> [8]
| [6, 3, 4, 1, 7, 2, 9, 8, 0]->[4]<sep>[7, 3, 6]->[6]<sep>[6, 1]->[]<sep>[4]->[]<sep>[2, 5, 1, 7, 6, 0, 8, 9, 3]->[1]<sep>[5, 1, 4, 9, 3, 8, 7, 2]->[4]<sep>[9, 2]->[]<sep>[8, 0, 6, 4]->[6]<sep>[8, 5]->[]<sep>[1, 5, 0, 6, 2, 9, 3]->[0]<sep>[8, 9, 3, 4, 5, 7]->[3]<sep>[0, 6]->[]<sep>[5]->[]<sep>[8, 5, 7]->[7]<sep>[4, 5]->[]<sep>[3]->[]<sep>[8, 1, 7, 0, 9]->[7]<sep>[1]->[]<sep>[7, 6, 3, 0, 8, 2, 4, 1, 5, 9]->[3]<sep>[]->[]<sep>[8]->[]<sep>[2]->[]<sep>[1, 3, 2, 0, 7]->[2]<sep>[5, 4]->[] | c002 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[6, 5, 4, 8, 9] -> [6, 5, 4, 8]
[4, 2, 9, 1, 0, 7, 6, 3] -> [4, 2, 9, 1, 7, 6, 3]
[1, 0, 4, 3, 8, 5] -> [1, 0, 4, 3, 5]
[5, 7, 1, 8, 3, 6, 4] -> [5, 7, 1, 8, 6, 4]
[0, 9, 7, 5] -> [0, 9, 7, 5]
[7] -> [7]
[0, 1, 7, 9, 3, 8, 4, 6, 2] -> [0, 1, 7, 9, 8, 4, 6, 2]
[8, 7, 3, 6, 0, 4, 5, 2, 9] -> [8, 7, 3, 6, 4, 5, 2, 9]
| [5, 1, 3, 8, 7, 2]->[5, 1, 3, 8, 2]<sep>[9, 8, 3, 6, 2]->[9, 8, 3, 6]<sep>[1, 7, 5, 2, 4, 3, 6, 8, 9]->[1, 7, 5, 2, 3, 6, 8, 9]<sep>[4, 3, 1, 2, 9, 5, 8, 7, 0, 6]->[4, 3, 1, 2, 5, 8, 7, 0, 6]<sep>[1, 6, 2, 3, 4, 0, 8, 9]->[1, 6, 2, 3, 0, 8, 9]<sep>[4, 5, 9, 6, 8, 0, 7, 1, 3, 2]->[4, 5, 9, 6, 0, 7, 1, 3, 2]<sep>[5, 1]->[5, 1]<sep>[4, 6, 0]->[4, 6, 0]<sep>[9, 5, 1, 2, 4, 0]->[9, 5, 1, 2, 0]<sep>[4, 5, 2, 8, 9, 3, 0, 7]->[4, 5, 2, 8, 3, 0, 7]<sep>[7, 8, 4, 9, 5, 3, 1, 0, 6, 2]->[7, 8, 4, 9, 3, 1, 0, 6, 2]<sep>[4, 1, 9, 2, 7, 0, 8]->[4, 1, 9, 2, 0, 8]<sep>[3, 2, 9, 5, 0, 4, 6]->[3, 2, 9, 5, 4, 6]<sep>[]->[]<sep>[2, 5, 7, 8, 0, 6, 3, 9, 1, 4]->[2, 5, 7, 8, 6, 3, 9, 1, 4]<sep>[2, 6, 0, 8, 4]->[2, 6, 0, 8]<sep>[6, 8, 1, 9, 5, 2, 0, 7]->[6, 8, 1, 9, 2, 0, 7]<sep>[7, 9, 0, 6, 1, 5, 2, 3]->[7, 9, 0, 6, 5, 2, 3]<sep>[8, 0, 4, 6, 9, 7]->[8, 0, 4, 6, 7]<sep>[5, 1, 2, 9, 0]->[5, 1, 2, 9]<sep>[3, 5, 7, 1, 9, 8, 6]->[3, 5, 7, 1, 8, 6]<sep>[4, 3, 8, 1, 6, 5]->[4, 3, 8, 1, 5]<sep>[0, 7, 4, 8, 5, 3, 2, 1, 9]->[0, 7, 4, 8, 3, 2, 1, 9]<sep>[5, 4, 7, 0, 9, 3, 2]->[5, 4, 7, 0, 3, 2] | c056 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 5". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 6, 5, 3, 1, 8, 4, 9, 7] -> [0, 5, 3, 1, 8, 4, 9, 7]
[1, 6, 5, 0, 8, 9, 7, 2, 4, 3] -> [1, 5, 0, 8, 9, 7, 2, 4, 3]
[3, 4, 6, 2] -> [3, 6, 2]
[4, 9, 3, 2] -> [4, 3, 2]
[1, 2] -> [1]
[5, 2, 7, 3, 6] -> [5, 7, 3, 6]
[0, 6] -> [0]
[1, 9, 6, 8, 0, 5] -> [1, 6, 8, 0, 5]
| [5, 2, 0, 4]->[5, 0, 4]<sep>[4, 0, 7, 1]->[4, 7, 1]<sep>[0, 2, 7, 9, 3, 6, 4]->[0, 7, 9, 3, 6, 4]<sep>[3, 0, 6, 8, 5]->[3, 6, 8, 5]<sep>[7, 6, 8, 4, 9, 1, 5, 2, 3, 0]->[7, 8, 4, 9, 1, 5, 2, 3, 0]<sep>[1, 5, 8]->[1, 8]<sep>[0, 6, 5, 2, 7, 1, 9]->[0, 5, 2, 7, 1, 9]<sep>[2, 0, 9, 1, 5, 7]->[2, 9, 1, 5, 7]<sep>[7, 8, 5]->[7, 5]<sep>[5, 2, 3, 9, 1, 4, 7, 8]->[5, 3, 9, 1, 4, 7, 8]<sep>[9, 6, 8, 4, 5, 7, 0, 2]->[9, 8, 4, 5, 7, 0, 2]<sep>[6, 1, 9, 5, 4, 2, 8, 3]->[6, 9, 5, 4, 2, 8, 3]<sep>[8, 7]->[8]<sep>[5, 3, 7, 4, 6, 0, 1, 8, 9, 2]->[5, 7, 4, 6, 0, 1, 8, 9, 2]<sep>[6, 8, 4, 3, 1, 7, 0, 9, 2]->[6, 4, 3, 1, 7, 0, 9, 2]<sep>[6, 3, 0, 5, 7, 4, 9]->[6, 0, 5, 7, 4, 9]<sep>[7, 5, 3, 0, 2, 6, 4, 9, 1, 8]->[7, 3, 0, 2, 6, 4, 9, 1, 8]<sep>[4, 3, 2]->[4, 2]<sep>[8, 5, 1, 3, 7]->[8, 1, 3, 7]<sep>[3, 7, 1, 9, 8, 6, 0]->[3, 1, 9, 8, 6, 0]<sep>[6, 8, 4, 9, 2, 1]->[6, 4, 9, 2, 1]<sep>[0, 8, 5]->[0, 5]<sep>[6, 2]->[6]<sep>[0, 1, 6, 7, 2, 9, 4, 3, 8]->[0, 6, 7, 2, 9, 4, 3, 8] | c025 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 1, 3, 2] -> [2]
[7, 1, 3, 8, 0, 9, 5, 4, 2] -> [2]
[4, 0, 6, 7, 1, 8] -> [8]
[6, 7, 2, 9, 8, 3, 1, 0, 4, 5] -> [5]
[5, 1] -> [1]
[0, 8, 4, 5] -> [5]
[5, 2, 0, 8, 1, 4, 9, 6, 3, 7] -> [7]
[5, 8, 9, 6, 7] -> [7]
| [8, 6, 2, 1, 7, 3, 0, 5, 4]->[4]<sep>[4, 7, 8, 1, 0, 5, 6, 9]->[9]<sep>[4, 8, 5, 2, 1, 7, 3, 9]->[9]<sep>[5, 9, 6, 0, 7, 2, 3, 1, 4, 8]->[8]<sep>[0, 3, 8, 2, 7, 9]->[9]<sep>[7, 0, 1, 5, 8]->[8]<sep>[7, 6, 1]->[1]<sep>[1, 5, 9]->[9]<sep>[5, 2, 3]->[3]<sep>[7, 4, 8]->[8]<sep>[6, 2, 4, 1, 5, 8, 7, 0, 3, 9]->[9]<sep>[0, 2, 7, 3, 5, 4, 6]->[6]<sep>[4, 6]->[6]<sep>[6, 0, 8, 7, 2, 1, 5, 9]->[9]<sep>[5, 2, 3, 0, 4, 9, 1, 6, 7]->[7]<sep>[1, 0, 8, 4, 7, 3, 6]->[6]<sep>[9, 0, 6, 2, 1, 4, 3]->[3]<sep>[5, 4, 2, 9, 3]->[3]<sep>[6, 1, 3, 2, 4, 0]->[0]<sep>[5, 2, 6, 9]->[9]<sep>[2, 3, 5, 0, 1, 9, 8, 6, 4]->[4]<sep>[7, 5, 8, 6, 3]->[3]<sep>[2, 6, 1, 7, 0, 8, 3, 4]->[4]<sep>[2, 0]->[0] | c061 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but the last element". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[6, 6, 6, 6, 6] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[5, 7, 3] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[7, 6, 6, 6, 6, 7, 7, 6, 6, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[7, 7, 7, 7, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[8, 5, 2, 8, 7, 1] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[6, 6, 6, 6, 6, 6, 6] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[8, 8, 1, 2, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[6, 3, 0, 6, 7, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
| [0, 0, 0, 0, 0, 0, 0, 0, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[5, 5, 1, 2, 8, 8, 6, 3, 7, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 8, 7, 7, 8, 8, 7, 7, 8, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 6, 6, 0, 5, 6, 0, 0]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[3, 7, 3, 7, 7, 7, 7, 7, 3]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 8, 0, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 6, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 3, 6, 0, 6, 1, 2, 0]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[3, 7, 3, 3, 1, 7, 3, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 6, 7, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 2, 2, 2]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[8, 3]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 6, 6, 6, 6, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[8]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 7, 7, 7, 7, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 2]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 6, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 5, 5, 5, 5, 6, 6, 5, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 2, 2, 1, 1, 1, 1]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 7, 7, 7, 7, 7, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9] | c044 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 9, 0, 6, 5] -> [0, 6, 5]
[2, 6, 1, 3] -> [1, 3]
[4, 5, 7] -> [7]
[8, 3] -> []
[4, 2, 8, 0, 5, 9, 7, 1, 3] -> [8, 0, 5, 9, 7]
[2] -> []
[7, 9, 1, 6, 5, 2] -> [1, 6, 5, 2]
[9, 7] -> []
| [5]->[]<sep>[2, 7, 3, 5, 1, 8]->[3, 5, 1, 8]<sep>[1, 6, 9]->[9]<sep>[6, 5, 0, 8, 2, 7, 3, 9]->[0, 8, 2, 7, 3]<sep>[3, 0, 4, 9, 8, 1, 7]->[4, 9, 8, 1, 7]<sep>[2, 6, 8, 4, 7, 9, 5, 0]->[8, 4, 7, 9, 5]<sep>[5, 4, 6, 9, 0]->[6, 9, 0]<sep>[4, 0, 5, 7, 6, 1]->[5, 7, 6, 1]<sep>[4, 8, 6]->[6]<sep>[7, 6, 0, 5]->[0, 5]<sep>[1]->[]<sep>[6, 7, 4, 8, 0, 2, 3, 5, 1, 9]->[4, 8, 0, 2, 3]<sep>[8, 6, 9, 3, 1, 5, 2, 4, 0]->[9, 3, 1, 5, 2]<sep>[0, 4, 8, 3]->[8, 3]<sep>[3, 7, 4, 1, 0, 8, 9]->[4, 1, 0, 8, 9]<sep>[7, 6, 3, 4, 0]->[3, 4, 0]<sep>[2, 8, 3, 7, 9, 1]->[3, 7, 9, 1]<sep>[4, 5, 6, 2]->[6, 2]<sep>[1, 0, 4, 2, 5, 9, 3, 7, 8, 6]->[4, 2, 5, 9, 3]<sep>[2, 0]->[]<sep>[0, 9, 3, 2, 7]->[3, 2, 7]<sep>[1, 4, 6]->[6]<sep>[5, 6, 8]->[8]<sep>[9, 3, 2, 1, 4]->[2, 1, 4] | c013 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 3 through 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[7, 2] -> [7, 2]
[6, 2, 4, 9, 0, 8, 1] -> [6, 2, 4, 9, 0, 8]
[8, 6, 1, 7, 2, 5] -> [8, 6, 1, 7, 2, 5]
[1, 4, 0, 3, 6, 8, 9, 2] -> [1, 4, 0, 3, 6, 8]
[9] -> [9]
[6, 9, 4, 1] -> [6, 9, 4, 1]
[1, 7, 5, 2, 3, 0, 8] -> [1, 7, 5, 2, 3, 0]
[7, 8, 9, 2, 3] -> [7, 8, 9, 2, 3]
| [6, 5]->[6, 5]<sep>[9, 3, 7, 0, 5, 1, 8, 4, 6]->[9, 3, 7, 0, 5, 1]<sep>[9, 2, 4, 5]->[9, 2, 4, 5]<sep>[1, 3, 6, 0, 4, 8, 9]->[1, 3, 6, 0, 4, 8]<sep>[4, 8, 0, 1]->[4, 8, 0, 1]<sep>[3, 2, 6, 0, 5]->[3, 2, 6, 0, 5]<sep>[7, 9, 6, 1, 3, 8, 4, 2, 0]->[7, 9, 6, 1, 3, 8]<sep>[0, 8, 7]->[0, 8, 7]<sep>[1, 0, 2, 9, 5, 3, 4, 6, 7, 8]->[1, 0, 2, 9, 5, 3]<sep>[5, 4, 3, 7, 8, 6, 2, 9]->[5, 4, 3, 7, 8, 6]<sep>[9, 2, 5, 1, 7, 3, 4, 0, 6]->[9, 2, 5, 1, 7, 3]<sep>[4, 1, 7]->[4, 1, 7]<sep>[9, 8, 5, 4, 2, 3, 7, 6]->[9, 8, 5, 4, 2, 3]<sep>[0, 1, 2, 6, 7, 4, 8, 5, 9, 3]->[0, 1, 2, 6, 7, 4]<sep>[9, 8, 0, 3, 6, 4, 5, 1, 7, 2]->[9, 8, 0, 3, 6, 4]<sep>[6, 9, 7, 4, 0, 5, 1, 8, 3, 2]->[6, 9, 7, 4, 0, 5]<sep>[]->[]<sep>[7]->[7]<sep>[8, 1, 7, 5, 9, 3, 0]->[8, 1, 7, 5, 9, 3]<sep>[5, 2, 1, 7, 6]->[5, 2, 1, 7, 6]<sep>[0, 5, 9]->[0, 5, 9]<sep>[4, 8, 3, 1, 2, 0, 7, 5, 6]->[4, 8, 3, 1, 2, 0]<sep>[1, 0]->[1, 0]<sep>[5, 8, 2, 4, 3, 6, 9, 7]->[5, 8, 2, 4, 3, 6] | c009 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but the first 6 elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 0, 2, 8, 6, 7, 5, 1] -> [1, 0, 2, 8, 6, 7, 5, 9]
[9, 8] -> [8, 9]
[8, 0] -> [0, 8]
[4, 0, 8, 5, 3, 7, 1, 9, 6] -> [6, 0, 8, 5, 3, 7, 1, 9, 4]
[3, 4, 6, 2, 8, 1] -> [1, 4, 6, 2, 8, 3]
[3, 7, 4, 5, 2, 1, 0, 8] -> [8, 7, 4, 5, 2, 1, 0, 3]
[1, 7, 6, 9, 4] -> [4, 7, 6, 9, 1]
[4, 2, 1, 9, 7, 8, 0, 3, 6, 5] -> [5, 2, 1, 9, 7, 8, 0, 3, 6, 4]
| [4, 1, 6, 7]->[7, 1, 6, 4]<sep>[9, 6, 7, 2, 1, 8, 3, 4, 5, 0]->[0, 6, 7, 2, 1, 8, 3, 4, 5, 9]<sep>[3, 7, 9, 1, 5]->[5, 7, 9, 1, 3]<sep>[0, 4]->[4, 0]<sep>[8, 0, 3]->[3, 0, 8]<sep>[6, 4, 5]->[5, 4, 6]<sep>[9, 4, 0, 7, 1, 2, 5, 3]->[3, 4, 0, 7, 1, 2, 5, 9]<sep>[2, 5, 9, 0, 8, 3]->[3, 5, 9, 0, 8, 2]<sep>[9, 1, 2, 3, 8, 5, 6]->[6, 1, 2, 3, 8, 5, 9]<sep>[7, 0, 2, 3]->[3, 0, 2, 7]<sep>[9, 7, 5, 4, 8, 2, 0]->[0, 7, 5, 4, 8, 2, 9]<sep>[4, 6, 2]->[2, 6, 4]<sep>[3, 5]->[5, 3]<sep>[0, 7, 2, 1, 8]->[8, 7, 2, 1, 0]<sep>[7, 5, 4, 9, 0, 6, 2, 1, 3]->[3, 5, 4, 9, 0, 6, 2, 1, 7]<sep>[1, 6, 3, 8, 9, 5]->[5, 6, 3, 8, 9, 1]<sep>[7, 0, 4, 6]->[6, 0, 4, 7]<sep>[8, 6, 7, 9, 1, 5, 3, 2, 4, 0]->[0, 6, 7, 9, 1, 5, 3, 2, 4, 8]<sep>[2, 0, 9, 4, 6, 3, 7, 1, 8]->[8, 0, 9, 4, 6, 3, 7, 1, 2]<sep>[9, 2, 6]->[6, 2, 9]<sep>[4, 0, 6, 7, 5]->[5, 0, 6, 7, 4]<sep>[1, 9, 2, 5]->[5, 9, 2, 1]<sep>[6, 2, 3, 4, 9, 5, 8]->[8, 2, 3, 4, 9, 5, 6]<sep>[2, 7, 8, 6, 0, 3, 1]->[1, 7, 8, 6, 0, 3, 2] | c067 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap the first and last elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 8] -> [8]
[0, 8, 7, 9] -> [8, 7, 9]
[7, 6] -> [6]
[7] -> []
[8, 9, 6, 5, 4] -> [9, 6, 5]
[7, 4] -> [4]
[8, 2, 1, 6, 7] -> [2, 1, 6]
[3, 0, 4] -> [0, 4]
| [7, 2, 1, 4, 3, 0]->[2, 1, 4]<sep>[4, 2, 0, 3, 5, 1, 9, 7]->[2, 0, 3]<sep>[7, 1, 4, 0, 9, 3, 6, 5, 2]->[1, 4, 0]<sep>[0]->[]<sep>[1, 6]->[6]<sep>[8, 6, 3, 0, 2, 5, 1, 7, 4, 9]->[6, 3, 0]<sep>[3, 5, 9, 8]->[5, 9, 8]<sep>[3]->[]<sep>[2, 3, 4]->[3, 4]<sep>[9, 7, 1, 8, 2, 3]->[7, 1, 8]<sep>[3, 0, 5, 6, 8, 7, 9]->[0, 5, 6]<sep>[6, 5, 3, 9, 2, 4, 8]->[5, 3, 9]<sep>[6, 8]->[8]<sep>[8, 3, 0, 7, 6, 9, 4, 5, 1, 2]->[3, 0, 7]<sep>[8, 1, 6]->[1, 6]<sep>[4]->[]<sep>[1]->[]<sep>[8, 9, 2]->[9, 2]<sep>[9, 7, 1, 5, 2, 0, 6, 4]->[7, 1, 5]<sep>[]->[]<sep>[9, 4]->[4]<sep>[7, 5, 2, 0, 4, 1, 3, 9, 6]->[5, 2, 0]<sep>[7, 8, 5]->[8, 5]<sep>[1, 2, 3]->[2, 3] | c011 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 2 through 4". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8, 6, 1] -> [9, 8, 6, 1, 7]
[3] -> [9, 3, 7]
[9, 4, 0, 2, 1, 8] -> [9, 9, 4, 0, 2, 1, 8, 7]
[2, 7, 1, 6, 9, 8, 5, 4, 0, 3] -> [9, 2, 7, 1, 6, 9, 8, 5, 4, 0, 3, 7]
[3, 0, 8, 6, 2, 5, 4] -> [9, 3, 0, 8, 6, 2, 5, 4, 7]
[1] -> [9, 1, 7]
[0, 2, 3, 4] -> [9, 0, 2, 3, 4, 7]
[9, 4, 2, 3, 5, 1, 8, 7, 0, 6] -> [9, 9, 4, 2, 3, 5, 1, 8, 7, 0, 6, 7]
| [4, 5, 1, 8, 0, 3]->[9, 4, 5, 1, 8, 0, 3, 7]<sep>[1, 6, 5, 4, 3, 8, 0]->[9, 1, 6, 5, 4, 3, 8, 0, 7]<sep>[4, 1]->[9, 4, 1, 7]<sep>[5, 4, 1, 2, 0, 3, 8]->[9, 5, 4, 1, 2, 0, 3, 8, 7]<sep>[7, 6, 4, 2, 1]->[9, 7, 6, 4, 2, 1, 7]<sep>[2, 3, 8, 0, 1]->[9, 2, 3, 8, 0, 1, 7]<sep>[8, 6, 4, 3]->[9, 8, 6, 4, 3, 7]<sep>[3, 2]->[9, 3, 2, 7]<sep>[8]->[9, 8, 7]<sep>[0, 1, 6, 9, 7, 8, 5, 2]->[9, 0, 1, 6, 9, 7, 8, 5, 2, 7]<sep>[2, 3, 9, 8, 5, 1]->[9, 2, 3, 9, 8, 5, 1, 7]<sep>[8, 2, 1, 5, 4]->[9, 8, 2, 1, 5, 4, 7]<sep>[3, 5, 2, 8, 1, 4, 6, 9, 0]->[9, 3, 5, 2, 8, 1, 4, 6, 9, 0, 7]<sep>[]->[9, 7]<sep>[1, 5, 0, 8, 3, 9, 2, 6, 4]->[9, 1, 5, 0, 8, 3, 9, 2, 6, 4, 7]<sep>[5, 4, 6]->[9, 5, 4, 6, 7]<sep>[0, 7, 4, 6, 3, 1, 8, 5, 2]->[9, 0, 7, 4, 6, 3, 1, 8, 5, 2, 7]<sep>[4, 6, 2, 0, 3, 8, 5, 7]->[9, 4, 6, 2, 0, 3, 8, 5, 7, 7]<sep>[9, 4, 1, 5]->[9, 9, 4, 1, 5, 7]<sep>[3, 9, 6, 1, 8, 7, 5, 2, 4, 0]->[9, 3, 9, 6, 1, 8, 7, 5, 2, 4, 0, 7]<sep>[1, 4, 6, 3, 2, 0, 9, 8, 5, 7]->[9, 1, 4, 6, 3, 2, 0, 9, 8, 5, 7, 7]<sep>[2, 0, 1]->[9, 2, 0, 1, 7]<sep>[3, 6]->[9, 3, 6, 7]<sep>[2, 6, 8, 4, 0, 1, 5, 3]->[9, 2, 6, 8, 4, 0, 1, 5, 3, 7] | c065 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend 9 and append 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 8, 6] -> [9, 8]
[9, 3, 4, 0] -> [9, 3, 0]
[5, 9, 1, 7] -> [5, 9, 7]
[4, 7, 3, 6, 0, 8, 2, 5] -> [4, 7, 6, 0, 8, 2, 5]
[0, 6, 1, 2, 3, 5, 9] -> [0, 6, 2, 3, 5, 9]
[9, 3, 5, 2, 7, 0, 8, 1, 4, 6] -> [9, 3, 2, 7, 0, 8, 1, 4, 6]
[5, 2, 6, 1, 0, 9, 4, 8] -> [5, 2, 1, 0, 9, 4, 8]
[7, 4, 0, 8, 2] -> [7, 4, 8, 2]
| [1, 6, 5, 3, 9, 0, 2]->[1, 6, 3, 9, 0, 2]<sep>[1, 7, 5]->[1, 7]<sep>[2, 8, 6, 0, 7, 5]->[2, 8, 0, 7, 5]<sep>[9, 6, 7, 0, 3]->[9, 6, 0, 3]<sep>[0, 6, 2, 7, 9, 1, 4]->[0, 6, 7, 9, 1, 4]<sep>[6, 0, 3, 8, 1, 2, 4, 5]->[6, 0, 8, 1, 2, 4, 5]<sep>[1, 8, 9, 0, 4, 5, 6, 3, 2, 7]->[1, 8, 0, 4, 5, 6, 3, 2, 7]<sep>[3, 2, 8, 1, 7, 6]->[3, 2, 1, 7, 6]<sep>[2, 9, 0, 7, 1, 3, 5, 8, 4]->[2, 9, 7, 1, 3, 5, 8, 4]<sep>[]->[]<sep>[4, 2, 8, 3]->[4, 2, 3]<sep>[1, 6, 0, 2, 9, 3, 5]->[1, 6, 2, 9, 3, 5]<sep>[3, 6, 4]->[3, 6]<sep>[9, 4, 7, 5, 3, 1]->[9, 4, 5, 3, 1]<sep>[5, 2, 9, 8, 7]->[5, 2, 8, 7]<sep>[6, 4, 5, 8, 0, 3, 7, 9]->[6, 4, 8, 0, 3, 7, 9]<sep>[1, 3, 2, 6, 7, 5, 0, 8, 9]->[1, 3, 6, 7, 5, 0, 8, 9]<sep>[3, 1, 8, 2, 0, 4]->[3, 1, 2, 0, 4]<sep>[1, 7, 9, 6]->[1, 7, 6]<sep>[4]->[4]<sep>[4, 3, 2, 7, 8, 1, 5, 0, 9, 6]->[4, 3, 7, 8, 1, 5, 0, 9, 6]<sep>[5, 4, 0, 6, 8]->[5, 4, 6, 8]<sep>[8, 7, 0, 2, 5, 3, 6, 4, 1]->[8, 7, 2, 5, 3, 6, 4, 1]<sep>[9, 1, 8]->[9, 1] | c026 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 2, 9, 0, 3, 8, 1, 5, 6, 7] -> [4, 4, 4, 4, 4, 4, 4, 4, 4, 4]
[1, 4, 7, 3, 6] -> [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
[8, 1, 2, 9, 6, 3, 4, 7] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
[5, 9, 1, 6, 2, 0] -> [5, 5, 5, 5, 5, 5, 5, 5, 5, 5]
[8, 4, 6] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
[8] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8]
[6, 7, 5, 1, 4, 9, 3, 2, 0, 8] -> [6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
[0, 2, 6, 8, 1, 5, 9, 4] -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
| [1, 6, 4]->[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]<sep>[2, 8, 9, 4, 7, 1, 6, 3]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]<sep>[4, 9]->[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]<sep>[5]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[3, 7, 8, 0, 9]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[1, 7, 2, 0]->[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]<sep>[5, 6, 1, 4, 8, 2, 0]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[7, 5]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[9, 8, 7, 3, 2, 6, 1, 4, 5]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[9, 7, 0, 2, 3, 6, 5]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[3, 4, 7, 5, 2]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[6, 8, 2, 9, 3, 0]->[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]<sep>[2, 1, 6, 9, 0, 7]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]<sep>[4, 2, 1]->[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]<sep>[8, 2, 4, 1]->[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]<sep>[5, 8, 4, 7, 9, 2, 3, 1, 0]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[0, 7, 3, 1]->[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]<sep>[6, 4, 0, 5, 9, 2, 3, 7, 1, 8]->[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]<sep>[7, 4]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[3]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[0, 8, 6, 3, 1, 4, 7]->[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]<sep>[7, 3, 5, 6, 2, 0, 1, 4, 9]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[9]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[2, 0]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2] | c052 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "repeat element 1 ten times". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 7, 9, 8, 6] -> [9, 8, 5, 7, 6]
[4, 3, 2, 8, 9, 6, 7, 1, 0] -> [2, 8, 4, 3, 9, 6, 7, 1, 0]
[3, 8, 0, 7] -> [0, 7, 3, 8]
[3, 8, 7, 0, 9, 6, 5, 2, 4] -> [7, 0, 3, 8, 9, 6, 5, 2, 4]
[0, 3, 7, 1, 5, 8, 9, 6, 4, 2] -> [7, 1, 0, 3, 5, 8, 9, 6, 4, 2]
[7, 1, 8, 0, 3, 4, 9] -> [8, 0, 7, 1, 3, 4, 9]
[9, 4] -> [9, 4]
[9, 6, 8, 7, 5, 0, 1, 4] -> [8, 7, 9, 6, 5, 0, 1, 4]
| []->[]<sep>[3, 8, 2]->[2, 3, 8]<sep>[1, 5, 6, 4, 0, 3, 7]->[6, 4, 1, 5, 0, 3, 7]<sep>[4, 3, 1, 2, 9, 7]->[1, 2, 4, 3, 9, 7]<sep>[2, 6, 0, 7, 3, 4, 5, 8, 1, 9]->[0, 7, 2, 6, 3, 4, 5, 8, 1, 9]<sep>[3, 0, 6, 2]->[6, 2, 3, 0]<sep>[0]->[0]<sep>[5, 9, 7, 8, 4, 3, 2]->[7, 8, 5, 9, 4, 3, 2]<sep>[4, 2, 1, 8, 6]->[1, 8, 4, 2, 6]<sep>[8, 6, 1, 5, 3, 2]->[1, 5, 8, 6, 3, 2]<sep>[1, 5, 6, 2, 9, 3]->[6, 2, 1, 5, 9, 3]<sep>[8, 4, 7, 0, 6]->[7, 0, 8, 4, 6]<sep>[0, 5, 8]->[8, 0, 5]<sep>[1, 9, 6]->[6, 1, 9]<sep>[0, 2, 5, 6]->[5, 6, 0, 2]<sep>[9, 8, 0, 1, 5, 2, 6, 3, 4, 7]->[0, 1, 9, 8, 5, 2, 6, 3, 4, 7]<sep>[9, 5, 7, 2, 3]->[7, 2, 9, 5, 3]<sep>[9, 1, 5, 8, 2, 4, 3, 7]->[5, 8, 9, 1, 2, 4, 3, 7]<sep>[1, 3, 0, 9]->[0, 9, 1, 3]<sep>[1, 5, 6]->[6, 1, 5]<sep>[4, 7, 2, 1, 0, 6, 5, 8]->[2, 1, 4, 7, 0, 6, 5, 8]<sep>[1, 8, 9, 6, 5, 2, 4, 0, 3]->[9, 6, 1, 8, 5, 2, 4, 0, 3]<sep>[8, 2, 9, 4, 1, 7]->[9, 4, 8, 2, 1, 7]<sep>[5, 7, 3, 4, 9, 2, 0]->[3, 4, 5, 7, 9, 2, 0] | c055 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 1 and 3 and elements 2 and 4". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[7, 4, 2, 9] -> [4, 2, 9]
[7, 4, 0, 8, 2, 1, 3] -> [4, 0, 8, 2, 1, 3]
[8, 4, 7, 5, 6, 0, 1] -> [4, 7, 5, 6, 0, 1]
[4, 7, 0, 6] -> [7, 0, 6]
[6, 9, 3, 7] -> [9, 3, 7]
[9, 8, 6, 1, 2, 4, 0, 7, 3, 5] -> [8, 6, 1, 2, 4, 0, 7, 3, 5]
[5, 3, 6, 8, 0, 7] -> [3, 6, 8, 0, 7]
[3, 2, 1, 0, 7, 8] -> [2, 1, 0]
| [9, 2, 0]->[2, 0]<sep>[8, 2, 3, 7, 0, 4, 9, 1, 6]->[2, 3, 7, 0, 4, 9, 1, 6]<sep>[8]->[]<sep>[7, 5, 3, 9, 6, 1, 0, 8, 4]->[5, 3, 9, 6, 1, 0, 8]<sep>[7, 8, 5]->[8, 5]<sep>[5, 1, 9, 3, 4]->[1, 9, 3, 4]<sep>[2, 8]->[8]<sep>[9, 3, 8, 0, 5, 7, 6, 1]->[3, 8, 0, 5, 7, 6, 1]<sep>[8, 0, 1, 7, 3, 4, 6, 5, 2]->[0, 1, 7, 3, 4, 6, 5, 2]<sep>[2, 9]->[9]<sep>[9, 0, 6, 3, 4, 5, 8, 1, 2]->[0, 6, 3, 4, 5, 8, 1, 2]<sep>[4]->[]<sep>[4, 3, 1, 8, 7, 2, 6, 9]->[3, 1, 8, 7]<sep>[9, 2, 1, 3, 5, 8, 6]->[2, 1, 3, 5, 8, 6]<sep>[8, 0, 5, 3, 2]->[0, 5, 3, 2]<sep>[1, 5]->[5]<sep>[8, 1, 9]->[1, 9]<sep>[2]->[]<sep>[7, 3, 5, 9, 2, 1]->[3, 5, 9, 2, 1]<sep>[5, 9, 3, 2, 8, 1, 6, 4, 7, 0]->[9, 3, 2, 8, 1]<sep>[9, 7, 2, 6, 4, 1, 3, 8, 0, 5]->[7, 2, 6, 4, 1, 3, 8, 0, 5]<sep>[9, 2, 3, 8, 4, 1, 5, 6, 0, 7]->[2, 3, 8, 4, 1, 5, 6, 0, 7]<sep>[8, 2, 1, 4, 6, 5, 0, 9]->[2, 1, 4, 6, 5, 0, 9]<sep>[0, 5, 1, 4, 7]->[] | c010 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 2 through N + 1, N = element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[1, 8, 7, 3, 6, 6, 0, 2] -> [9]
[4] -> [9]
[2, 1, 5, 4] -> [9]
[4, 1, 1, 0, 5, 5, 3, 1, 2] -> [9]
[2] -> [9]
[2, 3, 3, 2, 2, 3, 2, 3, 3, 3] -> [9]
[2, 6, 2, 6] -> [9]
[4, 4, 4, 4, 4] -> [9]
| [0, 0]->[9]<sep>[6, 5, 8, 6, 1, 1, 3]->[9]<sep>[7, 2, 7, 4, 2, 1, 4, 7, 4, 1]->[9]<sep>[2, 8, 5, 6, 3, 2]->[9]<sep>[1, 0, 2, 8, 8, 6, 7, 3, 5]->[9]<sep>[2, 7, 0]->[9]<sep>[5, 0, 7]->[9]<sep>[8, 1, 4, 8, 6]->[9]<sep>[0, 2, 0]->[9]<sep>[0, 7, 7, 7]->[9]<sep>[4, 3, 4, 7, 1, 6, 3, 0]->[9]<sep>[3, 1]->[9]<sep>[5, 4, 2, 4, 5, 4, 7]->[9]<sep>[1]->[9]<sep>[0, 6, 6, 0, 0, 0, 6, 0, 6, 6]->[9]<sep>[3, 2, 3, 7, 0, 0, 0, 7, 2]->[9]<sep>[5, 5, 5, 5, 5, 5]->[9]<sep>[1, 6, 4, 7, 5]->[9]<sep>[6, 3]->[9]<sep>[7, 8, 7, 8, 7, 8, 7, 8]->[9]<sep>[5, 1, 1, 5, 8, 8, 6, 6, 5, 1]->[9]<sep>[2, 4, 1, 7, 2, 3]->[9]<sep>[]->[9]<sep>[8, 8, 8, 8, 8, 8, 8]->[9] | c041 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [9]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 7, 9, 8, 6, 4, 2, 3, 5, 1] -> [0, 0, 9, 8, 6, 4, 2, 3, 5, 1]
[7, 8, 6] -> [7, 7, 6]
[0, 7, 4, 9] -> [0, 0, 4, 9]
[8, 7] -> [8, 8]
[2, 7, 0, 3, 9, 4, 6, 5] -> [2, 2, 0, 3, 9, 4, 6, 5]
[8] -> [8, 8]
[8, 5, 7, 4] -> [8, 8, 7, 4]
[9, 6, 3] -> [9, 9, 3]
| [4, 9, 8, 1, 2, 3, 5, 6, 0, 7]->[4, 4, 8, 1, 2, 3, 5, 6, 0, 7]<sep>[1, 6]->[1, 1]<sep>[4, 5, 9, 2, 7]->[4, 4, 9, 2, 7]<sep>[0, 7, 6, 2, 9]->[0, 0, 6, 2, 9]<sep>[5, 6, 2]->[5, 5, 2]<sep>[7, 4, 8, 5, 6, 3, 1, 9, 0]->[7, 7, 8, 5, 6, 3, 1, 9, 0]<sep>[5, 8, 6, 9, 2, 4]->[5, 5, 6, 9, 2, 4]<sep>[3, 0, 4, 9, 6, 5, 2, 1]->[3, 3, 4, 9, 6, 5, 2, 1]<sep>[3, 0, 7]->[3, 3, 7]<sep>[1]->[1, 1]<sep>[9, 5, 1, 8, 3, 6, 2]->[9, 9, 1, 8, 3, 6, 2]<sep>[1, 2, 0, 8, 5, 4, 3, 7, 6]->[1, 1, 0, 8, 5, 4, 3, 7, 6]<sep>[4, 8, 1, 3, 6]->[4, 4, 1, 3, 6]<sep>[7, 0, 9, 1, 2, 8, 3]->[7, 7, 9, 1, 2, 8, 3]<sep>[7, 9, 6, 3, 2, 8, 5]->[7, 7, 6, 3, 2, 8, 5]<sep>[2, 3]->[2, 2]<sep>[0, 6, 9, 3, 8, 2]->[0, 0, 9, 3, 8, 2]<sep>[0, 2, 7, 5, 6, 9, 4, 3, 1, 8]->[0, 0, 7, 5, 6, 9, 4, 3, 1, 8]<sep>[1, 5, 0, 2, 4]->[1, 1, 0, 2, 4]<sep>[4, 2, 1, 7, 9, 0]->[4, 4, 1, 7, 9, 0]<sep>[4, 0, 5, 9]->[4, 4, 5, 9]<sep>[1, 8, 0, 2, 5, 9, 7, 6, 3]->[1, 1, 0, 2, 5, 9, 7, 6, 3]<sep>[6, 2, 8, 3, 5, 4, 1, 0]->[6, 6, 8, 3, 5, 4, 1, 0]<sep>[5, 6, 8, 7]->[5, 5, 8, 7] | c053 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 2 with element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0] -> []
[5, 0, 7] -> [0, 7]
[8, 2] -> [2]
[6] -> []
[7, 2] -> [2]
[] -> []
[2, 3, 4, 9, 5, 6, 1, 8, 0] -> [3, 4, 9]
[3, 4, 5, 1] -> [4, 5, 1]
| [6, 1, 9]->[1, 9]<sep>[5, 9, 2, 3, 0, 4]->[9, 2, 3]<sep>[2, 9, 4, 3, 0, 7, 5, 8, 6, 1]->[9, 4, 3]<sep>[0, 2, 9, 6, 4, 8, 5, 1]->[2, 9, 6]<sep>[1, 0, 6, 8, 2, 7, 3, 5, 9, 4]->[0, 6, 8]<sep>[7, 3, 5, 0, 2]->[3, 5, 0]<sep>[1, 6, 4, 8, 9, 5, 0]->[6, 4, 8]<sep>[7, 5, 4]->[5, 4]<sep>[4, 2, 0]->[2, 0]<sep>[0, 7]->[7]<sep>[1, 9, 4, 7, 6, 3]->[9, 4, 7]<sep>[2, 6]->[6]<sep>[1]->[]<sep>[5, 7]->[7]<sep>[8]->[]<sep>[7, 6]->[6]<sep>[8, 0, 3]->[0, 3]<sep>[0, 2, 1, 8, 4, 7, 6, 3]->[2, 1, 8]<sep>[7, 6, 3, 8, 5, 9, 0, 4, 1]->[6, 3, 8]<sep>[5]->[]<sep>[3, 6, 8, 1]->[6, 8, 1]<sep>[3, 9, 1, 7, 5, 4, 2]->[9, 1, 7]<sep>[2, 5, 1]->[5, 1]<sep>[7, 9, 3, 8, 4]->[9, 3, 8] | c012 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but elements 2 through 4". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[1, 5, 1, 6, 3, 1, 6, 0] -> [1, 6, 3, 1, 6]
[3, 4, 5, 7, 6, 0, 8, 9, 2, 1] -> [6, 0]
[2, 4, 0, 3, 7, 9, 6, 1] -> [3, 7, 9]
[2, 7, 9, 1, 0, 8, 3, 4, 5, 6] -> [1, 0, 8, 3, 4, 5]
[1, 4, 9, 3, 7, 8, 6] -> [9, 3, 7, 8]
[2, 3, 5, 4, 7, 1] -> [4, 7]
[5, 9, 9, 3, 3, 9] -> []
[1, 2, 1, 4, 5, 5] -> [1, 4]
| [1, 3, 1, 3, 3, 6]->[1, 3, 3]<sep>[7, 0, 6, 3, 4, 1, 8]->[]<sep>[1, 2, 5, 0, 4, 3, 7, 6, 7, 9]->[5, 0]<sep>[3, 6, 5, 2, 7, 5, 1, 8, 9, 4]->[7, 5, 1, 8]<sep>[1, 2, 5, 4, 0, 0, 2, 8, 8, 1]->[5, 4]<sep>[2, 3, 9, 5, 4, 8, 1, 7]->[5, 4]<sep>[1, 4, 0, 2, 6, 3, 8]->[0, 2, 6, 3]<sep>[1, 1, 5, 3]->[5]<sep>[6, 7, 1, 2, 8, 3, 0, 9, 2, 5]->[9, 2]<sep>[2, 4, 1, 1, 2, 6, 6]->[1, 2, 6]<sep>[2, 3, 7, 9, 4, 1]->[9, 4]<sep>[4, 5, 8, 0, 8, 0, 7, 7]->[0, 7]<sep>[2, 4, 9, 2, 0, 8, 4, 5]->[2, 0, 8]<sep>[3, 5, 0, 4, 4, 2, 1, 8, 9, 6]->[4, 2, 1]<sep>[4, 5, 1, 6, 2, 7, 0, 8]->[7, 0]<sep>[1, 5, 8, 4, 9, 2, 9, 6, 5, 9]->[8, 4, 9, 2, 9]<sep>[4, 5, 5, 5, 9, 3, 3, 4, 4, 9]->[3, 3]<sep>[3, 6, 9, 5, 9, 1, 5, 2]->[9, 1, 5, 2]<sep>[3, 6, 4, 9, 0, 7, 5, 2, 8, 1]->[0, 7, 5, 2]<sep>[3, 6, 6, 9, 4, 0, 7, 0, 1, 2]->[4, 0, 7, 0]<sep>[4, 6, 5, 3, 0, 8, 7, 2, 9]->[8, 7, 2]<sep>[2, 3, 9, 1, 0, 4, 7, 6]->[1, 0]<sep>[1, 4, 8, 0, 2, 0, 3, 1, 6, 8]->[8, 0, 2, 0]<sep>[2, 3, 4, 2, 7, 9, 7, 8, 9]->[2, 7] | c015 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements M + 2 through N + 2, M = element 1, N = element 2". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[7, 8, 9, 3, 4, 5, 1, 2] -> [7, 8, 9, 3, 4, 5]
[7, 4, 3, 0, 9, 6, 8, 2] -> [7, 4, 3, 0, 9, 6]
[4, 0, 1, 3, 2, 5, 7] -> [4, 0, 1, 3, 2]
[8, 6] -> []
[9, 5, 2, 0, 1] -> [9, 5, 2]
[7, 5, 9, 4, 8, 1, 0, 6, 2] -> [7, 5, 9, 4, 8, 1, 0]
[5, 6, 7, 0, 4, 9] -> [5, 6, 7, 0]
[6, 4, 0, 7] -> [6, 4]
| [3, 1, 4, 0, 2, 7, 6, 9, 8]->[3, 1, 4, 0, 2, 7, 6]<sep>[0, 5, 2, 7, 9, 3, 6, 4, 8, 1]->[0, 5, 2, 7, 9, 3, 6, 4]<sep>[7, 2, 5, 8]->[7, 2]<sep>[9, 7, 1]->[9]<sep>[2, 5, 8, 0, 1, 3, 4]->[2, 5, 8, 0, 1]<sep>[8, 7]->[]<sep>[6, 1]->[]<sep>[1, 5, 2, 0, 9, 8, 6, 3, 4, 7]->[1, 5, 2, 0, 9, 8, 6, 3]<sep>[5, 3, 1, 4, 9, 0, 2, 6, 8, 7]->[5, 3, 1, 4, 9, 0, 2, 6]<sep>[1, 7, 3, 0, 8]->[1, 7, 3]<sep>[7, 6, 2, 1, 8, 4, 0]->[7, 6, 2, 1, 8]<sep>[7, 1, 4, 8, 2, 3, 6]->[7, 1, 4, 8, 2]<sep>[3, 1, 6]->[3]<sep>[9, 5, 4, 8, 6, 2]->[9, 5, 4, 8]<sep>[0, 8, 3, 9]->[0, 8]<sep>[6, 3, 9, 0, 4]->[6, 3, 9]<sep>[6, 7, 1, 2, 3, 5, 4, 0, 8, 9]->[6, 7, 1, 2, 3, 5, 4, 0]<sep>[5, 0, 8, 2]->[5, 0]<sep>[0, 5, 1, 9, 6, 2]->[0, 5, 1, 9]<sep>[4, 8, 7]->[4]<sep>[0, 5, 6, 9, 3, 8, 1, 2]->[0, 5, 6, 9, 3, 8]<sep>[5, 2, 4, 0, 1, 3, 8, 9, 7]->[5, 2, 4, 0, 1, 3, 8]<sep>[6, 7, 1, 2, 8, 9, 5, 4, 3]->[6, 7, 1, 2, 8, 9, 5]<sep>[9, 3, 4, 5, 7, 6, 2, 8]->[9, 3, 4, 5, 7, 6] | c030 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the last two elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 1, 7, 8, 9, 4, 0, 3, 2] -> [2, 1, 7, 8, 9, 4, 0, 3, 2]
[0, 8, 5, 2, 7, 1, 4, 6, 9, 3] -> [3, 8, 5, 2, 7, 1, 4, 6, 9, 3]
[7, 1, 0, 6, 3] -> [3, 1, 0, 6, 3]
[5, 8, 6, 1, 0, 9, 7] -> [7, 8, 6, 1, 0, 9, 7]
[3, 8, 6, 0] -> [0, 8, 6, 0]
[8, 5, 7, 4, 2, 3, 6] -> [6, 5, 7, 4, 2, 3, 6]
[0, 7, 1, 3, 4, 9, 6, 5] -> [5, 7, 1, 3, 4, 9, 6, 5]
[1, 4, 9, 8, 2, 0, 5, 3, 6, 7] -> [7, 4, 9, 8, 2, 0, 5, 3, 6, 7]
| [4, 0, 1]->[1, 0, 1]<sep>[4, 6, 8]->[8, 6, 8]<sep>[0, 9]->[9, 9]<sep>[5, 1, 9]->[9, 1, 9]<sep>[0]->[0]<sep>[6, 2, 1, 9, 4]->[4, 2, 1, 9, 4]<sep>[8, 3]->[3, 3]<sep>[2, 9, 7, 5, 3, 8, 1, 4]->[4, 9, 7, 5, 3, 8, 1, 4]<sep>[5, 6, 7, 4]->[4, 6, 7, 4]<sep>[0, 2]->[2, 2]<sep>[9, 0]->[0, 0]<sep>[3, 2, 0, 1, 6, 8, 7, 5]->[5, 2, 0, 1, 6, 8, 7, 5]<sep>[1, 3, 0, 2, 4, 5]->[5, 3, 0, 2, 4, 5]<sep>[4, 1, 2]->[2, 1, 2]<sep>[6, 1, 7, 5, 3, 2, 8, 4, 9]->[9, 1, 7, 5, 3, 2, 8, 4, 9]<sep>[9, 4, 7, 5, 6, 1]->[1, 4, 7, 5, 6, 1]<sep>[5, 8, 6, 2]->[2, 8, 6, 2]<sep>[0, 3, 1, 2, 7]->[7, 3, 1, 2, 7]<sep>[2, 3, 5, 1, 9]->[9, 3, 5, 1, 9]<sep>[4, 9, 3, 6, 2, 8, 7]->[7, 9, 3, 6, 2, 8, 7]<sep>[3, 0, 4, 8]->[8, 0, 4, 8]<sep>[5, 2, 0, 8, 9, 6]->[6, 2, 0, 8, 9, 6]<sep>[9, 5, 4, 7, 0, 3, 2, 6, 1, 8]->[8, 5, 4, 7, 0, 3, 2, 6, 1, 8]<sep>[2, 7, 0, 4, 9, 6, 8, 3, 5]->[5, 7, 0, 4, 9, 6, 8, 3, 5] | c020 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace the first element with the last element". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 8, 4, 3, 7, 6, 2, 0] -> [4, 4, 4, 3, 7, 6, 2, 0]
[4, 8, 3, 6, 5, 1, 0] -> [3, 3, 3, 6, 5, 1, 0]
[3, 1, 2, 8, 7, 9, 5] -> [2, 2, 2, 8, 7, 9, 5]
[9, 0, 5, 7, 3] -> [5, 5, 5, 7, 3]
[2, 1, 3, 8] -> [3, 3, 3, 8]
[3, 4, 5] -> [5, 5, 5]
[8, 2, 3, 9, 6, 7, 5] -> [3, 3, 3, 9, 6, 7, 5]
[6, 3, 4] -> [4, 4, 4]
| [0, 3, 8, 9, 5, 1, 6, 7, 2, 4]->[8, 8, 8, 9, 5, 1, 6, 7, 2, 4]<sep>[1, 4, 2, 0, 3, 5]->[2, 2, 2, 0, 3, 5]<sep>[2, 6, 7, 9, 4, 8, 1]->[7, 7, 7, 9, 4, 8, 1]<sep>[8, 5, 1, 0, 9, 2, 7, 4, 3, 6]->[1, 1, 1, 0, 9, 2, 7, 4, 3, 6]<sep>[9, 8, 4, 6, 2, 1, 5, 0, 7]->[4, 4, 4, 6, 2, 1, 5, 0, 7]<sep>[0, 8, 6, 9, 1, 3, 7, 5, 2]->[6, 6, 6, 9, 1, 3, 7, 5, 2]<sep>[3, 1, 2, 0, 4, 8, 9, 5, 6]->[2, 2, 2, 0, 4, 8, 9, 5, 6]<sep>[7, 4, 8, 9]->[8, 8, 8, 9]<sep>[3, 4, 6, 0, 8, 5, 7, 1]->[6, 6, 6, 0, 8, 5, 7, 1]<sep>[8, 3, 9, 5, 0, 7]->[9, 9, 9, 5, 0, 7]<sep>[0, 1, 6, 4, 7, 9]->[6, 6, 6, 4, 7, 9]<sep>[6, 0, 2, 7, 8, 4, 3, 9, 5, 1]->[2, 2, 2, 7, 8, 4, 3, 9, 5, 1]<sep>[8, 5, 0, 1, 6]->[0, 0, 0, 1, 6]<sep>[3, 7, 1, 9, 4, 5, 2, 8]->[1, 1, 1, 9, 4, 5, 2, 8]<sep>[1, 4, 2]->[2, 2, 2]<sep>[9, 5, 6, 1, 2, 7, 0, 8, 3]->[6, 6, 6, 1, 2, 7, 0, 8, 3]<sep>[5, 2, 4, 8, 0, 9, 6, 3, 1, 7]->[4, 4, 4, 8, 0, 9, 6, 3, 1, 7]<sep>[3, 4, 0, 7, 8]->[0, 0, 0, 7, 8]<sep>[5, 8, 0]->[0, 0, 0]<sep>[8, 9, 6, 4]->[6, 6, 6, 4]<sep>[8, 3, 1, 4, 0]->[1, 1, 1, 4, 0]<sep>[1, 9, 0, 5, 3, 6, 2, 7]->[0, 0, 0, 5, 3, 6, 2, 7]<sep>[1, 5, 9, 6]->[9, 9, 9, 6]<sep>[8, 3, 4, 9, 2, 7]->[4, 4, 4, 9, 2, 7] | c054 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace elements 1 and 2 with element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 8, 4] -> [8]
[7, 1, 2, 9, 3, 0, 8, 4, 5, 6] -> [1, 2, 9, 3, 0, 8, 4, 5]
[7, 9, 3, 6, 5, 1, 2, 8, 0] -> [9, 3, 6, 5, 1, 2, 8]
[1, 6, 7, 2, 3, 5, 0, 4, 9] -> [6, 7, 2, 3, 5, 0, 4]
[0, 5] -> []
[8, 7, 5, 2, 0, 4] -> [7, 5, 2, 0]
[8, 3, 6, 1] -> [3, 6]
[8, 2, 1, 0, 9, 7, 3, 6] -> [2, 1, 0, 9, 7, 3]
| [3, 4, 6, 5]->[4, 6]<sep>[9, 7, 3, 2, 1]->[7, 3, 2]<sep>[0, 2, 4, 1, 7, 3, 9, 8]->[2, 4, 1, 7, 3, 9]<sep>[7, 9]->[]<sep>[1, 2, 0, 5, 4, 8, 9, 3, 7, 6]->[2, 0, 5, 4, 8, 9, 3, 7]<sep>[4, 1, 0, 3, 8, 5, 7]->[1, 0, 3, 8, 5]<sep>[0, 9, 7]->[9]<sep>[6, 1, 9, 8, 2]->[1, 9, 8]<sep>[9, 0]->[]<sep>[7, 0, 1, 4, 5, 2, 6]->[0, 1, 4, 5, 2]<sep>[5, 0, 6, 1, 8]->[0, 6, 1]<sep>[8, 4, 0, 5, 7, 6]->[4, 0, 5, 7]<sep>[3, 8, 0, 4, 1, 2, 5, 9]->[8, 0, 4, 1, 2, 5]<sep>[0, 5, 3, 8, 7, 1, 4, 6, 2, 9]->[5, 3, 8, 7, 1, 4, 6, 2]<sep>[5, 8, 4, 9, 6, 7, 0]->[8, 4, 9, 6, 7]<sep>[0, 6, 4, 3, 1, 2, 5, 8, 7, 9]->[6, 4, 3, 1, 2, 5, 8, 7]<sep>[1, 3, 5, 7, 6, 2]->[3, 5, 7, 6]<sep>[4, 1, 8, 5, 3, 6]->[1, 8, 5, 3]<sep>[3, 7, 0, 4, 5, 9, 2]->[7, 0, 4, 5, 9]<sep>[2, 0, 9, 8, 7, 1, 6, 3]->[0, 9, 8, 7, 1, 6]<sep>[8, 1, 3, 6, 2, 0, 9, 4, 7]->[1, 3, 6, 2, 0, 9, 4]<sep>[9, 3, 2, 6]->[3, 2]<sep>[9, 1, 4]->[1]<sep>[3, 8, 9, 0, 6, 2, 4, 7, 5]->[8, 9, 0, 6, 2, 4, 7] | c064 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first and last elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 3, 2, 4, 6, 7] -> [9, 5, 3, 2, 4, 6, 7]
[6, 8, 2, 0, 1] -> [6, 5, 8, 2, 0, 1]
[0, 1, 8, 4, 2, 6, 9, 7, 5] -> [0, 8, 1, 8, 4, 2, 6, 9, 7, 5]
[0, 1, 5, 3, 2, 6, 9] -> [0, 8, 1, 5, 3, 2, 6, 9]
[6, 7, 9, 1, 0] -> [6, 5, 7, 9, 1, 0]
[6, 8, 3, 0, 5, 2, 4, 7] -> [6, 5, 8, 3, 0, 5, 2, 4, 7]
[3, 0, 1, 4, 5, 9] -> [3, 8, 0, 1, 4, 5, 9]
[0, 7, 1, 2, 4] -> [0, 8, 7, 1, 2, 4]
| [4, 6, 8]->[4, 8, 6, 8]<sep>[6, 5, 3, 1, 7, 9, 4, 2, 0, 8]->[6, 5, 5, 3, 1, 7, 9, 4, 2, 0, 8]<sep>[5, 2, 6, 7, 4, 9, 1]->[5, 5, 2, 6, 7, 4, 9, 1]<sep>[7, 1]->[7, 5, 1]<sep>[9, 7, 4, 8, 0, 6, 2]->[9, 5, 7, 4, 8, 0, 6, 2]<sep>[2, 9]->[2, 8, 9]<sep>[8, 1, 9]->[8, 5, 1, 9]<sep>[6, 8, 3, 2, 4, 1, 5, 9, 0]->[6, 5, 8, 3, 2, 4, 1, 5, 9, 0]<sep>[4, 1, 9, 3, 8, 7, 0, 6, 5, 2]->[4, 8, 1, 9, 3, 8, 7, 0, 6, 5, 2]<sep>[7, 1, 6]->[7, 5, 1, 6]<sep>[1, 9, 0, 7, 5, 6, 8, 2, 3]->[1, 8, 9, 0, 7, 5, 6, 8, 2, 3]<sep>[0, 5, 7, 2, 3, 6, 8, 1, 9, 4]->[0, 8, 5, 7, 2, 3, 6, 8, 1, 9, 4]<sep>[7, 2]->[7, 5, 2]<sep>[3, 0, 4, 2]->[3, 8, 0, 4, 2]<sep>[9, 3, 2, 4, 5, 7, 6, 8]->[9, 5, 3, 2, 4, 5, 7, 6, 8]<sep>[9, 7, 0, 6, 4, 5, 8, 3]->[9, 5, 7, 0, 6, 4, 5, 8, 3]<sep>[0, 4, 3, 1]->[0, 8, 4, 3, 1]<sep>[6, 8, 1, 9, 0, 5, 7, 4, 3]->[6, 5, 8, 1, 9, 0, 5, 7, 4, 3]<sep>[3, 1, 4]->[3, 8, 1, 4]<sep>[0, 2, 9, 7, 5, 1, 3, 6]->[0, 8, 2, 9, 7, 5, 1, 3, 6]<sep>[3, 1]->[3, 8, 1]<sep>[9, 8, 1, 4]->[9, 5, 8, 1, 4]<sep>[9, 6, 3, 0, 1, 8, 2, 7, 5, 4]->[9, 5, 6, 3, 0, 1, 8, 2, 7, 5, 4]<sep>[4, 9, 5, 2, 8, 1]->[4, 8, 9, 5, 2, 8, 1] | c024 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert as element 2: 8 if element 1 > 5 else 5". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[31, 21, 57] -> [57, 57, 3, 31, 21]
[61] -> [61, 61, 1, 61, 61]
[90, 60, 70, 14, 44, 86, 43, 80, 56, 2] -> [90, 2, 10, 90, 2]
[65] -> [65, 65, 1, 65, 65]
[8, 63, 25, 2, 35, 41, 61, 79, 95] -> [95, 95, 9, 8, 2]
[7, 9, 61, 37] -> [61, 37, 4, 7, 7]
[9, 67] -> [67, 67, 2, 9, 9]
[45, 1, 36] -> [45, 36, 3, 45, 1]
| [24, 6, 30, 15, 2, 4, 94, 52]->[94, 52, 8, 24, 2]<sep>[20, 63, 38, 18, 69, 87]->[87, 87, 6, 20, 18]<sep>[5, 33, 59, 10, 16]->[59, 16, 5, 5, 5]<sep>[17, 33, 7, 23, 9, 54, 21, 5, 12, 36]->[54, 36, 10, 17, 5]<sep>[7, 66, 57, 8, 5, 0, 35, 78]->[78, 78, 8, 7, 0]<sep>[69, 8]->[69, 8, 2, 69, 8]<sep>[33, 44, 2, 0, 9, 62, 26, 92, 4]->[92, 4, 9, 33, 0]<sep>[0, 74, 19, 18, 96, 3, 27, 40, 6, 75]->[96, 75, 10, 0, 0]<sep>[68]->[68, 68, 1, 68, 68]<sep>[51, 56, 88, 98, 94, 64]->[98, 64, 6, 51, 51]<sep>[9, 38, 5, 3, 15, 1]->[38, 1, 6, 9, 1]<sep>[50, 83, 28]->[83, 28, 3, 50, 28]<sep>[93, 24]->[93, 24, 2, 93, 24]<sep>[2, 3, 94, 39, 48, 1, 4, 67]->[94, 67, 8, 2, 1]<sep>[49, 4, 6, 98, 87, 55, 72, 96, 46]->[98, 46, 9, 49, 4]<sep>[13, 58, 53, 7, 4]->[58, 4, 5, 13, 4]<sep>[43, 6, 64, 1, 8, 76, 5]->[76, 5, 7, 43, 1]<sep>[49, 74, 80, 11]->[80, 11, 4, 49, 11]<sep>[9, 50, 1, 2, 44, 4, 97]->[97, 97, 7, 9, 1]<sep>[3, 10, 62, 29]->[62, 29, 4, 3, 3]<sep>[0, 5, 83, 66, 48, 8, 17, 37, 61, 75]->[83, 75, 10, 0, 0]<sep>[26, 3, 2, 0, 1]->[26, 1, 5, 26, 0]<sep>[79]->[79, 79, 1, 79, 79]<sep>[6, 89, 2, 4, 8, 1, 85]->[89, 85, 7, 6, 1] | c076 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the maximum, last element, length, first element, and minimum, in that order". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 0, 2, 1, 3, 6, 8, 9, 7, 5] -> [4, 0, 2, 1, 3, 6, 8, 9, 7, 5, 3]
[2, 8, 7, 5, 0, 4, 6, 1] -> [2, 8, 7, 5, 0, 4, 6, 1, 3]
[5, 3, 4, 1, 9] -> [5, 3, 4, 1, 9, 3]
[6, 5, 0] -> [6, 5, 0, 3]
[7, 1] -> [7, 1, 3]
[4, 9, 1, 6, 0, 8] -> [4, 9, 1, 6, 0, 8, 3]
[0, 8] -> [0, 8, 3]
[3, 5, 7, 6, 9, 1, 8, 2, 4] -> [3, 5, 7, 6, 9, 1, 8, 2, 4, 3]
| [2, 9, 1, 4, 5, 7, 8]->[2, 9, 1, 4, 5, 7, 8, 3]<sep>[]->[3]<sep>[5, 6, 1, 4]->[5, 6, 1, 4, 3]<sep>[9, 4, 3, 6, 2, 1, 7, 8, 5, 0]->[9, 4, 3, 6, 2, 1, 7, 8, 5, 0, 3]<sep>[1]->[1, 3]<sep>[3, 8, 1, 4, 0, 6, 7, 5, 2, 9]->[3, 8, 1, 4, 0, 6, 7, 5, 2, 9, 3]<sep>[4, 5, 7, 2, 9, 1, 0]->[4, 5, 7, 2, 9, 1, 0, 3]<sep>[0, 9]->[0, 9, 3]<sep>[5, 9, 2, 4, 0]->[5, 9, 2, 4, 0, 3]<sep>[2, 8, 1, 6, 9]->[2, 8, 1, 6, 9, 3]<sep>[8, 2, 4, 0]->[8, 2, 4, 0, 3]<sep>[4, 0, 2, 6, 5, 8, 7]->[4, 0, 2, 6, 5, 8, 7, 3]<sep>[9, 8, 7, 5, 2, 6]->[9, 8, 7, 5, 2, 6, 3]<sep>[6, 4, 8, 9, 5, 0, 7, 1]->[6, 4, 8, 9, 5, 0, 7, 1, 3]<sep>[5, 7, 9, 3, 4, 2, 0, 6, 8, 1]->[5, 7, 9, 3, 4, 2, 0, 6, 8, 1, 3]<sep>[1, 0, 7, 3, 6, 4, 9, 5]->[1, 0, 7, 3, 6, 4, 9, 5, 3]<sep>[6, 8, 9, 1, 7, 2]->[6, 8, 9, 1, 7, 2, 3]<sep>[5, 7, 4]->[5, 7, 4, 3]<sep>[4, 6, 8, 9]->[4, 6, 8, 9, 3]<sep>[2, 7, 1]->[2, 7, 1, 3]<sep>[2, 6, 7, 4, 1, 8, 5, 3, 9]->[2, 6, 7, 4, 1, 8, 5, 3, 9, 3]<sep>[7]->[7, 3]<sep>[0]->[0, 3]<sep>[6, 2, 8, 5, 0, 1, 9, 7, 4]->[6, 2, 8, 5, 0, 1, 9, 7, 4, 3] | c037 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 7, 0, 5] -> [4, 4, 7, 0, 5]
[1] -> [1, 1]
[5, 2] -> [5, 5, 2]
[1, 4, 0, 8, 6, 7, 3, 2] -> [1, 1, 4, 0, 8, 6, 7, 3, 2]
[5] -> [5, 5]
[6, 9, 2, 1, 3] -> [6, 6, 9, 2, 1, 3]
[4, 3, 6, 2, 5, 0, 7, 8, 1, 9] -> [4, 4, 3, 6, 2, 5, 0, 7, 8, 1, 9]
[2, 4, 1, 3, 8, 0, 9, 7, 5, 6] -> [2, 2, 4, 1, 3, 8, 0, 9, 7, 5, 6]
| [4, 2, 5, 1, 7, 3, 6]->[4, 4, 2, 5, 1, 7, 3, 6]<sep>[7, 8, 9, 0, 3]->[7, 7, 8, 9, 0, 3]<sep>[2, 9, 4, 8, 7, 6, 3]->[2, 2, 9, 4, 8, 7, 6, 3]<sep>[2, 8, 0, 6, 1, 5, 9, 4, 7]->[2, 2, 8, 0, 6, 1, 5, 9, 4, 7]<sep>[7, 9, 6, 0, 3, 8, 2, 5, 4, 1]->[7, 7, 9, 6, 0, 3, 8, 2, 5, 4, 1]<sep>[3]->[3, 3]<sep>[6, 5, 2]->[6, 6, 5, 2]<sep>[0]->[0, 0]<sep>[8, 6]->[8, 8, 6]<sep>[6, 7, 8, 9, 3, 0, 5, 4, 1]->[6, 6, 7, 8, 9, 3, 0, 5, 4, 1]<sep>[6, 7, 0, 4, 2, 5, 9, 1, 8, 3]->[6, 6, 7, 0, 4, 2, 5, 9, 1, 8, 3]<sep>[8, 9, 1]->[8, 8, 9, 1]<sep>[8, 4, 3, 9, 0]->[8, 8, 4, 3, 9, 0]<sep>[4, 1, 2, 8, 5, 3]->[4, 4, 1, 2, 8, 5, 3]<sep>[1, 9, 4, 0, 7, 6, 8, 3]->[1, 1, 9, 4, 0, 7, 6, 8, 3]<sep>[6, 9, 1, 4, 7, 0, 2, 5]->[6, 6, 9, 1, 4, 7, 0, 2, 5]<sep>[3, 5]->[3, 3, 5]<sep>[2, 9, 8, 6, 7, 0]->[2, 2, 9, 8, 6, 7, 0]<sep>[1, 7, 3, 4, 6, 8, 2, 9, 5]->[1, 1, 7, 3, 4, 6, 8, 2, 9, 5]<sep>[9, 7, 5, 2]->[9, 9, 7, 5, 2]<sep>[0, 9, 3]->[0, 0, 9, 3]<sep>[4, 8, 1, 0, 6, 9, 5]->[4, 4, 8, 1, 0, 6, 9, 5]<sep>[0, 5, 2, 7, 9, 4]->[0, 0, 5, 2, 7, 9, 4]<sep>[7, 0, 1, 3]->[7, 7, 0, 1, 3] | c050 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[3, 4, 6, 4] -> [4]
[3, 7, 9, 7, 1, 1, 8, 9] -> [7]
[2, 5, 3, 1, 0, 4, 7, 8] -> [3]
[7, 6, 8, 3, 1, 9, 0, 2, 4] -> [2]
[4, 2, 6, 3, 1, 0] -> [1]
[2, 6, 6] -> [6]
[2, 8, 6, 3, 1] -> [6]
[4, 2, 5, 7, 6, 9, 8] -> [6]
| [4, 6, 2, 3, 8, 5, 0, 1, 9]->[8]<sep>[5, 7, 2, 3, 1, 0, 9, 6]->[0]<sep>[4, 9, 2, 3, 6, 0]->[6]<sep>[7, 8, 9, 4, 6, 1, 2, 5, 0, 3]->[5]<sep>[1, 7, 3, 2, 5, 6, 8, 9, 0, 4]->[7]<sep>[3, 8, 2, 1, 7, 5, 6, 4]->[1]<sep>[2, 0, 6, 1, 9]->[6]<sep>[5, 4, 0, 3, 7, 9]->[9]<sep>[5, 9, 4, 1, 6, 2, 3, 7, 0]->[2]<sep>[6, 8, 9, 3, 8, 7, 4, 1, 2]->[4]<sep>[2, 5, 3, 9]->[3]<sep>[5, 8, 7, 6, 9, 1, 0, 2]->[1]<sep>[9, 6, 0, 9, 8, 5, 1, 7, 3, 4]->[4]<sep>[8, 5, 3, 4, 1, 9, 7, 0, 2]->[2]<sep>[3, 6, 0, 1, 4, 2, 9, 5, 7, 8]->[1]<sep>[2, 0, 4, 8, 9, 6, 1, 5, 7, 3]->[4]<sep>[5, 2, 3, 7, 8, 9]->[9]<sep>[3, 8, 2, 9, 5, 7, 6]->[9]<sep>[8, 9, 1, 4, 3, 2, 5, 7, 0, 6]->[0]<sep>[2, 6, 7]->[7]<sep>[3, 9, 5, 7, 6]->[7]<sep>[2, 9, 7, 5, 0, 3, 4]->[7]<sep>[4, 9, 5, 8, 1, 6, 7]->[1]<sep>[7, 6, 1, 9, 4, 0, 5, 2, 3, 8]->[2] | c005 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element N + 1, N = element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 1, 5] -> [4, 1, 5, 9]
[1, 4, 8, 2, 3, 5, 9, 0, 7, 6] -> [1, 4, 8, 2, 3, 5, 9, 0, 7, 6, 9]
[2, 6] -> [2, 6, 9]
[4, 6, 1, 0, 5, 8] -> [4, 6, 1, 0, 5, 8, 9]
[2, 5, 3, 0, 6, 8, 1, 9] -> [2, 5, 3, 0, 6, 8, 1, 9, 9]
[6, 1, 4, 5, 8] -> [6, 1, 4, 5, 8, 9]
[3, 8, 9, 7, 5, 6, 1, 4] -> [3, 8, 9, 7, 5, 6, 1, 4, 9]
[6, 3, 2, 0] -> [6, 3, 2, 0, 9]
| [2, 8, 7, 6]->[2, 8, 7, 6, 9]<sep>[3, 1, 4, 8, 5, 6, 2, 7, 9, 0]->[3, 1, 4, 8, 5, 6, 2, 7, 9, 0, 9]<sep>[0, 3, 7, 2, 4]->[0, 3, 7, 2, 4, 9]<sep>[0, 8, 5, 3, 7, 1, 2]->[0, 8, 5, 3, 7, 1, 2, 9]<sep>[0, 8, 7, 4]->[0, 8, 7, 4, 9]<sep>[]->[9]<sep>[3, 8, 1, 4, 6, 7, 2]->[3, 8, 1, 4, 6, 7, 2, 9]<sep>[8, 5, 1]->[8, 5, 1, 9]<sep>[5]->[5, 9]<sep>[4, 3]->[4, 3, 9]<sep>[0, 5, 6, 3, 2, 1, 4, 7, 8]->[0, 5, 6, 3, 2, 1, 4, 7, 8, 9]<sep>[8, 1, 7, 3, 5, 0]->[8, 1, 7, 3, 5, 0, 9]<sep>[7, 0, 2, 9, 5, 8]->[7, 0, 2, 9, 5, 8, 9]<sep>[7]->[7, 9]<sep>[7, 0, 5, 4, 3, 2, 9, 1, 6]->[7, 0, 5, 4, 3, 2, 9, 1, 6, 9]<sep>[7, 9, 6, 2, 8, 3, 4, 0, 5, 1]->[7, 9, 6, 2, 8, 3, 4, 0, 5, 1, 9]<sep>[0, 6, 1, 9, 2, 8, 5]->[0, 6, 1, 9, 2, 8, 5, 9]<sep>[3]->[3, 9]<sep>[0, 5, 6, 7, 8, 4, 1, 2]->[0, 5, 6, 7, 8, 4, 1, 2, 9]<sep>[3, 0]->[3, 0, 9]<sep>[2, 1, 3, 4, 6]->[2, 1, 3, 4, 6, 9]<sep>[0, 7, 1, 3, 4, 5, 9, 2, 6]->[0, 7, 1, 3, 4, 5, 9, 2, 6, 9]<sep>[0, 7, 5, 9, 1, 8, 4, 2, 3, 6]->[0, 7, 5, 9, 1, 8, 4, 2, 3, 6, 9]<sep>[4, 7, 2]->[4, 7, 2, 9] | c038 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 9". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 0, 4, 1, 6, 8, 9] -> [7, 5, 0, 4, 1, 6, 8, 9]
[2, 6, 9, 8] -> [7, 2, 6, 9, 8]
[0, 6, 2, 4, 8, 1, 9] -> [7, 0, 6, 2, 4, 8, 1, 9]
[1, 8, 2, 4, 9, 0, 3] -> [7, 1, 8, 2, 4, 9, 0, 3]
[1, 9, 2, 0, 6, 4, 8, 5, 3] -> [7, 1, 9, 2, 0, 6, 4, 8, 5, 3]
[7, 4, 1, 5, 6, 9, 8, 0, 2, 3] -> [7, 7, 4, 1, 5, 6, 9, 8, 0, 2, 3]
[0, 8, 1, 3, 7, 6, 5, 9, 2] -> [7, 0, 8, 1, 3, 7, 6, 5, 9, 2]
[5, 3, 2, 6, 0, 4, 8, 7] -> [7, 5, 3, 2, 6, 0, 4, 8, 7]
| []->[7]<sep>[8, 9, 5]->[7, 8, 9, 5]<sep>[1, 3, 9, 6, 5]->[7, 1, 3, 9, 6, 5]<sep>[2, 5, 8, 0, 6, 3, 7, 9, 4, 1]->[7, 2, 5, 8, 0, 6, 3, 7, 9, 4, 1]<sep>[8, 4, 6, 0, 3, 2, 5, 7, 1]->[7, 8, 4, 6, 0, 3, 2, 5, 7, 1]<sep>[3]->[7, 3]<sep>[4, 9, 7, 3, 5, 2, 0, 1, 6, 8]->[7, 4, 9, 7, 3, 5, 2, 0, 1, 6, 8]<sep>[4, 0]->[7, 4, 0]<sep>[2, 8, 3, 1]->[7, 2, 8, 3, 1]<sep>[7, 2, 6, 5, 1, 0, 3, 8, 4, 9]->[7, 7, 2, 6, 5, 1, 0, 3, 8, 4, 9]<sep>[6, 1, 3, 9, 0, 4]->[7, 6, 1, 3, 9, 0, 4]<sep>[8, 5, 3, 0, 6, 9, 1, 2]->[7, 8, 5, 3, 0, 6, 9, 1, 2]<sep>[6]->[7, 6]<sep>[3, 5]->[7, 3, 5]<sep>[1]->[7, 1]<sep>[3, 0, 1, 2, 7, 4, 5, 9]->[7, 3, 0, 1, 2, 7, 4, 5, 9]<sep>[2, 3, 5, 9]->[7, 2, 3, 5, 9]<sep>[2, 8, 4]->[7, 2, 8, 4]<sep>[2, 9, 4, 8, 7, 6]->[7, 2, 9, 4, 8, 7, 6]<sep>[6, 2, 3, 8, 0]->[7, 6, 2, 3, 8, 0]<sep>[0, 2, 1]->[7, 0, 2, 1]<sep>[4, 6]->[7, 4, 6]<sep>[5, 8, 1, 9, 4, 6]->[7, 5, 8, 1, 9, 4, 6]<sep>[5, 4, 9, 8, 2]->[7, 5, 4, 9, 8, 2] | c046 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[2, 6, 5, 9, 7, 1, 8, 3, 4] -> [8]
[0, 4, 7, 3, 2, 9, 1, 8, 5, 6] -> [1]
[9, 3, 2, 8] -> []
[0, 4, 5, 2, 8, 7, 1, 6] -> [1]
[6] -> []
[0, 3, 5, 8, 2] -> []
[6, 8] -> []
[4, 7, 6] -> []
| [9, 0, 6, 5, 1, 4, 3, 8]->[3]<sep>[2, 4, 9, 0, 1, 5]->[]<sep>[6, 4, 8, 1]->[]<sep>[7, 1, 4, 3, 2]->[]<sep>[7]->[]<sep>[5, 0]->[]<sep>[4, 6, 5, 3]->[]<sep>[7, 6, 1, 0, 8, 4, 9, 3]->[9]<sep>[7, 2, 9]->[]<sep>[1, 0, 2]->[]<sep>[2, 0, 6, 4, 9, 1, 3, 8, 5]->[3]<sep>[6, 3, 1, 8, 7, 4, 9, 0]->[9]<sep>[3, 2, 9, 7, 8, 4, 1]->[1]<sep>[1, 2, 8, 9, 7, 5, 0, 3, 6, 4]->[0]<sep>[1, 3, 8, 9, 4, 2, 0, 5, 6]->[0]<sep>[1, 9, 2, 7, 4, 0]->[]<sep>[0, 4, 3, 8, 7, 6, 2, 5, 1, 9]->[2]<sep>[6, 2, 4, 3, 7, 1, 5, 8, 9, 0]->[5]<sep>[5, 9, 1, 8, 3, 0, 6, 4, 2]->[6]<sep>[7, 3, 2, 8, 0, 5, 1]->[1]<sep>[2, 5, 0, 7, 6, 3, 9]->[9]<sep>[5, 3, 7, 2, 1, 4, 6, 9]->[6]<sep>[4]->[]<sep>[3, 7]->[] | c004 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 7, 3, 8, 3, 8] -> [4, 7, 8, 3, 8]
[1, 0, 9, 8, 2, 7, 3, 6, 5, 4] -> [1, 9, 8, 2, 7, 3, 6, 5, 4]
[8, 7, 9, 1, 4, 5, 5, 5, 3, 2] -> [8, 9, 1, 4, 5, 5, 5, 3, 2]
[7, 0, 8] -> [7, 8]
[4, 5, 1, 5, 4, 1, 4, 5] -> [4, 5, 5, 4, 1, 4, 5]
[2, 9, 1, 5, 0, 3, 7, 8, 6, 4] -> [2, 9, 5, 0, 3, 7, 8, 6, 4]
[3, 2, 9] -> [3, 9]
[7, 9, 4, 2, 0, 5, 8] -> [7, 9, 2, 0, 5, 8]
| [5, 0, 9, 3]->[5, 9, 3]<sep>[3, 0, 8, 5, 7, 6]->[3, 8, 5, 7, 6]<sep>[4, 5, 0, 5, 3, 1, 6, 9]->[4, 5, 5, 3, 1, 6, 9]<sep>[5, 3, 6, 4, 1, 0, 9]->[5, 6, 4, 1, 0, 9]<sep>[4, 7, 3, 2, 0, 9, 6, 5, 1]->[4, 7, 2, 0, 9, 6, 5, 1]<sep>[5, 6, 0, 4, 5, 2]->[5, 6, 4, 5, 2]<sep>[8, 9, 3, 6, 5, 0, 2, 7, 1, 4]->[8, 9, 6, 5, 0, 2, 7, 1, 4]<sep>[7, 8, 0, 2, 6]->[7, 8, 2, 6]<sep>[6, 0, 9, 3, 9, 5, 8, 4, 1]->[6, 9, 3, 9, 5, 8, 4, 1]<sep>[6, 5, 7, 4, 3, 0, 8, 9]->[6, 7, 4, 3, 0, 8, 9]<sep>[6, 8, 3, 4, 1, 0, 7, 9, 5, 0]->[6, 8, 4, 1, 0, 7, 9, 5, 0]<sep>[2, 0, 7]->[2, 7]<sep>[4, 1, 7]->[4, 7]<sep>[4, 6, 2, 0, 1, 3, 9, 5, 1, 7]->[4, 6, 0, 1, 3, 9, 5, 1, 7]<sep>[3, 5, 1, 0, 1, 2, 0, 2]->[3, 5, 0, 1, 2, 0, 2]<sep>[5, 8, 0, 1]->[5, 8, 1]<sep>[4, 2, 8, 0, 1, 2]->[4, 8, 0, 1, 2]<sep>[5, 1, 8, 8]->[5, 8, 8]<sep>[6, 9, 2, 1, 5, 8, 7, 2]->[6, 9, 1, 5, 8, 7, 2]<sep>[5, 2, 6, 4, 0, 3, 7]->[5, 6, 4, 0, 3, 7]<sep>[3, 7, 1, 7, 8, 3, 1]->[3, 7, 7, 8, 3, 1]<sep>[6, 4, 7, 4, 7, 1, 4, 4, 4]->[6, 7, 4, 7, 1, 4, 4, 4]<sep>[2, 5, 0, 1, 8, 3]->[2, 5, 1, 8, 3]<sep>[6, 2, 9, 1, 5]->[6, 9, 1, 5] | c028 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2 if element 1 > element 2, else remove element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 2, 8, 7, 6, 5, 1, 0] -> [8, 7, 6, 5, 1, 0]
[8, 6, 7] -> [7]
[3, 8, 6, 0] -> [6, 0]
[0, 8, 5, 6, 3, 1, 7, 4, 9] -> [0, 8, 5, 6, 3, 1, 7]
[0, 8, 3, 4, 2, 6, 5, 9, 7, 1] -> [0, 8, 3, 4, 2, 6, 5, 9]
[3, 4, 9] -> [3]
[6, 7, 8, 9, 3, 4, 0, 1, 5, 2] -> [8, 9, 3, 4, 0, 1, 5, 2]
[5, 2, 9, 6, 8, 1, 7] -> [5, 2, 9, 6, 8]
| [6, 2, 3]->[3]<sep>[7, 0, 4, 8, 2]->[4, 8, 2]<sep>[4, 8, 1, 3, 7, 9, 0]->[1, 3, 7, 9, 0]<sep>[6, 8, 2, 5, 9, 7]->[6, 8, 2, 5]<sep>[2, 5, 9, 0, 4]->[2, 5, 9]<sep>[4, 5, 9, 0, 3]->[9, 0, 3]<sep>[8, 2, 9, 1, 4, 6, 5, 0, 7]->[9, 1, 4, 6, 5, 0, 7]<sep>[3, 6, 8, 7, 0, 4, 9, 5, 1, 2]->[8, 7, 0, 4, 9, 5, 1, 2]<sep>[8, 9, 4, 3, 1, 0]->[4, 3, 1, 0]<sep>[4, 6, 9, 0, 7, 3, 5]->[4, 6, 9, 0, 7]<sep>[7, 9, 1]->[1]<sep>[6, 0, 3, 8, 4, 5]->[3, 8, 4, 5]<sep>[7, 1, 3, 8, 6, 2, 5, 4, 9]->[7, 1, 3, 8, 6, 2, 5]<sep>[6, 0, 8, 5, 4, 2, 3, 9]->[6, 0, 8, 5, 4, 2]<sep>[1, 7, 6, 3, 9, 4, 5, 8]->[1, 7, 6, 3, 9, 4]<sep>[1, 6, 9, 7, 4, 0, 5, 2]->[1, 6, 9, 7, 4, 0]<sep>[6, 7, 9, 2, 1, 0, 3]->[9, 2, 1, 0, 3]<sep>[4, 2, 5, 9, 6, 7, 1, 0, 3, 8]->[4, 2, 5, 9, 6, 7, 1, 0]<sep>[1, 0, 5, 7]->[1, 0]<sep>[5, 8, 9, 4, 6, 2, 1, 0, 3]->[9, 4, 6, 2, 1, 0, 3]<sep>[2, 6, 1, 8, 5]->[2, 6, 1]<sep>[2, 7, 5]->[2]<sep>[0, 6, 8, 5]->[0, 6]<sep>[6, 1, 3, 2]->[3, 2] | c032 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove two elements: the first two if element 1 > last element, else the last two". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 8, 4, 2, 3, 0, 6, 7] -> [8, 4, 2, 3, 0, 6, 7]
[2, 9, 1, 3, 4, 6, 7, 8, 5] -> [9, 1, 3, 4, 6, 7, 8, 5]
[2, 9, 4] -> [9, 4]
[9] -> []
[1, 8, 4, 2, 6] -> [8, 4, 2, 6]
[7, 1, 8, 3, 2, 4] -> [1, 8, 3, 2, 4]
[1, 9] -> [9]
[6, 0, 5] -> [0, 5]
| [9, 4, 8, 2, 5, 3, 6, 7]->[4, 8, 2, 5, 3, 6, 7]<sep>[9, 8, 3, 2, 1, 0, 7, 5, 6]->[8, 3, 2, 1, 0, 7, 5, 6]<sep>[8, 7, 3]->[7, 3]<sep>[2, 7, 4, 8, 1, 0, 3]->[7, 4, 8, 1, 0, 3]<sep>[4, 2, 0, 9, 8, 3, 5, 7, 6]->[2, 0, 9, 8, 3, 5, 7, 6]<sep>[4]->[]<sep>[6, 2, 7, 9, 0, 3, 8, 1, 5]->[2, 7, 9, 0, 3, 8, 1, 5]<sep>[2]->[]<sep>[1, 8, 9, 0, 2, 4]->[8, 9, 0, 2, 4]<sep>[9, 0]->[0]<sep>[5, 1]->[1]<sep>[0, 4, 5, 6, 1, 9, 2]->[4, 5, 6, 1, 9, 2]<sep>[6, 0, 8, 1]->[0, 8, 1]<sep>[4, 9, 6, 7, 2, 1, 5]->[9, 6, 7, 2, 1, 5]<sep>[1, 3, 8, 6]->[3, 8, 6]<sep>[9, 6, 8, 1, 0, 7]->[6, 8, 1, 0, 7]<sep>[9, 2, 4, 8, 5, 6, 3, 1, 0, 7]->[2, 4, 8, 5, 6, 3, 1, 0, 7]<sep>[6, 7, 5, 8, 0, 9, 1, 4, 2, 3]->[7, 5, 8, 0, 9, 1, 4, 2, 3]<sep>[0, 5, 7, 4, 1, 9, 3, 2]->[5, 7, 4, 1, 9, 3, 2]<sep>[7, 5, 2, 0, 9, 3, 8, 4, 6, 1]->[5, 2, 0, 9, 3, 8, 4, 6, 1]<sep>[8, 4, 1, 9, 3, 5, 7, 2, 0, 6]->[4, 1, 9, 3, 5, 7, 2, 0, 6]<sep>[7, 6, 4, 5, 9]->[6, 4, 5, 9]<sep>[4, 3, 5, 7, 0]->[3, 5, 7, 0]<sep>[9, 6, 0, 5]->[6, 0, 5] | c049 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[7, 6, 4, 5, 3, 9, 2] -> [7, 8, 4, 5, 3, 9, 2]
[1, 5, 6, 9] -> [1, 8, 6, 9]
[2, 1, 7] -> [2, 8, 7]
[5, 6] -> [5, 8]
[2, 7, 3, 6, 4, 0, 5, 9, 1] -> [2, 8, 3, 6, 4, 0, 5, 9, 1]
[5, 1, 0, 7, 9, 8, 2, 3, 4, 6] -> [5, 8, 0, 7, 9, 8, 2, 3, 4, 6]
[4, 1, 9, 0, 6, 2, 5] -> [4, 8, 9, 0, 6, 2, 5]
[0, 6, 7, 2, 9, 4, 1, 5] -> [0, 8, 7, 2, 9, 4, 1, 5]
| [2, 4, 7, 8, 5, 0, 6, 1, 9, 3]->[2, 8, 7, 8, 5, 0, 6, 1, 9, 3]<sep>[9, 7, 3, 2]->[9, 8, 3, 2]<sep>[0, 1, 5]->[0, 8, 5]<sep>[4, 7]->[4, 8]<sep>[1, 7, 8, 9, 6, 2, 0, 5]->[1, 8, 8, 9, 6, 2, 0, 5]<sep>[4, 7, 3]->[4, 8, 3]<sep>[5, 1, 6, 3]->[5, 8, 6, 3]<sep>[]->[]<sep>[1, 4, 7, 0, 3, 9]->[1, 8, 7, 0, 3, 9]<sep>[0, 5, 4, 2, 9, 7, 1, 3]->[0, 8, 4, 2, 9, 7, 1, 3]<sep>[0, 3, 4, 7, 6, 2, 5, 9, 1]->[0, 8, 4, 7, 6, 2, 5, 9, 1]<sep>[7, 9, 8, 1, 5, 0, 4]->[7, 8, 8, 1, 5, 0, 4]<sep>[3]->[3]<sep>[0, 3, 7]->[0, 8, 7]<sep>[8, 3, 2, 7, 6]->[8, 8, 2, 7, 6]<sep>[2, 3, 9, 4, 5, 6]->[2, 8, 9, 4, 5, 6]<sep>[2, 1]->[2, 8]<sep>[4, 5, 7, 3, 0]->[4, 8, 7, 3, 0]<sep>[6, 9, 5, 4, 0, 8, 1, 7, 2]->[6, 8, 5, 4, 0, 8, 1, 7, 2]<sep>[4, 2, 6, 3]->[4, 8, 6, 3]<sep>[0, 4, 9, 6, 3]->[0, 8, 9, 6, 3]<sep>[2, 0, 6, 5, 4, 1]->[2, 8, 6, 5, 4, 1]<sep>[5, 4, 1, 6, 7, 0, 9]->[5, 8, 1, 6, 7, 0, 9]<sep>[2, 5, 1, 9, 4, 8, 6, 7, 3, 0]->[2, 8, 1, 9, 4, 8, 6, 7, 3, 0] | c017 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 2 with an 8 if there is an element 2". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 2, 7, 0, 5, 3] -> [9, 3, 4, 0, 4, 2, 7, 0, 5, 3, 7, 2, 9, 1]
[4, 0, 6, 5, 8] -> [9, 3, 4, 0, 4, 0, 6, 5, 8, 7, 2, 9, 1]
[9, 8] -> [9, 3, 4, 0, 9, 8, 7, 2, 9, 1]
[6, 5, 2, 0, 1, 7, 9] -> [9, 3, 4, 0, 6, 5, 2, 0, 1, 7, 9, 7, 2, 9, 1]
[5, 0, 8, 3] -> [9, 3, 4, 0, 5, 0, 8, 3, 7, 2, 9, 1]
[1, 6, 5] -> [9, 3, 4, 0, 1, 6, 5, 7, 2, 9, 1]
[7, 4, 6, 9, 3, 0, 8] -> [9, 3, 4, 0, 7, 4, 6, 9, 3, 0, 8, 7, 2, 9, 1]
[2, 8, 6, 7] -> [9, 3, 4, 0, 2, 8, 6, 7, 7, 2, 9, 1]
| [2, 1, 8, 3, 7, 4]->[9, 3, 4, 0, 2, 1, 8, 3, 7, 4, 7, 2, 9, 1]<sep>[0, 7, 6, 4, 3]->[9, 3, 4, 0, 0, 7, 6, 4, 3, 7, 2, 9, 1]<sep>[5, 6, 7, 8]->[9, 3, 4, 0, 5, 6, 7, 8, 7, 2, 9, 1]<sep>[6, 0, 2, 8, 3]->[9, 3, 4, 0, 6, 0, 2, 8, 3, 7, 2, 9, 1]<sep>[2, 6, 5, 8, 9, 1]->[9, 3, 4, 0, 2, 6, 5, 8, 9, 1, 7, 2, 9, 1]<sep>[3, 5]->[9, 3, 4, 0, 3, 5, 7, 2, 9, 1]<sep>[5, 4, 0, 6, 1]->[9, 3, 4, 0, 5, 4, 0, 6, 1, 7, 2, 9, 1]<sep>[8, 4, 5]->[9, 3, 4, 0, 8, 4, 5, 7, 2, 9, 1]<sep>[8, 1, 5, 3, 7, 2, 4]->[9, 3, 4, 0, 8, 1, 5, 3, 7, 2, 4, 7, 2, 9, 1]<sep>[6, 8, 5, 7]->[9, 3, 4, 0, 6, 8, 5, 7, 7, 2, 9, 1]<sep>[7, 0, 6, 5]->[9, 3, 4, 0, 7, 0, 6, 5, 7, 2, 9, 1]<sep>[6, 8, 4]->[9, 3, 4, 0, 6, 8, 4, 7, 2, 9, 1]<sep>[8, 0, 5, 6, 9, 3]->[9, 3, 4, 0, 8, 0, 5, 6, 9, 3, 7, 2, 9, 1]<sep>[2, 1, 6]->[9, 3, 4, 0, 2, 1, 6, 7, 2, 9, 1]<sep>[]->[9, 3, 4, 0, 7, 2, 9, 1]<sep>[7, 6, 8]->[9, 3, 4, 0, 7, 6, 8, 7, 2, 9, 1]<sep>[5, 6, 1]->[9, 3, 4, 0, 5, 6, 1, 7, 2, 9, 1]<sep>[0, 5, 3, 2, 8, 4]->[9, 3, 4, 0, 0, 5, 3, 2, 8, 4, 7, 2, 9, 1]<sep>[8]->[9, 3, 4, 0, 8, 7, 2, 9, 1]<sep>[8, 2, 1, 4, 3]->[9, 3, 4, 0, 8, 2, 1, 4, 3, 7, 2, 9, 1]<sep>[2, 1, 9, 5, 3, 8, 0]->[9, 3, 4, 0, 2, 1, 9, 5, 3, 8, 0, 7, 2, 9, 1]<sep>[6, 2, 1, 5, 9, 3]->[9, 3, 4, 0, 6, 2, 1, 5, 9, 3, 7, 2, 9, 1]<sep>[5]->[9, 3, 4, 0, 5, 7, 2, 9, 1]<sep>[8, 6, 9, 1, 0, 7, 4]->[9, 3, 4, 0, 8, 6, 9, 1, 0, 7, 4, 7, 2, 9, 1] | c069 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate [9, 3, 4, 0], input, and [7, 2, 9, 1]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 6] -> [2, 8]
[0, 4, 6, 2, 3, 1] -> [2, 6, 8, 4, 5, 3]
[2] -> [4]
[3, 6, 5, 0, 1, 2] -> [5, 8, 7, 2, 3, 4]
[1, 6] -> [3, 8]
[1, 2] -> [3, 4]
[1] -> [3]
[5, 3, 0, 1] -> [7, 5, 2, 3]
| [5]->[7]<sep>[0, 5, 1, 6, 7, 4]->[2, 7, 3, 8, 9, 6]<sep>[2, 0, 4, 5, 1, 7, 6, 3]->[4, 2, 6, 7, 3, 9, 8, 5]<sep>[6, 5, 7]->[8, 7, 9]<sep>[0, 1, 2, 3, 7, 4, 5, 6]->[2, 3, 4, 5, 9, 6, 7, 8]<sep>[7, 4, 1, 6, 5]->[9, 6, 3, 8, 7]<sep>[3, 7, 6, 1]->[5, 9, 8, 3]<sep>[6]->[8]<sep>[3, 2, 0]->[5, 4, 2]<sep>[1, 0, 6, 3, 2, 5]->[3, 2, 8, 5, 4, 7]<sep>[7]->[9]<sep>[]->[]<sep>[0, 2, 4, 1]->[2, 4, 6, 3]<sep>[1, 5, 4, 7, 0]->[3, 7, 6, 9, 2]<sep>[3, 5, 4]->[5, 7, 6]<sep>[7, 5, 3, 6, 1, 4, 0]->[9, 7, 5, 8, 3, 6, 2]<sep>[1, 0]->[3, 2]<sep>[4, 2, 6]->[6, 4, 8]<sep>[6, 4, 1, 7, 3]->[8, 6, 3, 9, 5]<sep>[2, 3]->[4, 5]<sep>[1, 7, 4]->[3, 9, 6]<sep>[0, 1, 3, 6, 7]->[2, 3, 5, 8, 9]<sep>[7, 6, 0, 3]->[9, 8, 2, 5]<sep>[0, 4, 7, 3, 5]->[2, 6, 9, 5, 7] | c071 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "add 2 to every element". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[3, 5, 0, 4, 2, 6] -> [0, 4, 2, 6]
[8, 3] -> []
[2, 8, 1] -> [1]
[2, 1, 3, 8] -> [3, 8]
[5, 2, 6, 3, 9, 0, 8, 1] -> [6, 3, 9, 0, 8, 1]
[0, 9, 6, 5, 3, 8, 2, 1] -> [6, 5, 3, 8, 2, 1]
[5, 4, 1, 6, 9, 8, 7] -> [1, 6, 9, 8, 7]
[0, 4, 8, 2, 7, 5, 6] -> [8, 2, 7, 5, 6]
| [5, 1, 4, 3, 0, 6, 8, 7, 2]->[4, 3, 0, 6, 8, 7, 2]<sep>[4, 6, 0, 8, 9, 7, 5, 3]->[0, 8, 9, 7, 5, 3]<sep>[1, 7, 4, 2, 3, 8, 9, 0, 5, 6]->[4, 2, 3, 8, 9, 0, 5, 6]<sep>[7, 9, 8, 1, 3]->[8, 1, 3]<sep>[1, 0, 2, 5, 4]->[2, 5, 4]<sep>[4, 1, 6]->[6]<sep>[2, 0, 9, 7]->[9, 7]<sep>[3, 5]->[]<sep>[0, 9, 4, 8]->[4, 8]<sep>[2, 3, 5, 6, 8, 0, 4, 9, 7]->[5, 6, 8, 0, 4, 9, 7]<sep>[0, 1, 9, 4, 2, 3, 5]->[9, 4, 2, 3, 5]<sep>[8, 6, 2]->[2]<sep>[5, 6, 0, 7, 8, 1, 2, 3, 4, 9]->[0, 7, 8, 1, 2, 3, 4, 9]<sep>[1, 6, 5, 3, 0, 9]->[5, 3, 0, 9]<sep>[7, 3, 1, 2, 9, 4]->[1, 2, 9, 4]<sep>[9, 5, 6, 1, 0]->[6, 1, 0]<sep>[1, 4, 0, 7, 9]->[0, 7, 9]<sep>[2, 8, 4, 7, 1, 6, 3, 5, 9]->[4, 7, 1, 6, 3, 5, 9]<sep>[8, 6, 1, 9, 4, 7]->[1, 9, 4, 7]<sep>[2, 6, 7, 9, 1, 3, 5, 4, 8]->[7, 9, 1, 3, 5, 4, 8]<sep>[3, 9, 7, 5, 4, 0, 2, 6]->[7, 5, 4, 0, 2, 6]<sep>[0, 7]->[]<sep>[9, 4, 3, 6, 0, 1, 5, 2, 8, 7]->[3, 6, 0, 1, 5, 2, 8, 7]<sep>[0, 9, 3, 7, 1, 8, 2, 4, 5, 6]->[3, 7, 1, 8, 2, 4, 5, 6] | c029 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first two elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 2, 6, 5] -> [9, 8, 2, 6, 5]
[4, 1] -> [4, 8, 1]
[2, 3] -> [2, 8, 3]
[5, 0, 1, 3, 8, 2, 4, 9, 6, 7] -> [5, 8, 0, 1, 3, 8, 2, 4, 9, 6, 7]
[6, 0, 8, 4, 9, 1, 3] -> [6, 8, 0, 8, 4, 9, 1, 3]
[3, 7, 1] -> [3, 8, 7, 1]
[2, 3, 1] -> [2, 8, 3, 1]
[3, 9, 8, 2, 5, 4] -> [3, 8, 9, 8, 2, 5, 4]
| [6, 2, 8, 1, 0, 3, 9, 5]->[6, 8, 2, 8, 1, 0, 3, 9, 5]<sep>[6, 2]->[6, 8, 2]<sep>[8, 0, 4, 6, 7, 2, 5, 9, 3, 1]->[8, 8, 0, 4, 6, 7, 2, 5, 9, 3, 1]<sep>[6, 7, 3, 5]->[6, 8, 7, 3, 5]<sep>[6, 5, 1, 0, 4, 7, 2]->[6, 8, 5, 1, 0, 4, 7, 2]<sep>[6, 4, 5, 9, 1]->[6, 8, 4, 5, 9, 1]<sep>[2, 8, 3, 6, 9, 0, 1, 5]->[2, 8, 8, 3, 6, 9, 0, 1, 5]<sep>[3, 9, 4, 1, 7, 2, 6, 5, 0]->[3, 8, 9, 4, 1, 7, 2, 6, 5, 0]<sep>[3, 0, 7, 9]->[3, 8, 0, 7, 9]<sep>[7, 5]->[7, 8, 5]<sep>[1, 9, 0, 7, 6, 5]->[1, 8, 9, 0, 7, 6, 5]<sep>[0, 3, 4, 9, 7]->[0, 8, 3, 4, 9, 7]<sep>[6, 5, 0, 2, 9, 7, 3, 1]->[6, 8, 5, 0, 2, 9, 7, 3, 1]<sep>[9, 6, 4, 3, 5, 1, 0]->[9, 8, 6, 4, 3, 5, 1, 0]<sep>[8, 9, 5, 4, 0, 2, 7, 3, 1]->[8, 8, 9, 5, 4, 0, 2, 7, 3, 1]<sep>[4, 3, 0, 7, 8]->[4, 8, 3, 0, 7, 8]<sep>[8, 0, 2, 5, 1, 3, 4, 7, 6, 9]->[8, 8, 0, 2, 5, 1, 3, 4, 7, 6, 9]<sep>[7, 0, 2, 4, 5, 9]->[7, 8, 0, 2, 4, 5, 9]<sep>[9, 0, 8, 4, 5, 1, 7, 2, 3]->[9, 8, 0, 8, 4, 5, 1, 7, 2, 3]<sep>[7, 8, 0, 9, 1, 2, 6, 4, 5]->[7, 8, 8, 0, 9, 1, 2, 6, 4, 5]<sep>[9, 2, 0]->[9, 8, 2, 0]<sep>[1, 3, 8, 9, 5, 2, 6, 4]->[1, 8, 3, 8, 9, 5, 2, 6, 4]<sep>[2, 5, 3, 1, 9, 0, 6]->[2, 8, 5, 3, 1, 9, 0, 6]<sep>[5, 1, 0, 4, 3]->[5, 8, 1, 0, 4, 3] | c021 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert an 8 as element 2". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[1, 0, 6, 2, 3, 8, 5, 9, 4] -> [5]
[5, 6, 2, 3, 9, 7, 1, 0] -> [1]
[9, 8, 7, 4, 0, 3, 6, 5, 2, 1] -> [6]
[1, 2, 0, 8, 5, 9, 3, 6, 7, 4] -> [3]
[1, 0, 9, 5, 4, 2, 8] -> [8]
[4, 5, 8, 3, 1, 6, 0] -> [0]
[8, 3, 4, 0, 5, 1, 6, 9, 2] -> [6]
[1, 7, 9, 4, 6, 2, 0] -> [0]
| [4, 6, 1, 9, 5, 7, 2, 3, 0, 8]->[2]<sep>[8, 3, 2, 6, 7, 9, 4, 5, 1]->[4]<sep>[1, 4, 5, 6, 8, 3, 2, 0, 7, 9]->[2]<sep>[6, 9, 4, 0, 3, 8, 5, 7]->[5]<sep>[0, 3, 1, 8, 5, 2, 7, 6]->[7]<sep>[0, 4, 6, 7, 2, 5, 8, 9, 3, 1]->[8]<sep>[9, 4, 5, 2, 6, 8, 7, 3]->[7]<sep>[7, 9, 1, 4, 6, 0, 2]->[2]<sep>[3, 9, 1, 4, 7, 0, 8, 6, 5]->[8]<sep>[8, 9, 2, 4, 0, 6, 5, 3]->[5]<sep>[9, 4, 1, 7, 6, 2, 0, 8, 3, 5]->[0]<sep>[9, 3, 5, 1, 8, 2, 0, 7, 4]->[0]<sep>[3, 2, 1, 7, 8, 5, 9, 6]->[9]<sep>[1, 0, 7, 5, 3, 2, 9, 4, 6]->[9]<sep>[4, 3, 0, 5, 6, 7, 9, 1]->[9]<sep>[1, 6, 4, 0, 7, 8, 4, 3, 5, 9]->[4]<sep>[5, 1, 2, 9, 8, 0, 3, 4, 7]->[3]<sep>[3, 1, 7, 2, 9, 6, 8, 4, 5, 0]->[8]<sep>[8, 4, 5, 9, 0, 6, 1]->[1]<sep>[5, 9, 8, 3, 7, 4, 0, 1, 6]->[0]<sep>[4, 2, 9, 3, 7, 5, 1, 0]->[1]<sep>[1, 9, 4, 0, 6, 5, 2]->[2]<sep>[2, 5, 8, 3, 6, 9, 7]->[7]<sep>[3, 2, 5, 7, 6, 0, 8]->[8] | c003 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 4, 5, 6, 2, 0, 7, 8] -> [9, 4, 5, 6, 2, 3, 7, 8]
[4] -> [4]
[1, 6, 5, 4, 9, 8, 0, 3] -> [1, 6, 5, 4, 9, 3, 0, 3]
[0, 9, 1, 7, 3, 5] -> [0, 9, 1, 7, 3, 3]
[5, 7, 8, 2, 1, 4, 6] -> [5, 7, 8, 2, 1, 3, 6]
[7] -> [7]
[9, 2, 6, 0, 1, 4, 7] -> [9, 2, 6, 0, 1, 3, 7]
[8, 2, 0, 9] -> [8, 2, 0, 9]
| [3, 5, 7, 0, 2, 4, 8, 6, 1]->[3, 5, 7, 0, 2, 3, 8, 6, 1]<sep>[5, 3, 4, 7, 1, 8, 9, 6, 0]->[5, 3, 4, 7, 1, 3, 9, 6, 0]<sep>[6, 2, 4, 7, 5, 0, 1, 9, 8]->[6, 2, 4, 7, 5, 3, 1, 9, 8]<sep>[1, 4, 9, 0, 8, 6, 5, 7, 2, 3]->[1, 4, 9, 0, 8, 3, 5, 7, 2, 3]<sep>[4, 1, 7]->[4, 1, 7]<sep>[1, 5, 3, 6, 9, 2, 0]->[1, 5, 3, 6, 9, 3, 0]<sep>[5, 8, 0, 6, 2]->[5, 8, 0, 6, 2]<sep>[8, 4, 2, 5, 3, 7]->[8, 4, 2, 5, 3, 3]<sep>[9, 2, 0, 8, 6, 1]->[9, 2, 0, 8, 6, 3]<sep>[2, 4, 0, 6, 5, 7]->[2, 4, 0, 6, 5, 3]<sep>[4, 5, 7, 2, 8, 6, 9, 1, 0]->[4, 5, 7, 2, 8, 3, 9, 1, 0]<sep>[]->[]<sep>[9, 8, 3, 7, 1, 0, 4, 5]->[9, 8, 3, 7, 1, 3, 4, 5]<sep>[9, 8, 7, 3, 4, 5, 2, 0, 6, 1]->[9, 8, 7, 3, 4, 3, 2, 0, 6, 1]<sep>[0, 4]->[0, 4]<sep>[2, 3, 5, 4, 1, 9, 0, 7]->[2, 3, 5, 4, 1, 3, 0, 7]<sep>[2, 7]->[2, 7]<sep>[2, 5, 8, 6, 0]->[2, 5, 8, 6, 0]<sep>[7, 9, 3, 1, 4, 0, 6, 5, 8, 2]->[7, 9, 3, 1, 4, 3, 6, 5, 8, 2]<sep>[4, 8, 9, 1]->[4, 8, 9, 1]<sep>[9]->[9]<sep>[7, 8, 6]->[7, 8, 6]<sep>[1, 8, 3, 5, 9, 2, 6]->[1, 8, 3, 5, 9, 3, 6]<sep>[9, 2, 6]->[9, 2, 6] | c019 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 6 with a 3 if there is an element 6". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 0, 6, 5, 4, 7, 1] -> [5, 0, 6, 9, 4, 7, 1]
[9, 1, 8, 7, 5, 0] -> [7, 1, 8, 9, 5, 0]
[7, 2, 0, 7] -> [7, 0, 2, 7]
[4, 8, 2, 9, 6, 0, 5, 1] -> [4, 2, 8, 9, 6, 0, 5, 1]
[0, 7, 5, 2, 1, 8, 6, 9] -> [0, 5, 7, 2, 1, 8, 6, 9]
[6, 7, 8, 1, 0, 2, 4] -> [1, 7, 8, 6, 0, 2, 4]
[1, 7, 4, 5, 8, 9] -> [1, 4, 7, 5, 8, 9]
[1, 1, 0, 7, 6] -> [1, 0, 1, 7, 6]
| [1, 6, 0, 8, 3, 5]->[1, 0, 6, 8, 3, 5]<sep>[2, 8, 7, 5, 4, 9, 0, 1]->[2, 7, 8, 5, 4, 9, 0, 1]<sep>[6, 8, 2, 7, 1, 9, 4, 2]->[6, 2, 8, 7, 1, 9, 4, 2]<sep>[8, 7, 9, 4, 5, 3, 1, 6, 2, 0]->[4, 7, 9, 8, 5, 3, 1, 6, 2, 0]<sep>[3, 2, 5, 0, 1, 6]->[0, 2, 5, 3, 1, 6]<sep>[8, 3, 7, 6, 5, 4, 1, 9, 3, 4]->[6, 3, 7, 8, 5, 4, 1, 9, 3, 4]<sep>[8, 6, 6, 4, 8]->[4, 6, 6, 8, 8]<sep>[3, 8, 2, 6, 9, 4, 0]->[3, 2, 8, 6, 9, 4, 0]<sep>[3, 4, 6, 0]->[0, 4, 6, 3]<sep>[3, 4, 9, 0, 1, 7, 2, 8, 6, 5]->[0, 4, 9, 3, 1, 7, 2, 8, 6, 5]<sep>[3, 8, 1, 6]->[3, 1, 8, 6]<sep>[1, 6, 4, 8]->[1, 4, 6, 8]<sep>[4, 5, 9, 3, 0, 6, 8, 2]->[3, 5, 9, 4, 0, 6, 8, 2]<sep>[3, 6, 8, 1, 9]->[1, 6, 8, 3, 9]<sep>[5, 8, 9, 2, 7, 6]->[2, 8, 9, 5, 7, 6]<sep>[0, 8, 7, 4, 8, 3, 2, 9, 1]->[0, 7, 8, 4, 8, 3, 2, 9, 1]<sep>[6, 8, 1, 9, 7, 3, 2]->[6, 1, 8, 9, 7, 3, 2]<sep>[2, 6, 1, 4, 9, 0, 7, 3, 8]->[2, 1, 6, 4, 9, 0, 7, 3, 8]<sep>[6, 2, 3, 4, 0, 7, 5, 9, 1, 8]->[4, 2, 3, 6, 0, 7, 5, 9, 1, 8]<sep>[0, 3, 2, 5, 1, 8, 9, 7, 4]->[0, 2, 3, 5, 1, 8, 9, 7, 4]<sep>[3, 2, 5, 0, 9]->[0, 2, 5, 3, 9]<sep>[8, 0, 9, 7, 3]->[7, 0, 9, 8, 3]<sep>[6, 0, 0, 5, 1, 5, 3, 8, 9]->[5, 0, 0, 6, 1, 5, 3, 8, 9]<sep>[1, 4, 0, 3]->[1, 0, 4, 3] | c036 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 2 and 3 if element 2 > element 3, else swap elements 1 and 4". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 6, 1, 9] -> [1, 9]
[3, 0] -> []
[8, 1, 6, 9, 7, 2, 3] -> [6, 9, 7, 2, 3]
[1, 9, 7, 3, 0, 5, 8, 6] -> [7, 3, 0, 5, 8]
[3, 0, 9, 2] -> [9, 2]
[3, 9, 7, 4, 6] -> [7, 4, 6]
[2, 5, 1, 8] -> [1, 8]
[8, 1, 5, 2] -> [5, 2]
| [9, 7, 2, 0, 6]->[2, 0, 6]<sep>[6, 0, 3, 8, 9, 7]->[3, 8, 9, 7]<sep>[9, 1, 3, 7, 5, 2, 6, 8, 0, 4]->[3, 7, 5, 2, 6]<sep>[7, 1, 4, 8, 3, 0, 5]->[4, 8, 3, 0, 5]<sep>[9, 7, 0, 6, 3, 5, 4, 8, 2]->[0, 6, 3, 5, 4]<sep>[1, 3, 9]->[9]<sep>[8, 3, 5, 6, 7, 0]->[5, 6, 7, 0]<sep>[3, 9, 0]->[0]<sep>[2, 1, 9, 4, 7, 8]->[9, 4, 7, 8]<sep>[7]->[]<sep>[2, 8, 1, 3, 5, 0, 4, 7]->[1, 3, 5, 0, 4]<sep>[5, 2, 4]->[4]<sep>[8, 1, 9, 2, 6]->[9, 2, 6]<sep>[7, 9, 1, 8, 6, 0, 4, 2, 3, 5]->[1, 8, 6, 0, 4]<sep>[6, 2, 0, 7]->[0, 7]<sep>[8, 7, 4, 1, 2, 0]->[4, 1, 2, 0]<sep>[8, 3, 5]->[5]<sep>[8]->[]<sep>[4, 1]->[]<sep>[1, 4]->[]<sep>[3, 2, 5, 4, 6]->[5, 4, 6]<sep>[3, 4, 7, 8, 6, 1, 5, 0, 9]->[7, 8, 6, 1, 5]<sep>[4]->[]<sep>[4, 8, 2, 1, 9, 5]->[2, 1, 9, 5] | c014 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but elements 3 through 7". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 0, 3, 8, 7, 1, 4, 9, 1, 5] -> [3, 8, 7, 1, 4, 9, 1, 5]
[0, 0, 1, 5, 7, 2, 9, 4, 3] -> [1, 5, 7, 2, 9, 4, 3]
[2, 2, 7, 9, 1, 5, 9, 8, 0, 3] -> [7, 9, 1, 5, 9, 8, 0, 3]
[3, 8, 5, 1, 1] -> [3, 8, 5]
[2, 1, 4, 3, 9, 0, 0] -> [2, 1, 4, 3, 9]
[9, 7, 9, 9] -> [9, 7]
[7, 7, 5, 1, 9, 4, 3, 2] -> [5, 1, 9, 4, 3, 2]
[8, 7, 7] -> [8]
| [6, 6, 4, 3, 7, 9]->[4, 3, 7, 9]<sep>[0, 3, 0, 6, 6, 3, 3]->[0, 3, 0, 6, 6]<sep>[8, 8, 2, 5]->[2, 5]<sep>[2, 6, 6, 2, 2]->[2, 6, 6]<sep>[1, 1, 6, 3, 5, 1, 8, 4]->[6, 3, 5, 1, 8, 4]<sep>[4, 4, 5, 0, 7, 6, 8, 7, 9, 8]->[5, 0, 7, 6, 8, 7, 9, 8]<sep>[1, 4, 9, 2, 2]->[1, 4, 9]<sep>[5, 5, 7, 3, 1, 6]->[7, 3, 1, 6]<sep>[8, 9, 0, 0]->[8, 9]<sep>[7, 7, 5, 4]->[5, 4]<sep>[0, 0, 1]->[1]<sep>[5, 5, 1]->[1]<sep>[3, 3, 0, 4, 5, 7, 9, 1, 3]->[0, 4, 5, 7, 9, 1, 3]<sep>[0, 0, 2, 8, 9]->[2, 8, 9]<sep>[8, 6, 4, 4, 1, 7, 3, 5, 5]->[8, 6, 4, 4, 1, 7, 3]<sep>[7, 0, 9, 3, 0, 1, 2, 2]->[7, 0, 9, 3, 0, 1]<sep>[6, 6, 7, 5, 0, 2, 9]->[7, 5, 0, 2, 9]<sep>[8, 4, 4, 4]->[8, 4]<sep>[2, 6, 8, 9, 9]->[2, 6, 8]<sep>[8, 3, 9, 4, 6, 2, 5, 6, 0, 0]->[8, 3, 9, 4, 6, 2, 5, 6]<sep>[3, 3, 1, 2, 6, 0, 7, 4, 9, 8]->[1, 2, 6, 0, 7, 4, 9, 8]<sep>[7, 0, 6, 3, 9, 1, 5, 5]->[7, 0, 6, 3, 9, 1]<sep>[5, 3, 0, 6, 4, 4]->[5, 3, 0, 6]<sep>[8, 9, 9]->[8] | c031 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove whichever are equal: the two elements or the last two". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8, 2, 0, 6, 3, 1, 5, 7, 9] -> [9, 6, 3, 8, 5, 8, 2, 0, 6, 3, 1, 5, 7, 9]
[7, 1, 9, 2] -> [9, 6, 3, 8, 5, 7, 1, 9, 2]
[0, 5, 4] -> [9, 6, 3, 8, 5, 0, 5, 4]
[1] -> [9, 6, 3, 8, 5, 1]
[6, 1, 0, 2, 7, 8, 9, 3, 5, 4] -> [9, 6, 3, 8, 5, 6, 1, 0, 2, 7, 8, 9, 3, 5, 4]
[2, 8, 6, 7, 1] -> [9, 6, 3, 8, 5, 2, 8, 6, 7, 1]
[1, 7, 4, 8, 5, 2, 3, 9, 6, 0] -> [9, 6, 3, 8, 5, 1, 7, 4, 8, 5, 2, 3, 9, 6, 0]
[] -> [9, 6, 3, 8, 5]
| [4, 0, 7, 2, 8]->[9, 6, 3, 8, 5, 4, 0, 7, 2, 8]<sep>[5, 0]->[9, 6, 3, 8, 5, 5, 0]<sep>[0]->[9, 6, 3, 8, 5, 0]<sep>[0, 7, 1, 9, 5, 4]->[9, 6, 3, 8, 5, 0, 7, 1, 9, 5, 4]<sep>[5, 6, 2, 4, 9, 0, 7]->[9, 6, 3, 8, 5, 5, 6, 2, 4, 9, 0, 7]<sep>[0, 3, 7, 4, 6, 9, 1, 8]->[9, 6, 3, 8, 5, 0, 3, 7, 4, 6, 9, 1, 8]<sep>[7, 4]->[9, 6, 3, 8, 5, 7, 4]<sep>[1, 2, 3, 7]->[9, 6, 3, 8, 5, 1, 2, 3, 7]<sep>[4, 1, 5, 7, 9]->[9, 6, 3, 8, 5, 4, 1, 5, 7, 9]<sep>[2, 7, 3, 6, 0, 4]->[9, 6, 3, 8, 5, 2, 7, 3, 6, 0, 4]<sep>[2]->[9, 6, 3, 8, 5, 2]<sep>[6, 5, 7, 1, 4, 0, 8, 2]->[9, 6, 3, 8, 5, 6, 5, 7, 1, 4, 0, 8, 2]<sep>[7, 4, 2]->[9, 6, 3, 8, 5, 7, 4, 2]<sep>[3, 6, 4, 2, 7, 9, 0]->[9, 6, 3, 8, 5, 3, 6, 4, 2, 7, 9, 0]<sep>[1, 9, 6, 2, 0, 3]->[9, 6, 3, 8, 5, 1, 9, 6, 2, 0, 3]<sep>[6, 0, 2, 5, 4, 8, 7, 1]->[9, 6, 3, 8, 5, 6, 0, 2, 5, 4, 8, 7, 1]<sep>[1, 4, 9, 8, 2, 0, 7, 5]->[9, 6, 3, 8, 5, 1, 4, 9, 8, 2, 0, 7, 5]<sep>[2, 9, 3, 7, 6, 4, 1]->[9, 6, 3, 8, 5, 2, 9, 3, 7, 6, 4, 1]<sep>[2, 5]->[9, 6, 3, 8, 5, 2, 5]<sep>[0, 7, 8, 3]->[9, 6, 3, 8, 5, 0, 7, 8, 3]<sep>[9, 2, 3, 7, 0, 1, 4, 8, 5]->[9, 6, 3, 8, 5, 9, 2, 3, 7, 0, 1, 4, 8, 5]<sep>[8, 0, 5]->[9, 6, 3, 8, 5, 8, 0, 5]<sep>[1, 7, 8, 4, 0, 6, 3, 9, 5, 2]->[9, 6, 3, 8, 5, 1, 7, 8, 4, 0, 6, 3, 9, 5, 2]<sep>[8, 7, 3, 4, 1, 5, 0, 2, 6]->[9, 6, 3, 8, 5, 8, 7, 3, 4, 1, 5, 0, 2, 6] | c047 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate [9, 6, 3, 8, 5] and input". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[6, 4, 5, 1, 2] -> [5]
[6, 4, 9, 0, 5, 7, 3, 2, 8, 1] -> [9]
[4, 1, 8, 2, 0, 6, 7] -> [8]
[1, 5, 3, 8, 2, 0, 4, 7] -> [3]
[1, 6, 4] -> [4]
[8, 3, 6, 2, 4, 5, 1, 9] -> [6]
[4, 0, 7] -> [7]
[8, 0, 6, 4, 7, 5, 3, 9, 2] -> [6]
| [5, 6, 9, 4, 1, 2, 3]->[9]<sep>[9, 8, 1, 6, 3, 2, 0, 7]->[1]<sep>[4, 7, 6, 3, 8]->[6]<sep>[0, 3, 7, 5, 6, 8, 2, 1, 9]->[7]<sep>[5, 9, 7, 2, 8, 0]->[7]<sep>[9, 3, 5, 0, 1, 2]->[5]<sep>[4, 3, 7, 2]->[7]<sep>[4, 9, 3]->[3]<sep>[2, 1, 5, 3, 6, 0, 8, 4]->[5]<sep>[5, 0, 6, 8, 2, 9, 4, 7, 3]->[6]<sep>[9, 4, 8, 0, 2, 6, 7]->[8]<sep>[5, 2, 4, 0]->[4]<sep>[6, 3, 1, 4, 9, 0, 7]->[1]<sep>[6, 7, 2, 9, 3]->[2]<sep>[7, 6, 0, 9, 5, 3, 2, 4, 1, 8]->[0]<sep>[8, 3, 9, 1, 7, 0]->[9]<sep>[2, 9, 1, 8, 0]->[1]<sep>[9, 5, 7, 2]->[7]<sep>[0, 4, 8, 2, 5, 1, 9, 7, 6, 3]->[8]<sep>[8, 3, 6, 5]->[6]<sep>[7, 6, 0, 9, 2, 3, 4, 5, 8, 1]->[0]<sep>[4, 3, 5]->[5]<sep>[3, 4, 1, 5, 2, 0, 8, 6, 9]->[1]<sep>[8, 6, 1, 0, 5, 9]->[1] | c001 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 0, 8, 5, 9, 1, 6, 2, 7] -> [4, 0, 8, 5, 9, 1, 6, 2, 7, 9]
[9, 0] -> [9, 0, 9]
[5, 0, 2, 9] -> [5, 0, 2, 9, 9]
[7, 5, 8, 3, 4, 1, 6] -> [7, 5, 8, 3, 4, 1, 6, 3]
[2, 8, 0, 5] -> [2, 8, 0, 5]
[1, 8, 4, 3, 0, 6] -> [1, 8, 4, 3, 0, 6, 3]
[] -> []
[3, 4, 7, 6, 0] -> [3, 4, 7, 6, 0, 3]
| [1, 9, 5, 0]->[1, 9, 5, 0, 9]<sep>[3, 5]->[3, 5, 3]<sep>[8, 1, 2, 3, 7]->[8, 1, 2, 3, 7, 3]<sep>[3, 2, 7]->[3, 2, 7, 3]<sep>[7, 0, 2, 5]->[7, 0, 2, 5]<sep>[0, 2, 7, 5, 6]->[0, 2, 7, 5, 6]<sep>[9, 7, 8, 1, 0]->[9, 7, 8, 1, 0, 9]<sep>[6, 4, 9]->[6, 4, 9, 9]<sep>[6, 2, 0, 3, 1, 8, 7]->[6, 2, 0, 3, 1, 8, 7, 3]<sep>[4, 3, 0, 1, 7, 8]->[4, 3, 0, 1, 7, 8, 3]<sep>[6]->[6]<sep>[6, 9, 1]->[6, 9, 1, 9]<sep>[0, 5, 6, 4, 9, 1]->[0, 5, 6, 4, 9, 1, 9]<sep>[4, 2, 8]->[4, 2, 8]<sep>[4, 8]->[4, 8]<sep>[2]->[2]<sep>[9, 1]->[9, 1, 9]<sep>[3, 6, 0, 2, 5, 4, 8, 7, 1]->[3, 6, 0, 2, 5, 4, 8, 7, 1, 3]<sep>[5, 3, 1, 8, 0, 2, 4, 6, 7]->[5, 3, 1, 8, 0, 2, 4, 6, 7, 3]<sep>[4, 6, 9, 0, 7, 8, 1, 2]->[4, 6, 9, 0, 7, 8, 1, 2, 9]<sep>[3]->[3, 3]<sep>[7, 2, 0, 1, 4, 9, 5, 8]->[7, 2, 0, 1, 4, 9, 5, 8, 9]<sep>[3, 6, 4, 1, 0, 8]->[3, 6, 4, 1, 0, 8, 3]<sep>[5]->[5] | c040 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 3 if the list contains a 3, else append 9 if the list contains a 9". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[4, 3, 8, 7, 9, 2, 5, 1, 0, 6] -> [4]
[7, 6, 5, 9, 0, 4, 2, 3] -> [7]
[9, 7, 1] -> [9]
[7, 8, 1, 9, 6, 2, 4, 5, 3] -> [7]
[9, 4, 0, 8, 6, 7, 5, 2, 3] -> [9]
[7, 2, 4, 5] -> [7]
[0, 5, 2, 8, 7, 6, 4, 1] -> [0]
[1, 8, 7, 9, 0, 3] -> [1]
| [4, 5, 9, 2, 8, 7, 0]->[4]<sep>[4, 1, 7, 9, 3]->[4]<sep>[6, 8, 9, 4, 3, 2, 1, 0, 7, 5]->[6]<sep>[2, 8, 0, 3, 5, 6, 9]->[2]<sep>[4, 0]->[4]<sep>[0, 2, 8, 5, 7, 6]->[0]<sep>[5, 3, 2, 4]->[5]<sep>[7, 8, 0, 5, 1, 2, 3, 9]->[7]<sep>[6, 7, 2, 3, 4, 0, 5, 9, 1, 8]->[6]<sep>[6, 1, 0, 7, 2, 3, 5, 8]->[6]<sep>[6, 1, 5, 8, 0, 9]->[6]<sep>[1, 6, 3, 4, 2, 0, 7, 9, 5, 8]->[1]<sep>[1, 3, 4, 2, 9, 7, 8, 0, 5]->[1]<sep>[4, 2, 7, 8, 5, 1, 9]->[4]<sep>[8, 6, 9, 4, 2]->[8]<sep>[5, 6, 8, 0]->[5]<sep>[2, 1, 4, 6, 0, 9]->[2]<sep>[1, 3, 0]->[1]<sep>[7, 8, 3, 0, 5, 1, 6]->[7]<sep>[3, 4]->[3]<sep>[3, 8]->[3]<sep>[9, 7, 2, 3, 8]->[9]<sep>[3, 2, 1]->[3]<sep>[6, 0, 9, 3, 8, 1, 4, 2, 5]->[6] | c048 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[3, 6, 6, 6, 6, 3] -> [8, 2, 7, 0, 3]
[6] -> [8, 2, 7, 0, 3]
[5, 5, 5, 5, 5, 5, 5, 5, 5, 5] -> [8, 2, 7, 0, 3]
[5, 5, 5, 5, 5] -> [8, 2, 7, 0, 3]
[1, 1, 1, 1, 1, 1] -> [8, 2, 7, 0, 3]
[5, 1, 5, 9, 6, 5, 1] -> [8, 2, 7, 0, 3]
[6, 1, 9, 5, 0, 4] -> [8, 2, 7, 0, 3]
[1, 1, 1, 6, 5, 6, 1, 5] -> [8, 2, 7, 0, 3]
| [4, 6, 1, 1, 4, 6, 6]->[8, 2, 7, 0, 3]<sep>[3, 4]->[8, 2, 7, 0, 3]<sep>[9, 0, 0, 4, 1, 0, 1, 1]->[8, 2, 7, 0, 3]<sep>[9, 9, 9, 9, 9, 9, 9, 9, 9]->[8, 2, 7, 0, 3]<sep>[5, 1, 2, 1, 1]->[8, 2, 7, 0, 3]<sep>[4, 9, 9, 6, 9, 9, 9]->[8, 2, 7, 0, 3]<sep>[8]->[8, 2, 7, 0, 3]<sep>[6, 6, 9]->[8, 2, 7, 0, 3]<sep>[1, 1]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 6, 6, 6, 6, 6]->[8, 2, 7, 0, 3]<sep>[3, 5, 6, 4, 6, 7, 5, 1, 6, 7]->[8, 2, 7, 0, 3]<sep>[9, 6, 4, 6]->[8, 2, 7, 0, 3]<sep>[4, 4, 9, 4, 4, 9, 9, 4, 9]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 4, 4]->[8, 2, 7, 0, 3]<sep>[4, 4, 4]->[8, 2, 7, 0, 3]<sep>[6, 6, 6]->[8, 2, 7, 0, 3]<sep>[9]->[8, 2, 7, 0, 3]<sep>[5, 6, 6, 6]->[8, 2, 7, 0, 3]<sep>[6, 1, 9, 2, 3, 1, 8, 5, 2]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 4, 4, 1, 4, 1, 1]->[8, 2, 7, 0, 3]<sep>[]->[8, 2, 7, 0, 3]<sep>[1, 1, 1, 1]->[8, 2, 7, 0, 3]<sep>[9, 9]->[8, 2, 7, 0, 3]<sep>[9, 5, 9, 0, 9, 5, 9, 5, 5, 5]->[8, 2, 7, 0, 3] | c043 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [8, 2, 7, 0, 3]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[5, 7, 1, 2, 0, 3, 9, 4] -> [9]
[2, 4] -> [4]
[1, 9, 5, 7, 4, 6, 2, 3] -> [9]
[2, 7, 4, 3, 5, 0, 6, 1] -> [7]
[0, 6, 5] -> [6]
[2, 7, 0, 8, 3] -> [8]
[0, 1] -> [1]
[8, 1, 9, 6, 3, 0, 2, 4, 5, 7] -> [9]
| [3, 7, 5, 4, 1, 9]->[9]<sep>[3, 1, 4, 6]->[6]<sep>[1, 4, 9, 2, 7, 3, 8]->[9]<sep>[4, 6, 9, 7]->[9]<sep>[3, 0, 8, 7, 5]->[8]<sep>[1, 0, 5]->[5]<sep>[1, 8, 7, 4, 2, 6]->[8]<sep>[0]->[0]<sep>[8, 7, 4, 6]->[8]<sep>[2, 1]->[2]<sep>[2, 6]->[6]<sep>[9, 2, 4, 7, 6, 3, 5, 0, 8]->[9]<sep>[2, 7, 6, 5, 4, 3, 1]->[7]<sep>[1, 0, 2, 7, 6, 4]->[7]<sep>[4, 5, 2]->[5]<sep>[6, 9, 5, 8, 4, 7, 3, 2, 0]->[9]<sep>[9, 4, 5, 2, 8, 7, 6, 0, 3]->[9]<sep>[0, 3]->[3]<sep>[5, 2, 4, 6, 3]->[6]<sep>[9, 4, 8, 7, 2, 3, 5, 6, 1, 0]->[9]<sep>[4, 8, 1, 2, 3, 7, 0]->[8]<sep>[4, 0, 6, 7]->[7]<sep>[8, 7, 6, 4, 5]->[8]<sep>[4, 9, 7]->[9] | c078 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "maximum element". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[7, 2, 8, 4, 6, 1, 3, 5, 9, 0] -> [8, 2, 7, 4, 6, 3]
[8, 4, 9, 1, 3, 2, 7] -> [9, 4, 8, 4, 3, 7]
[0, 1, 2, 3, 6, 9, 8, 4] -> [2, 1, 0, 4, 6, 8]
[1, 4, 5, 2, 3, 7, 9, 6, 0] -> [5, 4, 1, 4, 3, 9]
[9, 7, 5, 4, 8, 3, 0, 2] -> [5, 7, 9, 4, 8, 0]
[4, 2, 1, 7, 6, 4, 0, 8, 5] -> [1, 2, 4, 4, 6, 0]
[3, 1, 0, 4, 5, 8, 9, 2] -> [0, 1, 3, 4, 5, 9]
[6, 2, 1, 0, 9, 8, 5] -> [1, 2, 6, 4, 9, 5]
| [4, 2, 9, 0, 5, 7, 6]->[9, 2, 4, 4, 5, 6]<sep>[2, 6, 7, 5, 4, 9, 8, 3, 1, 0]->[7, 6, 2, 4, 4, 8]<sep>[0, 8, 9, 2, 3, 1, 6, 4]->[9, 8, 0, 4, 3, 6]<sep>[4, 1, 2, 9, 7, 5, 0, 3, 6, 8]->[2, 1, 4, 4, 7, 0]<sep>[3, 9, 2, 0, 6, 8, 5, 1, 7]->[2, 9, 3, 4, 6, 5]<sep>[9, 0, 7, 2, 4, 5, 3, 1, 6]->[7, 0, 9, 4, 4, 3]<sep>[2, 5, 9, 7, 8, 1, 0, 6, 4, 3]->[9, 5, 2, 4, 8, 0]<sep>[1, 3, 7, 8, 9, 2, 4, 6]->[7, 3, 1, 4, 9, 4]<sep>[3, 8, 4, 6, 1, 5, 7, 0]->[4, 8, 3, 4, 1, 7]<sep>[2, 9, 7, 0, 3, 8, 6, 5, 1]->[7, 9, 2, 4, 3, 6]<sep>[1, 0, 9, 7, 4, 2, 5, 3, 6, 8]->[9, 0, 1, 4, 4, 5]<sep>[2, 1, 7, 8, 4, 0, 5]->[7, 1, 2, 4, 4, 5]<sep>[3, 9, 7, 6, 0, 5, 1]->[7, 9, 3, 4, 0, 1]<sep>[0, 9, 6, 1, 3, 8, 5]->[6, 9, 0, 4, 3, 5]<sep>[8, 3, 7, 0, 4, 2, 5]->[7, 3, 8, 4, 4, 5]<sep>[3, 4, 1, 7, 0, 2, 5, 8, 9, 6]->[1, 4, 3, 4, 0, 5]<sep>[9, 2, 1, 3, 4, 7, 6, 8, 5, 0]->[1, 2, 9, 4, 4, 6]<sep>[3, 6, 8, 7, 1, 9, 4]->[8, 6, 3, 4, 1, 4]<sep>[9, 4, 8, 5, 1, 7, 0, 3, 6, 2]->[8, 4, 9, 4, 1, 0]<sep>[2, 3, 9, 7, 4, 8, 0, 8, 6]->[9, 3, 2, 4, 4, 0]<sep>[0, 7, 9, 3, 1, 5, 8, 2, 6]->[9, 7, 0, 4, 1, 8]<sep>[2, 0, 5, 8, 9, 4, 7, 1]->[5, 0, 2, 4, 9, 7]<sep>[5, 4, 7, 2, 9, 3, 8, 1]->[7, 4, 5, 4, 9, 8]<sep>[8, 7, 9, 3, 2, 6, 4, 5, 1]->[9, 7, 8, 4, 2, 4] | c060 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 3, 2, 1, the number 4, then elements 5 and 7, in that order". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[2, 8, 7, 0, 6, 5, 3, 4, 1] -> [1, 4, 3, 5, 6, 0, 7, 8, 2]
[9, 1, 2, 8, 0] -> [0, 8, 2, 1, 9]
[5, 3, 0, 7, 4, 6, 2, 9] -> [9, 2, 6, 4, 7, 0, 3, 5]
[1, 0, 7, 3, 9, 2] -> [2, 9, 3, 7, 0, 1]
[4, 0, 9] -> [9, 0, 4]
[4, 2] -> [2, 4]
[3, 6, 1, 7, 0, 4] -> [4, 0, 7, 1, 6, 3]
[1, 8, 0, 7, 5] -> [5, 7, 0, 8, 1]
| [9, 3, 5, 1, 6, 2, 4]->[4, 2, 6, 1, 5, 3, 9]<sep>[1, 8]->[8, 1]<sep>[7, 9]->[9, 7]<sep>[6, 4, 0]->[0, 4, 6]<sep>[2, 7, 8]->[8, 7, 2]<sep>[5, 4, 2, 7]->[7, 2, 4, 5]<sep>[0, 6, 4, 9, 8, 2, 7, 3, 5, 1]->[1, 5, 3, 7, 2, 8, 9, 4, 6, 0]<sep>[6, 5, 8]->[8, 5, 6]<sep>[7, 8, 4, 9, 6, 0, 5]->[5, 0, 6, 9, 4, 8, 7]<sep>[2, 1, 9, 6, 3, 5, 4, 8]->[8, 4, 5, 3, 6, 9, 1, 2]<sep>[1, 5, 6, 2, 8, 3, 7]->[7, 3, 8, 2, 6, 5, 1]<sep>[8, 1]->[1, 8]<sep>[6, 0, 3, 5, 9, 7, 4, 1, 2, 8]->[8, 2, 1, 4, 7, 9, 5, 3, 0, 6]<sep>[4, 8, 1, 3]->[3, 1, 8, 4]<sep>[9, 4, 5, 3, 2, 8, 7, 6, 0]->[0, 6, 7, 8, 2, 3, 5, 4, 9]<sep>[2, 6, 5, 7, 8, 0, 4, 3, 1, 9]->[9, 1, 3, 4, 0, 8, 7, 5, 6, 2]<sep>[8, 9, 1, 0, 6, 3]->[3, 6, 0, 1, 9, 8]<sep>[9, 3, 6, 8]->[8, 6, 3, 9]<sep>[5, 9, 0, 6]->[6, 0, 9, 5]<sep>[9]->[9]<sep>[7, 6, 3, 0, 4, 1, 5, 2]->[2, 5, 1, 4, 0, 3, 6, 7]<sep>[7, 3, 5, 8, 0, 9, 1, 4, 2]->[2, 4, 1, 9, 0, 8, 5, 3, 7]<sep>[5, 7, 6, 2, 3]->[3, 2, 6, 7, 5]<sep>[]->[] | c080 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements in reverse order". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8, 5, 9, 3, 1, 6, 0, 7, 4, 2] -> [8, 5, 9, 3, 1, 6]
[0, 4, 6] -> [0, 4, 6]
[4, 8, 2, 3, 6] -> [4, 8, 2, 3, 6]
[1, 0, 7, 3, 4, 2, 8, 9, 6, 5] -> [1, 0, 7, 3, 4, 2]
[1] -> [1]
[6, 4, 2, 1, 0, 7, 3, 5, 9] -> [6, 4, 2, 1, 0, 7]
[1, 5, 6, 9, 0, 4, 8, 2, 3] -> [1, 5, 6, 9, 0, 4]
[0, 6, 1, 3, 8, 9, 7] -> [0, 6, 1, 3, 8, 9]
| [2, 9, 4]->[2, 9, 4]<sep>[5, 8, 7, 1, 0, 6, 2, 4, 9]->[5, 8, 7, 1, 0, 6]<sep>[5, 3, 7, 9]->[5, 3, 7, 9]<sep>[6, 1, 7, 4, 9, 8, 0, 5, 3, 2]->[6, 1, 7, 4, 9, 8]<sep>[5, 7, 2, 3, 8, 6, 0, 9, 1, 4]->[5, 7, 2, 3, 8, 6]<sep>[6, 5, 9, 2, 1, 8, 7, 0]->[6, 5, 9, 2, 1, 8]<sep>[5, 2, 7, 9, 1, 3, 0]->[5, 2, 7, 9, 1, 3]<sep>[6, 2]->[6, 2]<sep>[3, 8, 7, 9, 2, 0, 4, 5]->[3, 8, 7, 9, 2, 0]<sep>[0, 9, 8, 4, 5, 2, 1, 6, 7]->[0, 9, 8, 4, 5, 2]<sep>[2, 5]->[2, 5]<sep>[3, 0, 6, 4]->[3, 0, 6, 4]<sep>[8, 3, 9, 0, 5, 1, 2]->[8, 3, 9, 0, 5, 1]<sep>[8, 5, 1, 4, 0]->[8, 5, 1, 4, 0]<sep>[0, 2, 4, 3, 7, 8, 1]->[0, 2, 4, 3, 7, 8]<sep>[]->[]<sep>[8, 0, 3, 9, 6, 4]->[8, 0, 3, 9, 6, 4]<sep>[3, 4]->[3, 4]<sep>[7]->[7]<sep>[2, 7, 4, 1, 5, 6, 0, 8]->[2, 7, 4, 1, 5, 6]<sep>[9, 1, 5, 7, 2]->[9, 1, 5, 7, 2]<sep>[8, 3, 6, 1]->[8, 3, 6, 1]<sep>[7, 9, 0]->[7, 9, 0]<sep>[7, 8, 1, 3, 4, 5, 2, 6]->[7, 8, 1, 3, 4, 5] | c008 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the first 6 elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 9] -> [0, 9, 7, 3, 8, 4, 3]
[4, 6, 9, 0, 5] -> [4, 6, 9, 0, 5, 7, 3, 8, 4, 3]
[9, 5, 7, 0, 1, 6, 2, 4, 8, 3] -> [9, 5, 7, 0, 1, 6, 2, 4, 8, 3, 7, 3, 8, 4, 3]
[2, 7] -> [2, 7, 7, 3, 8, 4, 3]
[4, 8, 1, 9, 3, 0, 2, 5, 6, 7] -> [4, 8, 1, 9, 3, 0, 2, 5, 6, 7, 7, 3, 8, 4, 3]
[2] -> [2, 7, 3, 8, 4, 3]
[1, 6, 7, 5, 2, 0] -> [1, 6, 7, 5, 2, 0, 7, 3, 8, 4, 3]
[3, 7, 1, 2, 6, 9, 0, 4, 8, 5] -> [3, 7, 1, 2, 6, 9, 0, 4, 8, 5, 7, 3, 8, 4, 3]
| [6, 2, 8, 7, 0, 9, 1, 5]->[6, 2, 8, 7, 0, 9, 1, 5, 7, 3, 8, 4, 3]<sep>[9, 0, 7]->[9, 0, 7, 7, 3, 8, 4, 3]<sep>[9, 6, 5, 1, 7, 8, 4, 2, 0]->[9, 6, 5, 1, 7, 8, 4, 2, 0, 7, 3, 8, 4, 3]<sep>[6, 0, 7, 4, 1]->[6, 0, 7, 4, 1, 7, 3, 8, 4, 3]<sep>[5, 4, 1, 7, 8, 2]->[5, 4, 1, 7, 8, 2, 7, 3, 8, 4, 3]<sep>[0, 2, 9, 4, 1, 7, 6, 8]->[0, 2, 9, 4, 1, 7, 6, 8, 7, 3, 8, 4, 3]<sep>[9, 5, 1, 6]->[9, 5, 1, 6, 7, 3, 8, 4, 3]<sep>[0, 1, 2]->[0, 1, 2, 7, 3, 8, 4, 3]<sep>[]->[7, 3, 8, 4, 3]<sep>[7, 1, 9, 5, 6, 2, 3]->[7, 1, 9, 5, 6, 2, 3, 7, 3, 8, 4, 3]<sep>[9]->[9, 7, 3, 8, 4, 3]<sep>[6]->[6, 7, 3, 8, 4, 3]<sep>[8, 9, 5, 1]->[8, 9, 5, 1, 7, 3, 8, 4, 3]<sep>[2, 1, 4, 6]->[2, 1, 4, 6, 7, 3, 8, 4, 3]<sep>[6, 1, 9, 0, 4, 7, 8, 5, 2]->[6, 1, 9, 0, 4, 7, 8, 5, 2, 7, 3, 8, 4, 3]<sep>[1, 6, 0, 4, 7, 8, 3, 2, 9]->[1, 6, 0, 4, 7, 8, 3, 2, 9, 7, 3, 8, 4, 3]<sep>[9, 3, 0, 1, 6, 8, 4, 2]->[9, 3, 0, 1, 6, 8, 4, 2, 7, 3, 8, 4, 3]<sep>[5, 1]->[5, 1, 7, 3, 8, 4, 3]<sep>[4, 0, 6, 5, 8, 9, 1]->[4, 0, 6, 5, 8, 9, 1, 7, 3, 8, 4, 3]<sep>[4, 6, 5, 8, 9, 0, 2]->[4, 6, 5, 8, 9, 0, 2, 7, 3, 8, 4, 3]<sep>[2, 9, 3, 0, 4, 5, 6]->[2, 9, 3, 0, 4, 5, 6, 7, 3, 8, 4, 3]<sep>[9, 4, 2, 6, 1]->[9, 4, 2, 6, 1, 7, 3, 8, 4, 3]<sep>[9, 7, 0, 2, 4, 6]->[9, 7, 0, 2, 4, 6, 7, 3, 8, 4, 3]<sep>[6, 2, 9]->[6, 2, 9, 7, 3, 8, 4, 3] | c068 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate input and [7, 3, 8, 4, 3]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[3, 6, 0] -> [9]
[8, 1] -> [9]
[0, 8] -> [8]
[0, 1, 3] -> [4]
[5, 2] -> [7]
[1, 7] -> [8]
[2, 4, 3] -> [9]
[2, 0] -> [2]
| [1, 5]->[6]<sep>[2, 5]->[7]<sep>[2, 4, 1]->[7]<sep>[4, 0, 3, 2]->[9]<sep>[0, 1]->[1]<sep>[0, 4, 1]->[5]<sep>[1, 0, 6]->[7]<sep>[5, 3]->[8]<sep>[7]->[7]<sep>[3, 0]->[3]<sep>[4]->[4]<sep>[6]->[6]<sep>[5, 1, 2]->[8]<sep>[2, 5, 1]->[8]<sep>[]->[0]<sep>[0, 6]->[6]<sep>[3, 2]->[5]<sep>[0, 7]->[7]<sep>[4, 5]->[9]<sep>[6, 2]->[8]<sep>[0, 9]->[9]<sep>[1, 8]->[9]<sep>[3, 4]->[7]<sep>[8]->[8] | c079 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "sum of elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8, 4, 5, 0, 3, 6, 9, 1] -> [8, 4, 5, 0, 3, 6, 9, 1]
[7, 4, 2, 3] -> [7, 4, 2, 3]
[0, 9, 5] -> [0, 9, 5]
[5, 3, 7, 6, 0, 9, 2, 1, 8] -> [5, 3, 7, 6, 0, 9, 2, 1, 8]
[0, 3, 4, 6, 1, 8, 9, 7, 2] -> [0, 3, 4, 6, 1, 8, 9, 7, 2]
[3, 5, 8, 4, 1, 0, 2, 7] -> [3, 5, 8, 4, 1, 0, 2, 7]
[9, 1, 8, 4, 2] -> [9, 1, 8, 4, 2]
[7] -> [7]
| [5, 7, 4, 1, 0, 6, 2, 8, 9, 3]->[5, 7, 4, 1, 0, 6, 2, 8, 9, 3]<sep>[5, 2, 3, 7, 0, 8]->[5, 2, 3, 7, 0, 8]<sep>[4, 0, 6, 5, 2, 9, 7]->[4, 0, 6, 5, 2, 9, 7]<sep>[9, 7, 1, 4, 8, 3, 6, 2]->[9, 7, 1, 4, 8, 3, 6, 2]<sep>[4, 5, 2, 6, 9, 3, 7, 1, 0, 8]->[4, 5, 2, 6, 9, 3, 7, 1, 0, 8]<sep>[5, 6, 9, 0, 1, 8, 7]->[5, 6, 9, 0, 1, 8, 7]<sep>[]->[]<sep>[5, 8, 0, 4, 7, 6, 1, 2, 3, 9]->[5, 8, 0, 4, 7, 6, 1, 2, 3, 9]<sep>[7, 3, 8, 0, 1]->[7, 3, 8, 0, 1]<sep>[8, 4, 5, 3]->[8, 4, 5, 3]<sep>[0, 6]->[0, 6]<sep>[3]->[3]<sep>[2, 8]->[2, 8]<sep>[2, 6, 0, 5, 4, 1]->[2, 6, 0, 5, 4, 1]<sep>[4, 2, 3]->[4, 2, 3]<sep>[6, 1]->[6, 1]<sep>[4, 9, 7, 6, 3, 0]->[4, 9, 7, 6, 3, 0]<sep>[9, 5, 0]->[9, 5, 0]<sep>[6]->[6]<sep>[9, 5, 3, 1]->[9, 5, 3, 1]<sep>[5, 4, 9, 0, 3, 8, 1]->[5, 4, 9, 0, 3, 8, 1]<sep>[7, 9, 4, 2, 6, 5, 3]->[7, 9, 4, 2, 6, 5, 3]<sep>[9, 8, 1, 5, 6, 4, 2, 7, 0]->[9, 8, 1, 5, 6, 4, 2, 7, 0]<sep>[1, 7, 6, 8, 2]->[1, 7, 6, 8, 2] | c045 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the input". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[6, 7, 4, 2, 9, 0, 8] -> [6, 7, 2, 9, 0, 8]
[3, 6, 0, 1, 5, 7, 4, 2] -> [3, 6, 1, 5, 7, 4, 2]
[9, 9, 3, 9, 5, 5] -> [9, 3, 9, 5, 5]
[9, 3, 0, 1, 2, 6, 8, 7] -> [9, 3, 1, 2, 6, 8, 7]
[1, 9, 8, 4, 6, 2, 0, 3, 7, 5] -> [1, 9, 4, 6, 2, 0, 3, 7, 5]
[9, 9, 6, 8, 2, 4, 1, 0] -> [9, 6, 8, 2, 4, 1, 0]
[9, 0, 3, 8, 1, 4, 2] -> [9, 0, 8, 1, 4, 2]
[3, 9, 8, 1, 2, 4, 6, 0, 7, 5] -> [3, 9, 1, 2, 4, 6, 0, 7, 5]
| [9, 5, 2, 1, 3, 0, 7, 6, 4]->[9, 5, 1, 3, 0, 7, 6, 4]<sep>[3, 3, 9, 3]->[3, 9, 3]<sep>[5, 5, 3]->[5, 3]<sep>[8, 7, 4, 9, 1]->[8, 7, 9, 1]<sep>[7, 7, 3, 1, 1, 1, 3, 9]->[7, 3, 1, 1, 1, 3, 9]<sep>[1, 2, 9, 5, 0, 4, 8, 6, 7, 3]->[1, 2, 5, 0, 4, 8, 6, 7, 3]<sep>[4, 9, 3, 0]->[4, 9, 0]<sep>[1, 1, 0, 7, 3, 2, 5, 9, 4, 6]->[1, 0, 7, 3, 2, 5, 9, 4, 6]<sep>[0, 0, 3, 5, 1]->[0, 3, 5, 1]<sep>[5, 5, 7, 3, 7, 6, 3]->[5, 7, 3, 7, 6, 3]<sep>[8, 8, 6, 4]->[8, 6, 4]<sep>[3, 3, 7, 9, 6]->[3, 7, 9, 6]<sep>[6, 2, 5, 8, 3, 4, 9, 7]->[6, 2, 8, 3, 4, 9, 7]<sep>[3, 5, 9, 6, 1, 8, 2, 4]->[3, 5, 6, 1, 8, 2, 4]<sep>[8, 8, 6]->[8, 6]<sep>[4, 3, 0, 7, 5, 1]->[4, 3, 7, 5, 1]<sep>[2, 2, 6]->[2, 6]<sep>[0, 9, 2, 5, 1, 6, 4]->[0, 9, 5, 1, 6, 4]<sep>[5, 8, 9, 6, 2, 0]->[5, 8, 6, 2, 0]<sep>[6, 6, 7]->[6, 7]<sep>[0, 0, 4, 6, 1, 7, 8, 5, 9]->[0, 4, 6, 1, 7, 8, 5, 9]<sep>[5, 5, 3, 8]->[5, 3, 8]<sep>[4, 1, 0, 3, 5, 9, 2, 6, 8]->[4, 1, 3, 5, 9, 2, 6, 8]<sep>[4, 4, 3, 9, 0]->[4, 3, 9, 0] | c027 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2 if element 1 = element 2, else remove element 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 5, 1, 0] -> [0, 1, 5, 0]
[7, 5, 7, 7, 4, 2, 8] -> [7, 7, 5, 7, 4, 2, 8]
[0, 7, 5, 0, 8, 5, 0, 1, 9, 7] -> [0, 5, 7, 0, 8, 5, 0, 1, 9, 7]
[4, 9, 9, 9, 4, 4, 6, 9] -> [9, 9, 9, 4, 4, 4, 6, 9]
[1, 1, 9, 1, 8, 7] -> [1, 9, 1, 1, 8, 7]
[3, 1, 1, 6] -> [6, 1, 1, 3]
[3, 4, 4, 0, 5, 9, 9, 7, 5] -> [0, 4, 4, 3, 5, 9, 9, 7, 5]
[2, 5, 1, 2, 8, 6] -> [2, 1, 5, 2, 8, 6]
| [1, 5, 5, 5]->[5, 5, 5, 1]<sep>[7, 9, 9, 1, 4, 6, 5, 2, 2]->[1, 9, 9, 7, 4, 6, 5, 2, 2]<sep>[0, 2, 2, 2, 2, 7, 5]->[2, 2, 2, 0, 2, 7, 5]<sep>[8, 0, 0, 6, 6, 2]->[6, 0, 0, 8, 6, 2]<sep>[0, 6, 5, 0, 2, 1, 0, 7, 4, 7]->[0, 5, 6, 0, 2, 1, 0, 7, 4, 7]<sep>[6, 8, 8, 2, 1, 0]->[2, 8, 8, 6, 1, 0]<sep>[6, 3, 3, 2, 0]->[2, 3, 3, 6, 0]<sep>[1, 3, 5, 1, 3]->[1, 5, 3, 1, 3]<sep>[4, 8, 8, 7, 9]->[7, 8, 8, 4, 9]<sep>[1, 1, 8, 1]->[1, 8, 1, 1]<sep>[1, 3, 4, 1, 3, 6]->[1, 4, 3, 1, 3, 6]<sep>[0, 3, 0, 0]->[0, 0, 3, 0]<sep>[0, 6, 6, 8, 8]->[8, 6, 6, 0, 8]<sep>[8, 9, 0, 8, 1, 5, 1, 2, 2]->[8, 0, 9, 8, 1, 5, 1, 2, 2]<sep>[0, 7, 7, 2, 6, 1]->[2, 7, 7, 0, 6, 1]<sep>[5, 1, 8, 5, 9, 3, 0]->[5, 8, 1, 5, 9, 3, 0]<sep>[8, 8, 0, 8, 5]->[8, 0, 8, 8, 5]<sep>[4, 4, 6, 4, 1, 2, 6, 9]->[4, 6, 4, 4, 1, 2, 6, 9]<sep>[4, 2, 2, 9, 2, 0, 5]->[9, 2, 2, 4, 2, 0, 5]<sep>[1, 4, 6, 1, 0, 5, 2, 8, 9, 3]->[1, 6, 4, 1, 0, 5, 2, 8, 9, 3]<sep>[7, 6, 2, 7]->[7, 2, 6, 7]<sep>[4, 6, 6, 6, 3, 3, 4, 6]->[6, 6, 6, 4, 3, 3, 4, 6]<sep>[6, 0, 0, 1, 4, 4, 9, 5]->[1, 0, 0, 6, 4, 4, 9, 5]<sep>[8, 8, 8, 7, 3]->[7, 8, 8, 8, 3] | c035 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 1 and 4 if element 2 = element 3, else swap elements 2 and 3". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 8, 3, 5, 4] -> [0, 0, 0, 0, 0, 0, 8, 3, 5, 4]
[4, 0, 6, 5, 3, 8, 9, 1, 7, 2] -> [4, 4, 4, 4, 4, 4, 0, 6, 5, 3, 8, 9, 1, 7, 2]
[9, 4] -> [9, 9, 9, 9, 9, 9, 4]
[0] -> [0, 0, 0, 0, 0, 0]
[1, 6, 5, 2, 3, 7, 8, 4] -> [1, 1, 1, 1, 1, 1, 6, 5, 2, 3, 7, 8, 4]
[5] -> [5, 5, 5, 5, 5, 5]
[5, 6, 9, 2, 4] -> [5, 5, 5, 5, 5, 5, 6, 9, 2, 4]
[7, 4, 1] -> [7, 7, 7, 7, 7, 7, 4, 1]
| [9, 7, 8, 0]->[9, 9, 9, 9, 9, 9, 7, 8, 0]<sep>[5, 9]->[5, 5, 5, 5, 5, 5, 9]<sep>[6, 0, 8, 1, 3, 2]->[6, 6, 6, 6, 6, 6, 0, 8, 1, 3, 2]<sep>[2, 1, 0, 5, 6, 7, 3, 8, 9]->[2, 2, 2, 2, 2, 2, 1, 0, 5, 6, 7, 3, 8, 9]<sep>[2, 7, 4, 3]->[2, 2, 2, 2, 2, 2, 7, 4, 3]<sep>[7, 9, 1, 6, 2, 3, 4]->[7, 7, 7, 7, 7, 7, 9, 1, 6, 2, 3, 4]<sep>[3, 6, 8, 9, 2, 0, 1, 5, 4, 7]->[3, 3, 3, 3, 3, 3, 6, 8, 9, 2, 0, 1, 5, 4, 7]<sep>[7, 1, 9, 0, 6, 4, 2, 8]->[7, 7, 7, 7, 7, 7, 1, 9, 0, 6, 4, 2, 8]<sep>[3, 0, 9, 4, 2, 1, 6, 8, 5]->[3, 3, 3, 3, 3, 3, 0, 9, 4, 2, 1, 6, 8, 5]<sep>[5, 0, 8, 3, 7, 1, 6, 9, 4]->[5, 5, 5, 5, 5, 5, 0, 8, 3, 7, 1, 6, 9, 4]<sep>[1, 9, 0, 3, 4, 7, 8, 6]->[1, 1, 1, 1, 1, 1, 9, 0, 3, 4, 7, 8, 6]<sep>[1, 3, 0, 6]->[1, 1, 1, 1, 1, 1, 3, 0, 6]<sep>[6, 8, 4]->[6, 6, 6, 6, 6, 6, 8, 4]<sep>[9, 6, 1, 0, 5, 7, 2, 8, 4, 3]->[9, 9, 9, 9, 9, 9, 6, 1, 0, 5, 7, 2, 8, 4, 3]<sep>[5, 8, 7, 0, 4, 2]->[5, 5, 5, 5, 5, 5, 8, 7, 0, 4, 2]<sep>[1, 8, 2]->[1, 1, 1, 1, 1, 1, 8, 2]<sep>[6]->[6, 6, 6, 6, 6, 6]<sep>[4, 5]->[4, 4, 4, 4, 4, 4, 5]<sep>[8, 2, 0, 3, 7]->[8, 8, 8, 8, 8, 8, 2, 0, 3, 7]<sep>[8, 6, 2, 1, 3, 9, 4]->[8, 8, 8, 8, 8, 8, 6, 2, 1, 3, 9, 4]<sep>[0, 1, 9, 4, 3, 8]->[0, 0, 0, 0, 0, 0, 1, 9, 4, 3, 8]<sep>[2, 0, 6, 4, 3, 1, 7]->[2, 2, 2, 2, 2, 2, 0, 6, 4, 3, 1, 7]<sep>[3, 5, 7, 2, 0, 8, 6]->[3, 3, 3, 3, 3, 3, 5, 7, 2, 0, 8, 6]<sep>[9, 4, 2, 7, 5, 0, 6, 8, 1, 3]->[9, 9, 9, 9, 9, 9, 4, 2, 7, 5, 0, 6, 8, 1, 3] | c051 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend element 1 five times". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8] -> []
[2, 3, 1, 0, 8, 5, 6, 7, 9] -> [7, 9]
[8, 3, 2, 1, 9, 5, 4, 6, 0, 7] -> [6, 0, 7]
[1, 9, 5, 3] -> []
[1] -> []
[1, 8, 4, 9, 0, 6, 7, 3] -> [3]
[2, 4, 8, 9, 7, 3, 0, 6, 5] -> [6, 5]
[8, 7, 2, 9, 0, 5, 3, 6] -> [6]
| [1, 2, 7]->[]<sep>[6, 8, 1, 4, 5]->[]<sep>[6, 5, 3, 9, 7, 8, 2]->[]<sep>[8, 7, 4, 6, 2, 5, 1, 9, 0, 3]->[9, 0, 3]<sep>[1, 5]->[]<sep>[1, 5, 2, 8, 4, 3, 6, 9]->[9]<sep>[3, 4]->[]<sep>[2, 4, 0, 7]->[]<sep>[9, 7, 6, 0, 4, 5]->[]<sep>[2, 4, 9, 5, 6, 0, 3, 8, 1]->[8, 1]<sep>[8, 5, 3, 2, 1, 6, 7, 9, 4]->[9, 4]<sep>[5, 8, 2, 0, 6, 3, 9, 1, 7, 4]->[1, 7, 4]<sep>[7, 6, 2, 1, 5, 8, 4, 9, 3]->[9, 3]<sep>[4, 3, 9, 1, 5, 6, 0, 2, 8, 7]->[2, 8, 7]<sep>[4, 2, 3, 9, 8, 0]->[]<sep>[0, 4, 1, 5, 9, 2, 6, 8]->[8]<sep>[5, 9, 2, 0, 8, 3, 1]->[]<sep>[4, 8, 3]->[]<sep>[7, 3, 9, 5, 1, 6, 4, 2, 8, 0]->[2, 8, 0]<sep>[3, 0, 9, 6, 1, 5, 7, 2]->[2]<sep>[7, 3, 5, 6, 2]->[]<sep>[5, 6, 3, 7, 4, 1, 0, 2, 9]->[2, 9]<sep>[4, 0, 7, 3, 2, 9, 1, 5]->[5]<sep>[8, 9, 1, 0, 6, 2, 5, 7, 3, 4]->[7, 3, 4] | c058 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first 7 elements". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[9, 3, 8, 0, 7, 6, 4, 2] -> [9, 5, 3, 8, 0, 7, 6, 4, 2]
[4, 1, 2, 0, 6, 9] -> [4, 5, 1, 2, 0, 6, 9]
[6, 2, 8, 5, 1, 9, 7, 3, 4] -> [6, 5, 2, 8, 5, 1, 9, 7, 3, 4]
[6, 2] -> [6, 8, 2]
[7, 9, 2, 1, 4, 3, 8, 6, 0] -> [7, 5, 9, 2, 1, 4, 3, 8, 6, 0]
[6, 2, 4, 3] -> [6, 8, 2, 4, 3]
[0, 7, 1, 5, 4] -> [0, 5, 7, 1, 5, 4]
[4, 8, 9, 5, 1, 7, 6, 3, 0, 2] -> [4, 5, 8, 9, 5, 1, 7, 6, 3, 0, 2]
| [9, 8]->[9, 8, 8]<sep>[6, 4, 3, 0]->[6, 8, 4, 3, 0]<sep>[1, 2, 4, 3, 7]->[1, 5, 2, 4, 3, 7]<sep>[9, 7, 8]->[9, 8, 7, 8]<sep>[3, 5, 0, 2, 8, 7, 9]->[3, 5, 5, 0, 2, 8, 7, 9]<sep>[8, 7, 0, 6]->[8, 8, 7, 0, 6]<sep>[9, 6, 1, 7, 4, 8, 2, 3]->[9, 5, 6, 1, 7, 4, 8, 2, 3]<sep>[2, 0, 9]->[2, 8, 0, 9]<sep>[3, 8, 1, 4, 9, 0]->[3, 5, 8, 1, 4, 9, 0]<sep>[9, 1, 7, 5, 8, 2, 3, 0, 4]->[9, 5, 1, 7, 5, 8, 2, 3, 0, 4]<sep>[1, 9, 6, 5, 0, 3, 8, 4, 7, 2]->[1, 5, 9, 6, 5, 0, 3, 8, 4, 7, 2]<sep>[6, 1, 9, 0, 2, 4, 3]->[6, 5, 1, 9, 0, 2, 4, 3]<sep>[2, 3, 1, 7, 0, 6, 4, 9, 8, 5]->[2, 5, 3, 1, 7, 0, 6, 4, 9, 8, 5]<sep>[7, 4, 6, 8, 0, 1, 3]->[7, 5, 4, 6, 8, 0, 1, 3]<sep>[1, 8, 6]->[1, 8, 8, 6]<sep>[6, 4]->[6, 8, 4]<sep>[9, 3, 5, 8, 0, 2, 4, 1]->[9, 5, 3, 5, 8, 0, 2, 4, 1]<sep>[8, 3, 2, 0, 9, 7]->[8, 5, 3, 2, 0, 9, 7]<sep>[3, 5, 2, 9, 1]->[3, 5, 5, 2, 9, 1]<sep>[0, 8, 4, 1, 5, 2, 9, 7]->[0, 5, 8, 4, 1, 5, 2, 9, 7]<sep>[1, 2, 6, 0, 9, 3]->[1, 5, 2, 6, 0, 9, 3]<sep>[3, 8, 1, 5, 7, 4, 9]->[3, 5, 8, 1, 5, 7, 4, 9]<sep>[6, 2, 4]->[6, 8, 2, 4]<sep>[7, 9, 5, 3, 6, 0, 4, 2, 8]->[7, 5, 9, 5, 3, 6, 0, 4, 2, 8] | c023 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert as element 2: 8 if the list length > 5 else 5". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[0, 5, 6] -> [1, 7, 9]
[1, 3] -> [2, 5]
[0, 1] -> [1, 3]
[8, 0, 6, 1] -> [9, 2, 9, 5]
[7] -> [8]
[5, 2, 6, 4] -> [6, 4, 9, 8]
[6, 0, 3, 1] -> [7, 2, 6, 5]
[5, 7, 6, 0, 2, 3] -> [6, 9, 9, 4, 7, 9]
| [0, 4]->[1, 6]<sep>[2, 6, 5, 1, 4]->[3, 8, 8, 5, 9]<sep>[6, 7, 5, 3, 1, 0]->[7, 9, 8, 7, 6, 6]<sep>[5, 4]->[6, 6]<sep>[6, 2, 5, 1, 0]->[7, 4, 8, 5, 5]<sep>[1, 5]->[2, 7]<sep>[7, 3, 4, 2]->[8, 5, 7, 6]<sep>[1]->[2]<sep>[0]->[1]<sep>[2, 7, 4, 1, 3]->[3, 9, 7, 5, 8]<sep>[0, 7, 5]->[1, 9, 8]<sep>[8]->[9]<sep>[8, 6, 0, 4, 2]->[9, 8, 3, 8, 7]<sep>[7, 3, 2, 4, 1]->[8, 5, 5, 8, 6]<sep>[3]->[4]<sep>[7, 5, 4]->[8, 7, 7]<sep>[1, 2, 5, 3]->[2, 4, 8, 7]<sep>[3, 0, 2]->[4, 2, 5]<sep>[6, 4, 3, 0, 2]->[7, 6, 6, 4, 7]<sep>[]->[]<sep>[1, 7]->[2, 9]<sep>[2]->[3]<sep>[1, 2, 0]->[2, 4, 3]<sep>[7, 1, 4]->[8, 3, 7] | c073 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "add the index to every element". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[1, 7, 8] -> [5, 2]
[1, 8, 7, 7, 8] -> [5, 2]
[4, 0, 1, 4, 0, 6, 0, 9, 6, 6] -> [5, 2]
[3, 7, 0, 7, 7, 0] -> [5, 2]
[0, 8, 4, 8] -> [5, 2]
[6, 3, 7, 7, 4, 6] -> [5, 2]
[3, 4, 4, 1, 1, 3, 3, 4, 1, 3] -> [5, 2]
[3, 8] -> [5, 2]
| [6]->[5, 2]<sep>[6, 6]->[5, 2]<sep>[1, 1, 1, 1, 1, 1]->[5, 2]<sep>[7, 7, 7]->[5, 2]<sep>[]->[5, 2]<sep>[8, 6, 6, 8, 6, 9, 0, 6, 1]->[5, 2]<sep>[0, 4, 4, 4, 4, 0, 4, 0]->[5, 2]<sep>[9, 8, 7, 4, 1, 6, 0]->[5, 2]<sep>[9, 0, 0, 0, 9]->[5, 2]<sep>[4, 4, 4]->[5, 2]<sep>[9, 4, 7, 1, 5, 7, 7, 6, 0]->[5, 2]<sep>[9, 4, 9, 9, 9, 4, 9, 9]->[5, 2]<sep>[0, 9, 0, 7, 7]->[5, 2]<sep>[7]->[5, 2]<sep>[7, 6, 4, 3, 9, 3, 3, 9, 4]->[5, 2]<sep>[3, 0]->[5, 2]<sep>[1, 1, 1, 1, 7, 7, 7]->[5, 2]<sep>[4, 6, 3, 0]->[5, 2]<sep>[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]->[5, 2]<sep>[0, 8, 0, 8, 8, 8, 8, 0]->[5, 2]<sep>[9]->[5, 2]<sep>[9, 8, 8, 6, 8, 6, 9, 8, 8, 6]->[5, 2]<sep>[1, 9, 9, 8, 8, 8, 9]->[5, 2]<sep>[6, 6, 1, 8]->[5, 2] | c042 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [5, 2]". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[8, 2, 7, 3, 6, 5, 1, 9] -> [2, 7, 3, 6, 5, 1, 9, 8]
[5, 3] -> [3, 5]
[4, 1, 9, 0] -> [1, 9, 0, 4]
[2, 8, 6, 9, 1] -> [8, 6, 9, 1, 2]
[7] -> [7]
[6, 3, 4] -> [3, 4, 6]
[1, 2, 6, 3, 5, 8, 0, 7, 4] -> [2, 6, 3, 5, 8, 0, 7, 4, 1]
[8, 4, 5, 0] -> [4, 5, 0, 8]
| [8, 0]->[0, 8]<sep>[5, 4, 1]->[4, 1, 5]<sep>[3, 6, 7, 0, 2, 8, 9, 5, 4]->[6, 7, 0, 2, 8, 9, 5, 4, 3]<sep>[3, 7, 2, 9, 1, 8, 4]->[7, 2, 9, 1, 8, 4, 3]<sep>[1, 6, 0, 9, 8, 2, 4, 3, 7, 5]->[6, 0, 9, 8, 2, 4, 3, 7, 5, 1]<sep>[4, 0, 7, 5, 2, 8, 1, 6]->[0, 7, 5, 2, 8, 1, 6, 4]<sep>[6, 7, 0, 8, 1, 3]->[7, 0, 8, 1, 3, 6]<sep>[5, 7, 8, 2]->[7, 8, 2, 5]<sep>[7, 1]->[1, 7]<sep>[0, 9, 2, 5]->[9, 2, 5, 0]<sep>[9, 5, 4]->[5, 4, 9]<sep>[3, 8, 9]->[8, 9, 3]<sep>[6, 0, 3, 9, 1, 7]->[0, 3, 9, 1, 7, 6]<sep>[7, 4, 1, 3, 2, 6, 0, 5]->[4, 1, 3, 2, 6, 0, 5, 7]<sep>[6, 4, 7, 3, 0, 1, 2]->[4, 7, 3, 0, 1, 2, 6]<sep>[1, 4, 0, 7, 3, 2, 5, 8, 6, 9]->[4, 0, 7, 3, 2, 5, 8, 6, 9, 1]<sep>[7, 8, 6, 5, 3, 4, 9, 0]->[8, 6, 5, 3, 4, 9, 0, 7]<sep>[1, 3, 5, 2, 9]->[3, 5, 2, 9, 1]<sep>[2, 8]->[8, 2]<sep>[6, 9, 3, 4, 2, 0, 1]->[9, 3, 4, 2, 0, 1, 6]<sep>[6, 4, 2, 8, 1, 5, 9, 0, 7]->[4, 2, 8, 1, 5, 9, 0, 7, 6]<sep>[6, 7, 5, 4, 3, 9]->[7, 5, 4, 3, 9, 6]<sep>[8, 2, 0, 9, 6]->[2, 0, 9, 6, 8]<sep>[9, 0, 7, 5, 2, 6, 1, 8, 4, 3]->[0, 7, 5, 2, 6, 1, 8, 4, 3, 9] | c066 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "left-rotate by 1". | P1 |
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise.
Examples:
[6, 0, 3] -> [6, 5, 0, 3]
[1, 4] -> [1, 5, 4]
[5, 6, 3, 9, 2, 0] -> [5, 5, 6, 3, 9, 2, 0]
[6, 8, 9, 0, 5, 3, 2, 4, 7, 1] -> [6, 5, 8, 9, 0, 5, 3, 2, 4, 7, 1]
[7, 2, 4, 8, 9, 3, 5, 1, 6, 0] -> [7, 5, 2, 4, 8, 9, 3, 5, 1, 6, 0]
[1, 7, 3, 0] -> [1, 5, 7, 3, 0]
[1, 7, 6, 8, 4] -> [1, 5, 7, 6, 8, 4]
[4, 8, 3] -> [4, 5, 8, 3]
| [6, 9, 7]->[6, 5, 9, 7]<sep>[9, 8]->[9, 5, 8]<sep>[6, 2, 5, 7, 3, 0, 8]->[6, 5, 2, 5, 7, 3, 0, 8]<sep>[9, 2, 1, 0, 8]->[9, 5, 2, 1, 0, 8]<sep>[9, 7, 2, 1, 3, 5, 0, 6, 8, 4]->[9, 5, 7, 2, 1, 3, 5, 0, 6, 8, 4]<sep>[4, 1, 8, 2, 9, 7]->[4, 5, 1, 8, 2, 9, 7]<sep>[6, 2, 8]->[6, 5, 2, 8]<sep>[3, 4, 2, 9, 6, 8, 1, 7]->[3, 5, 4, 2, 9, 6, 8, 1, 7]<sep>[6, 2, 7, 3, 0, 8]->[6, 5, 2, 7, 3, 0, 8]<sep>[5, 2, 3, 0, 4, 8, 7]->[5, 5, 2, 3, 0, 4, 8, 7]<sep>[4, 1, 9, 3, 7]->[4, 5, 1, 9, 3, 7]<sep>[7, 9, 3, 5, 1, 4, 0]->[7, 5, 9, 3, 5, 1, 4, 0]<sep>[9, 3, 2, 5, 1, 8, 7, 4]->[9, 5, 3, 2, 5, 1, 8, 7, 4]<sep>[3, 0, 9, 7, 6, 2]->[3, 5, 0, 9, 7, 6, 2]<sep>[7, 8, 6, 0, 1, 9, 4, 3, 5]->[7, 5, 8, 6, 0, 1, 9, 4, 3, 5]<sep>[6, 7, 2, 8, 1, 3, 9, 4, 0]->[6, 5, 7, 2, 8, 1, 3, 9, 4, 0]<sep>[4, 9, 0, 1, 6, 3, 2, 8]->[4, 5, 9, 0, 1, 6, 3, 2, 8]<sep>[6, 1, 2, 5]->[6, 5, 1, 2, 5]<sep>[0, 9, 7, 3, 5, 1, 2, 4, 8]->[0, 5, 9, 7, 3, 5, 1, 2, 4, 8]<sep>[8, 1, 6, 7, 2]->[8, 5, 1, 6, 7, 2]<sep>[1, 9, 8, 0, 2, 5, 3, 4, 7]->[1, 5, 9, 8, 0, 2, 5, 3, 4, 7]<sep>[7, 0]->[7, 5, 0]<sep>[4, 0, 1, 6]->[4, 5, 0, 1, 6]<sep>[2, 8, 6, 0, 1, 3, 4, 7]->[2, 5, 8, 6, 0, 1, 3, 4, 7] | c022 | Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert a 5 as element 2". | P1 |
README.md exists but content is empty.
- Downloads last month
- 37