Dataset Viewer
Auto-converted to Parquet
prompt
stringlengths
283
622
ground_truth
stringlengths
384
1.41k
task_name
stringlengths
4
4
description
stringlengths
149
222
level
stringclasses
1 value
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 0] -> [] [3, 2, 9, 7] -> [9] [8, 9, 2, 6, 5, 0] -> [2] [9, 1] -> [] [0, 8, 4, 3, 2, 5, 9, 7, 6] -> [4] [6] -> [] [8, 4, 5, 6, 7, 3, 2, 9] -> [5] [6, 4, 8, 1, 7, 0, 2] -> [8]
[6, 3, 4, 1, 7, 2, 9, 8, 0]->[4]<sep>[7, 3, 6]->[6]<sep>[6, 1]->[]<sep>[4]->[]<sep>[2, 5, 1, 7, 6, 0, 8, 9, 3]->[1]<sep>[5, 1, 4, 9, 3, 8, 7, 2]->[4]<sep>[9, 2]->[]<sep>[8, 0, 6, 4]->[6]<sep>[8, 5]->[]<sep>[1, 5, 0, 6, 2, 9, 3]->[0]<sep>[8, 9, 3, 4, 5, 7]->[3]<sep>[0, 6]->[]<sep>[5]->[]<sep>[8, 5, 7]->[7]<sep>[4, 5]->[]<sep>[3]->[]<sep>[8, 1, 7, 0, 9]->[7]<sep>[1]->[]<sep>[7, 6, 3, 0, 8, 2, 4, 1, 5, 9]->[3]<sep>[]->[]<sep>[8]->[]<sep>[2]->[]<sep>[1, 3, 2, 0, 7]->[2]<sep>[5, 4]->[]
c002
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [6, 5, 4, 8, 9] -> [6, 5, 4, 8] [4, 2, 9, 1, 0, 7, 6, 3] -> [4, 2, 9, 1, 7, 6, 3] [1, 0, 4, 3, 8, 5] -> [1, 0, 4, 3, 5] [5, 7, 1, 8, 3, 6, 4] -> [5, 7, 1, 8, 6, 4] [0, 9, 7, 5] -> [0, 9, 7, 5] [7] -> [7] [0, 1, 7, 9, 3, 8, 4, 6, 2] -> [0, 1, 7, 9, 8, 4, 6, 2] [8, 7, 3, 6, 0, 4, 5, 2, 9] -> [8, 7, 3, 6, 4, 5, 2, 9]
[5, 1, 3, 8, 7, 2]->[5, 1, 3, 8, 2]<sep>[9, 8, 3, 6, 2]->[9, 8, 3, 6]<sep>[1, 7, 5, 2, 4, 3, 6, 8, 9]->[1, 7, 5, 2, 3, 6, 8, 9]<sep>[4, 3, 1, 2, 9, 5, 8, 7, 0, 6]->[4, 3, 1, 2, 5, 8, 7, 0, 6]<sep>[1, 6, 2, 3, 4, 0, 8, 9]->[1, 6, 2, 3, 0, 8, 9]<sep>[4, 5, 9, 6, 8, 0, 7, 1, 3, 2]->[4, 5, 9, 6, 0, 7, 1, 3, 2]<sep>[5, 1]->[5, 1]<sep>[4, 6, 0]->[4, 6, 0]<sep>[9, 5, 1, 2, 4, 0]->[9, 5, 1, 2, 0]<sep>[4, 5, 2, 8, 9, 3, 0, 7]->[4, 5, 2, 8, 3, 0, 7]<sep>[7, 8, 4, 9, 5, 3, 1, 0, 6, 2]->[7, 8, 4, 9, 3, 1, 0, 6, 2]<sep>[4, 1, 9, 2, 7, 0, 8]->[4, 1, 9, 2, 0, 8]<sep>[3, 2, 9, 5, 0, 4, 6]->[3, 2, 9, 5, 4, 6]<sep>[]->[]<sep>[2, 5, 7, 8, 0, 6, 3, 9, 1, 4]->[2, 5, 7, 8, 6, 3, 9, 1, 4]<sep>[2, 6, 0, 8, 4]->[2, 6, 0, 8]<sep>[6, 8, 1, 9, 5, 2, 0, 7]->[6, 8, 1, 9, 2, 0, 7]<sep>[7, 9, 0, 6, 1, 5, 2, 3]->[7, 9, 0, 6, 5, 2, 3]<sep>[8, 0, 4, 6, 9, 7]->[8, 0, 4, 6, 7]<sep>[5, 1, 2, 9, 0]->[5, 1, 2, 9]<sep>[3, 5, 7, 1, 9, 8, 6]->[3, 5, 7, 1, 8, 6]<sep>[4, 3, 8, 1, 6, 5]->[4, 3, 8, 1, 5]<sep>[0, 7, 4, 8, 5, 3, 2, 1, 9]->[0, 7, 4, 8, 3, 2, 1, 9]<sep>[5, 4, 7, 0, 9, 3, 2]->[5, 4, 7, 0, 3, 2]
c056
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 5".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 6, 5, 3, 1, 8, 4, 9, 7] -> [0, 5, 3, 1, 8, 4, 9, 7] [1, 6, 5, 0, 8, 9, 7, 2, 4, 3] -> [1, 5, 0, 8, 9, 7, 2, 4, 3] [3, 4, 6, 2] -> [3, 6, 2] [4, 9, 3, 2] -> [4, 3, 2] [1, 2] -> [1] [5, 2, 7, 3, 6] -> [5, 7, 3, 6] [0, 6] -> [0] [1, 9, 6, 8, 0, 5] -> [1, 6, 8, 0, 5]
[5, 2, 0, 4]->[5, 0, 4]<sep>[4, 0, 7, 1]->[4, 7, 1]<sep>[0, 2, 7, 9, 3, 6, 4]->[0, 7, 9, 3, 6, 4]<sep>[3, 0, 6, 8, 5]->[3, 6, 8, 5]<sep>[7, 6, 8, 4, 9, 1, 5, 2, 3, 0]->[7, 8, 4, 9, 1, 5, 2, 3, 0]<sep>[1, 5, 8]->[1, 8]<sep>[0, 6, 5, 2, 7, 1, 9]->[0, 5, 2, 7, 1, 9]<sep>[2, 0, 9, 1, 5, 7]->[2, 9, 1, 5, 7]<sep>[7, 8, 5]->[7, 5]<sep>[5, 2, 3, 9, 1, 4, 7, 8]->[5, 3, 9, 1, 4, 7, 8]<sep>[9, 6, 8, 4, 5, 7, 0, 2]->[9, 8, 4, 5, 7, 0, 2]<sep>[6, 1, 9, 5, 4, 2, 8, 3]->[6, 9, 5, 4, 2, 8, 3]<sep>[8, 7]->[8]<sep>[5, 3, 7, 4, 6, 0, 1, 8, 9, 2]->[5, 7, 4, 6, 0, 1, 8, 9, 2]<sep>[6, 8, 4, 3, 1, 7, 0, 9, 2]->[6, 4, 3, 1, 7, 0, 9, 2]<sep>[6, 3, 0, 5, 7, 4, 9]->[6, 0, 5, 7, 4, 9]<sep>[7, 5, 3, 0, 2, 6, 4, 9, 1, 8]->[7, 3, 0, 2, 6, 4, 9, 1, 8]<sep>[4, 3, 2]->[4, 2]<sep>[8, 5, 1, 3, 7]->[8, 1, 3, 7]<sep>[3, 7, 1, 9, 8, 6, 0]->[3, 1, 9, 8, 6, 0]<sep>[6, 8, 4, 9, 2, 1]->[6, 4, 9, 2, 1]<sep>[0, 8, 5]->[0, 5]<sep>[6, 2]->[6]<sep>[0, 1, 6, 7, 2, 9, 4, 3, 8]->[0, 6, 7, 2, 9, 4, 3, 8]
c025
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 1, 3, 2] -> [2] [7, 1, 3, 8, 0, 9, 5, 4, 2] -> [2] [4, 0, 6, 7, 1, 8] -> [8] [6, 7, 2, 9, 8, 3, 1, 0, 4, 5] -> [5] [5, 1] -> [1] [0, 8, 4, 5] -> [5] [5, 2, 0, 8, 1, 4, 9, 6, 3, 7] -> [7] [5, 8, 9, 6, 7] -> [7]
[8, 6, 2, 1, 7, 3, 0, 5, 4]->[4]<sep>[4, 7, 8, 1, 0, 5, 6, 9]->[9]<sep>[4, 8, 5, 2, 1, 7, 3, 9]->[9]<sep>[5, 9, 6, 0, 7, 2, 3, 1, 4, 8]->[8]<sep>[0, 3, 8, 2, 7, 9]->[9]<sep>[7, 0, 1, 5, 8]->[8]<sep>[7, 6, 1]->[1]<sep>[1, 5, 9]->[9]<sep>[5, 2, 3]->[3]<sep>[7, 4, 8]->[8]<sep>[6, 2, 4, 1, 5, 8, 7, 0, 3, 9]->[9]<sep>[0, 2, 7, 3, 5, 4, 6]->[6]<sep>[4, 6]->[6]<sep>[6, 0, 8, 7, 2, 1, 5, 9]->[9]<sep>[5, 2, 3, 0, 4, 9, 1, 6, 7]->[7]<sep>[1, 0, 8, 4, 7, 3, 6]->[6]<sep>[9, 0, 6, 2, 1, 4, 3]->[3]<sep>[5, 4, 2, 9, 3]->[3]<sep>[6, 1, 3, 2, 4, 0]->[0]<sep>[5, 2, 6, 9]->[9]<sep>[2, 3, 5, 0, 1, 9, 8, 6, 4]->[4]<sep>[7, 5, 8, 6, 3]->[3]<sep>[2, 6, 1, 7, 0, 8, 3, 4]->[4]<sep>[2, 0]->[0]
c061
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but the last element".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [6, 6, 6, 6, 6] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [5, 7, 3] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [7, 6, 6, 6, 6, 7, 7, 6, 6, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [7, 7, 7, 7, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [8, 5, 2, 8, 7, 1] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [6, 6, 6, 6, 6, 6, 6] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [8, 8, 1, 2, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9] [6, 3, 0, 6, 7, 7] -> [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
[0, 0, 0, 0, 0, 0, 0, 0, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[5, 5, 1, 2, 8, 8, 6, 3, 7, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 8, 7, 7, 8, 8, 7, 7, 8, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 6, 6, 0, 5, 6, 0, 0]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[3, 7, 3, 7, 7, 7, 7, 7, 3]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 8, 0, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 6, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 3, 6, 0, 6, 1, 2, 0]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[3, 7, 3, 3, 1, 7, 3, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 6, 7, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 2, 2, 2]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[8, 3]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 6, 6, 6, 6, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[8]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 7, 7, 7, 7, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[2, 2]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 6, 6]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[6, 5, 5, 5, 5, 6, 6, 5, 5]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[1, 2, 2, 1, 1, 1, 1]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]<sep>[7, 7, 7, 7, 7, 7, 7]->[1, 9, 4, 3, 2, 5, 8, 0, 4, 9]
c044
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [1, 9, 4, 3, 2, 5, 8, 0, 4, 9]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 9, 0, 6, 5] -> [0, 6, 5] [2, 6, 1, 3] -> [1, 3] [4, 5, 7] -> [7] [8, 3] -> [] [4, 2, 8, 0, 5, 9, 7, 1, 3] -> [8, 0, 5, 9, 7] [2] -> [] [7, 9, 1, 6, 5, 2] -> [1, 6, 5, 2] [9, 7] -> []
[5]->[]<sep>[2, 7, 3, 5, 1, 8]->[3, 5, 1, 8]<sep>[1, 6, 9]->[9]<sep>[6, 5, 0, 8, 2, 7, 3, 9]->[0, 8, 2, 7, 3]<sep>[3, 0, 4, 9, 8, 1, 7]->[4, 9, 8, 1, 7]<sep>[2, 6, 8, 4, 7, 9, 5, 0]->[8, 4, 7, 9, 5]<sep>[5, 4, 6, 9, 0]->[6, 9, 0]<sep>[4, 0, 5, 7, 6, 1]->[5, 7, 6, 1]<sep>[4, 8, 6]->[6]<sep>[7, 6, 0, 5]->[0, 5]<sep>[1]->[]<sep>[6, 7, 4, 8, 0, 2, 3, 5, 1, 9]->[4, 8, 0, 2, 3]<sep>[8, 6, 9, 3, 1, 5, 2, 4, 0]->[9, 3, 1, 5, 2]<sep>[0, 4, 8, 3]->[8, 3]<sep>[3, 7, 4, 1, 0, 8, 9]->[4, 1, 0, 8, 9]<sep>[7, 6, 3, 4, 0]->[3, 4, 0]<sep>[2, 8, 3, 7, 9, 1]->[3, 7, 9, 1]<sep>[4, 5, 6, 2]->[6, 2]<sep>[1, 0, 4, 2, 5, 9, 3, 7, 8, 6]->[4, 2, 5, 9, 3]<sep>[2, 0]->[]<sep>[0, 9, 3, 2, 7]->[3, 2, 7]<sep>[1, 4, 6]->[6]<sep>[5, 6, 8]->[8]<sep>[9, 3, 2, 1, 4]->[2, 1, 4]
c013
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 3 through 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [7, 2] -> [7, 2] [6, 2, 4, 9, 0, 8, 1] -> [6, 2, 4, 9, 0, 8] [8, 6, 1, 7, 2, 5] -> [8, 6, 1, 7, 2, 5] [1, 4, 0, 3, 6, 8, 9, 2] -> [1, 4, 0, 3, 6, 8] [9] -> [9] [6, 9, 4, 1] -> [6, 9, 4, 1] [1, 7, 5, 2, 3, 0, 8] -> [1, 7, 5, 2, 3, 0] [7, 8, 9, 2, 3] -> [7, 8, 9, 2, 3]
[6, 5]->[6, 5]<sep>[9, 3, 7, 0, 5, 1, 8, 4, 6]->[9, 3, 7, 0, 5, 1]<sep>[9, 2, 4, 5]->[9, 2, 4, 5]<sep>[1, 3, 6, 0, 4, 8, 9]->[1, 3, 6, 0, 4, 8]<sep>[4, 8, 0, 1]->[4, 8, 0, 1]<sep>[3, 2, 6, 0, 5]->[3, 2, 6, 0, 5]<sep>[7, 9, 6, 1, 3, 8, 4, 2, 0]->[7, 9, 6, 1, 3, 8]<sep>[0, 8, 7]->[0, 8, 7]<sep>[1, 0, 2, 9, 5, 3, 4, 6, 7, 8]->[1, 0, 2, 9, 5, 3]<sep>[5, 4, 3, 7, 8, 6, 2, 9]->[5, 4, 3, 7, 8, 6]<sep>[9, 2, 5, 1, 7, 3, 4, 0, 6]->[9, 2, 5, 1, 7, 3]<sep>[4, 1, 7]->[4, 1, 7]<sep>[9, 8, 5, 4, 2, 3, 7, 6]->[9, 8, 5, 4, 2, 3]<sep>[0, 1, 2, 6, 7, 4, 8, 5, 9, 3]->[0, 1, 2, 6, 7, 4]<sep>[9, 8, 0, 3, 6, 4, 5, 1, 7, 2]->[9, 8, 0, 3, 6, 4]<sep>[6, 9, 7, 4, 0, 5, 1, 8, 3, 2]->[6, 9, 7, 4, 0, 5]<sep>[]->[]<sep>[7]->[7]<sep>[8, 1, 7, 5, 9, 3, 0]->[8, 1, 7, 5, 9, 3]<sep>[5, 2, 1, 7, 6]->[5, 2, 1, 7, 6]<sep>[0, 5, 9]->[0, 5, 9]<sep>[4, 8, 3, 1, 2, 0, 7, 5, 6]->[4, 8, 3, 1, 2, 0]<sep>[1, 0]->[1, 0]<sep>[5, 8, 2, 4, 3, 6, 9, 7]->[5, 8, 2, 4, 3, 6]
c009
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but the first 6 elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 0, 2, 8, 6, 7, 5, 1] -> [1, 0, 2, 8, 6, 7, 5, 9] [9, 8] -> [8, 9] [8, 0] -> [0, 8] [4, 0, 8, 5, 3, 7, 1, 9, 6] -> [6, 0, 8, 5, 3, 7, 1, 9, 4] [3, 4, 6, 2, 8, 1] -> [1, 4, 6, 2, 8, 3] [3, 7, 4, 5, 2, 1, 0, 8] -> [8, 7, 4, 5, 2, 1, 0, 3] [1, 7, 6, 9, 4] -> [4, 7, 6, 9, 1] [4, 2, 1, 9, 7, 8, 0, 3, 6, 5] -> [5, 2, 1, 9, 7, 8, 0, 3, 6, 4]
[4, 1, 6, 7]->[7, 1, 6, 4]<sep>[9, 6, 7, 2, 1, 8, 3, 4, 5, 0]->[0, 6, 7, 2, 1, 8, 3, 4, 5, 9]<sep>[3, 7, 9, 1, 5]->[5, 7, 9, 1, 3]<sep>[0, 4]->[4, 0]<sep>[8, 0, 3]->[3, 0, 8]<sep>[6, 4, 5]->[5, 4, 6]<sep>[9, 4, 0, 7, 1, 2, 5, 3]->[3, 4, 0, 7, 1, 2, 5, 9]<sep>[2, 5, 9, 0, 8, 3]->[3, 5, 9, 0, 8, 2]<sep>[9, 1, 2, 3, 8, 5, 6]->[6, 1, 2, 3, 8, 5, 9]<sep>[7, 0, 2, 3]->[3, 0, 2, 7]<sep>[9, 7, 5, 4, 8, 2, 0]->[0, 7, 5, 4, 8, 2, 9]<sep>[4, 6, 2]->[2, 6, 4]<sep>[3, 5]->[5, 3]<sep>[0, 7, 2, 1, 8]->[8, 7, 2, 1, 0]<sep>[7, 5, 4, 9, 0, 6, 2, 1, 3]->[3, 5, 4, 9, 0, 6, 2, 1, 7]<sep>[1, 6, 3, 8, 9, 5]->[5, 6, 3, 8, 9, 1]<sep>[7, 0, 4, 6]->[6, 0, 4, 7]<sep>[8, 6, 7, 9, 1, 5, 3, 2, 4, 0]->[0, 6, 7, 9, 1, 5, 3, 2, 4, 8]<sep>[2, 0, 9, 4, 6, 3, 7, 1, 8]->[8, 0, 9, 4, 6, 3, 7, 1, 2]<sep>[9, 2, 6]->[6, 2, 9]<sep>[4, 0, 6, 7, 5]->[5, 0, 6, 7, 4]<sep>[1, 9, 2, 5]->[5, 9, 2, 1]<sep>[6, 2, 3, 4, 9, 5, 8]->[8, 2, 3, 4, 9, 5, 6]<sep>[2, 7, 8, 6, 0, 3, 1]->[1, 7, 8, 6, 0, 3, 2]
c067
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap the first and last elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 8] -> [8] [0, 8, 7, 9] -> [8, 7, 9] [7, 6] -> [6] [7] -> [] [8, 9, 6, 5, 4] -> [9, 6, 5] [7, 4] -> [4] [8, 2, 1, 6, 7] -> [2, 1, 6] [3, 0, 4] -> [0, 4]
[7, 2, 1, 4, 3, 0]->[2, 1, 4]<sep>[4, 2, 0, 3, 5, 1, 9, 7]->[2, 0, 3]<sep>[7, 1, 4, 0, 9, 3, 6, 5, 2]->[1, 4, 0]<sep>[0]->[]<sep>[1, 6]->[6]<sep>[8, 6, 3, 0, 2, 5, 1, 7, 4, 9]->[6, 3, 0]<sep>[3, 5, 9, 8]->[5, 9, 8]<sep>[3]->[]<sep>[2, 3, 4]->[3, 4]<sep>[9, 7, 1, 8, 2, 3]->[7, 1, 8]<sep>[3, 0, 5, 6, 8, 7, 9]->[0, 5, 6]<sep>[6, 5, 3, 9, 2, 4, 8]->[5, 3, 9]<sep>[6, 8]->[8]<sep>[8, 3, 0, 7, 6, 9, 4, 5, 1, 2]->[3, 0, 7]<sep>[8, 1, 6]->[1, 6]<sep>[4]->[]<sep>[1]->[]<sep>[8, 9, 2]->[9, 2]<sep>[9, 7, 1, 5, 2, 0, 6, 4]->[7, 1, 5]<sep>[]->[]<sep>[9, 4]->[4]<sep>[7, 5, 2, 0, 4, 1, 3, 9, 6]->[5, 2, 0]<sep>[7, 8, 5]->[8, 5]<sep>[1, 2, 3]->[2, 3]
c011
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 2 through 4".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8, 6, 1] -> [9, 8, 6, 1, 7] [3] -> [9, 3, 7] [9, 4, 0, 2, 1, 8] -> [9, 9, 4, 0, 2, 1, 8, 7] [2, 7, 1, 6, 9, 8, 5, 4, 0, 3] -> [9, 2, 7, 1, 6, 9, 8, 5, 4, 0, 3, 7] [3, 0, 8, 6, 2, 5, 4] -> [9, 3, 0, 8, 6, 2, 5, 4, 7] [1] -> [9, 1, 7] [0, 2, 3, 4] -> [9, 0, 2, 3, 4, 7] [9, 4, 2, 3, 5, 1, 8, 7, 0, 6] -> [9, 9, 4, 2, 3, 5, 1, 8, 7, 0, 6, 7]
[4, 5, 1, 8, 0, 3]->[9, 4, 5, 1, 8, 0, 3, 7]<sep>[1, 6, 5, 4, 3, 8, 0]->[9, 1, 6, 5, 4, 3, 8, 0, 7]<sep>[4, 1]->[9, 4, 1, 7]<sep>[5, 4, 1, 2, 0, 3, 8]->[9, 5, 4, 1, 2, 0, 3, 8, 7]<sep>[7, 6, 4, 2, 1]->[9, 7, 6, 4, 2, 1, 7]<sep>[2, 3, 8, 0, 1]->[9, 2, 3, 8, 0, 1, 7]<sep>[8, 6, 4, 3]->[9, 8, 6, 4, 3, 7]<sep>[3, 2]->[9, 3, 2, 7]<sep>[8]->[9, 8, 7]<sep>[0, 1, 6, 9, 7, 8, 5, 2]->[9, 0, 1, 6, 9, 7, 8, 5, 2, 7]<sep>[2, 3, 9, 8, 5, 1]->[9, 2, 3, 9, 8, 5, 1, 7]<sep>[8, 2, 1, 5, 4]->[9, 8, 2, 1, 5, 4, 7]<sep>[3, 5, 2, 8, 1, 4, 6, 9, 0]->[9, 3, 5, 2, 8, 1, 4, 6, 9, 0, 7]<sep>[]->[9, 7]<sep>[1, 5, 0, 8, 3, 9, 2, 6, 4]->[9, 1, 5, 0, 8, 3, 9, 2, 6, 4, 7]<sep>[5, 4, 6]->[9, 5, 4, 6, 7]<sep>[0, 7, 4, 6, 3, 1, 8, 5, 2]->[9, 0, 7, 4, 6, 3, 1, 8, 5, 2, 7]<sep>[4, 6, 2, 0, 3, 8, 5, 7]->[9, 4, 6, 2, 0, 3, 8, 5, 7, 7]<sep>[9, 4, 1, 5]->[9, 9, 4, 1, 5, 7]<sep>[3, 9, 6, 1, 8, 7, 5, 2, 4, 0]->[9, 3, 9, 6, 1, 8, 7, 5, 2, 4, 0, 7]<sep>[1, 4, 6, 3, 2, 0, 9, 8, 5, 7]->[9, 1, 4, 6, 3, 2, 0, 9, 8, 5, 7, 7]<sep>[2, 0, 1]->[9, 2, 0, 1, 7]<sep>[3, 6]->[9, 3, 6, 7]<sep>[2, 6, 8, 4, 0, 1, 5, 3]->[9, 2, 6, 8, 4, 0, 1, 5, 3, 7]
c065
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend 9 and append 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 8, 6] -> [9, 8] [9, 3, 4, 0] -> [9, 3, 0] [5, 9, 1, 7] -> [5, 9, 7] [4, 7, 3, 6, 0, 8, 2, 5] -> [4, 7, 6, 0, 8, 2, 5] [0, 6, 1, 2, 3, 5, 9] -> [0, 6, 2, 3, 5, 9] [9, 3, 5, 2, 7, 0, 8, 1, 4, 6] -> [9, 3, 2, 7, 0, 8, 1, 4, 6] [5, 2, 6, 1, 0, 9, 4, 8] -> [5, 2, 1, 0, 9, 4, 8] [7, 4, 0, 8, 2] -> [7, 4, 8, 2]
[1, 6, 5, 3, 9, 0, 2]->[1, 6, 3, 9, 0, 2]<sep>[1, 7, 5]->[1, 7]<sep>[2, 8, 6, 0, 7, 5]->[2, 8, 0, 7, 5]<sep>[9, 6, 7, 0, 3]->[9, 6, 0, 3]<sep>[0, 6, 2, 7, 9, 1, 4]->[0, 6, 7, 9, 1, 4]<sep>[6, 0, 3, 8, 1, 2, 4, 5]->[6, 0, 8, 1, 2, 4, 5]<sep>[1, 8, 9, 0, 4, 5, 6, 3, 2, 7]->[1, 8, 0, 4, 5, 6, 3, 2, 7]<sep>[3, 2, 8, 1, 7, 6]->[3, 2, 1, 7, 6]<sep>[2, 9, 0, 7, 1, 3, 5, 8, 4]->[2, 9, 7, 1, 3, 5, 8, 4]<sep>[]->[]<sep>[4, 2, 8, 3]->[4, 2, 3]<sep>[1, 6, 0, 2, 9, 3, 5]->[1, 6, 2, 9, 3, 5]<sep>[3, 6, 4]->[3, 6]<sep>[9, 4, 7, 5, 3, 1]->[9, 4, 5, 3, 1]<sep>[5, 2, 9, 8, 7]->[5, 2, 8, 7]<sep>[6, 4, 5, 8, 0, 3, 7, 9]->[6, 4, 8, 0, 3, 7, 9]<sep>[1, 3, 2, 6, 7, 5, 0, 8, 9]->[1, 3, 6, 7, 5, 0, 8, 9]<sep>[3, 1, 8, 2, 0, 4]->[3, 1, 2, 0, 4]<sep>[1, 7, 9, 6]->[1, 7, 6]<sep>[4]->[4]<sep>[4, 3, 2, 7, 8, 1, 5, 0, 9, 6]->[4, 3, 7, 8, 1, 5, 0, 9, 6]<sep>[5, 4, 0, 6, 8]->[5, 4, 6, 8]<sep>[8, 7, 0, 2, 5, 3, 6, 4, 1]->[8, 7, 2, 5, 3, 6, 4, 1]<sep>[9, 1, 8]->[9, 1]
c026
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 2, 9, 0, 3, 8, 1, 5, 6, 7] -> [4, 4, 4, 4, 4, 4, 4, 4, 4, 4] [1, 4, 7, 3, 6] -> [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] [8, 1, 2, 9, 6, 3, 4, 7] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8] [5, 9, 1, 6, 2, 0] -> [5, 5, 5, 5, 5, 5, 5, 5, 5, 5] [8, 4, 6] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8] [8] -> [8, 8, 8, 8, 8, 8, 8, 8, 8, 8] [6, 7, 5, 1, 4, 9, 3, 2, 0, 8] -> [6, 6, 6, 6, 6, 6, 6, 6, 6, 6] [0, 2, 6, 8, 1, 5, 9, 4] -> [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[1, 6, 4]->[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]<sep>[2, 8, 9, 4, 7, 1, 6, 3]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]<sep>[4, 9]->[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]<sep>[5]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[3, 7, 8, 0, 9]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[1, 7, 2, 0]->[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]<sep>[5, 6, 1, 4, 8, 2, 0]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[7, 5]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[9, 8, 7, 3, 2, 6, 1, 4, 5]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[9, 7, 0, 2, 3, 6, 5]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[3, 4, 7, 5, 2]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[6, 8, 2, 9, 3, 0]->[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]<sep>[2, 1, 6, 9, 0, 7]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]<sep>[4, 2, 1]->[4, 4, 4, 4, 4, 4, 4, 4, 4, 4]<sep>[8, 2, 4, 1]->[8, 8, 8, 8, 8, 8, 8, 8, 8, 8]<sep>[5, 8, 4, 7, 9, 2, 3, 1, 0]->[5, 5, 5, 5, 5, 5, 5, 5, 5, 5]<sep>[0, 7, 3, 1]->[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]<sep>[6, 4, 0, 5, 9, 2, 3, 7, 1, 8]->[6, 6, 6, 6, 6, 6, 6, 6, 6, 6]<sep>[7, 4]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[3]->[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]<sep>[0, 8, 6, 3, 1, 4, 7]->[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]<sep>[7, 3, 5, 6, 2, 0, 1, 4, 9]->[7, 7, 7, 7, 7, 7, 7, 7, 7, 7]<sep>[9]->[9, 9, 9, 9, 9, 9, 9, 9, 9, 9]<sep>[2, 0]->[2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
c052
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "repeat element 1 ten times".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 7, 9, 8, 6] -> [9, 8, 5, 7, 6] [4, 3, 2, 8, 9, 6, 7, 1, 0] -> [2, 8, 4, 3, 9, 6, 7, 1, 0] [3, 8, 0, 7] -> [0, 7, 3, 8] [3, 8, 7, 0, 9, 6, 5, 2, 4] -> [7, 0, 3, 8, 9, 6, 5, 2, 4] [0, 3, 7, 1, 5, 8, 9, 6, 4, 2] -> [7, 1, 0, 3, 5, 8, 9, 6, 4, 2] [7, 1, 8, 0, 3, 4, 9] -> [8, 0, 7, 1, 3, 4, 9] [9, 4] -> [9, 4] [9, 6, 8, 7, 5, 0, 1, 4] -> [8, 7, 9, 6, 5, 0, 1, 4]
[]->[]<sep>[3, 8, 2]->[2, 3, 8]<sep>[1, 5, 6, 4, 0, 3, 7]->[6, 4, 1, 5, 0, 3, 7]<sep>[4, 3, 1, 2, 9, 7]->[1, 2, 4, 3, 9, 7]<sep>[2, 6, 0, 7, 3, 4, 5, 8, 1, 9]->[0, 7, 2, 6, 3, 4, 5, 8, 1, 9]<sep>[3, 0, 6, 2]->[6, 2, 3, 0]<sep>[0]->[0]<sep>[5, 9, 7, 8, 4, 3, 2]->[7, 8, 5, 9, 4, 3, 2]<sep>[4, 2, 1, 8, 6]->[1, 8, 4, 2, 6]<sep>[8, 6, 1, 5, 3, 2]->[1, 5, 8, 6, 3, 2]<sep>[1, 5, 6, 2, 9, 3]->[6, 2, 1, 5, 9, 3]<sep>[8, 4, 7, 0, 6]->[7, 0, 8, 4, 6]<sep>[0, 5, 8]->[8, 0, 5]<sep>[1, 9, 6]->[6, 1, 9]<sep>[0, 2, 5, 6]->[5, 6, 0, 2]<sep>[9, 8, 0, 1, 5, 2, 6, 3, 4, 7]->[0, 1, 9, 8, 5, 2, 6, 3, 4, 7]<sep>[9, 5, 7, 2, 3]->[7, 2, 9, 5, 3]<sep>[9, 1, 5, 8, 2, 4, 3, 7]->[5, 8, 9, 1, 2, 4, 3, 7]<sep>[1, 3, 0, 9]->[0, 9, 1, 3]<sep>[1, 5, 6]->[6, 1, 5]<sep>[4, 7, 2, 1, 0, 6, 5, 8]->[2, 1, 4, 7, 0, 6, 5, 8]<sep>[1, 8, 9, 6, 5, 2, 4, 0, 3]->[9, 6, 1, 8, 5, 2, 4, 0, 3]<sep>[8, 2, 9, 4, 1, 7]->[9, 4, 8, 2, 1, 7]<sep>[5, 7, 3, 4, 9, 2, 0]->[3, 4, 5, 7, 9, 2, 0]
c055
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 1 and 3 and elements 2 and 4".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [7, 4, 2, 9] -> [4, 2, 9] [7, 4, 0, 8, 2, 1, 3] -> [4, 0, 8, 2, 1, 3] [8, 4, 7, 5, 6, 0, 1] -> [4, 7, 5, 6, 0, 1] [4, 7, 0, 6] -> [7, 0, 6] [6, 9, 3, 7] -> [9, 3, 7] [9, 8, 6, 1, 2, 4, 0, 7, 3, 5] -> [8, 6, 1, 2, 4, 0, 7, 3, 5] [5, 3, 6, 8, 0, 7] -> [3, 6, 8, 0, 7] [3, 2, 1, 0, 7, 8] -> [2, 1, 0]
[9, 2, 0]->[2, 0]<sep>[8, 2, 3, 7, 0, 4, 9, 1, 6]->[2, 3, 7, 0, 4, 9, 1, 6]<sep>[8]->[]<sep>[7, 5, 3, 9, 6, 1, 0, 8, 4]->[5, 3, 9, 6, 1, 0, 8]<sep>[7, 8, 5]->[8, 5]<sep>[5, 1, 9, 3, 4]->[1, 9, 3, 4]<sep>[2, 8]->[8]<sep>[9, 3, 8, 0, 5, 7, 6, 1]->[3, 8, 0, 5, 7, 6, 1]<sep>[8, 0, 1, 7, 3, 4, 6, 5, 2]->[0, 1, 7, 3, 4, 6, 5, 2]<sep>[2, 9]->[9]<sep>[9, 0, 6, 3, 4, 5, 8, 1, 2]->[0, 6, 3, 4, 5, 8, 1, 2]<sep>[4]->[]<sep>[4, 3, 1, 8, 7, 2, 6, 9]->[3, 1, 8, 7]<sep>[9, 2, 1, 3, 5, 8, 6]->[2, 1, 3, 5, 8, 6]<sep>[8, 0, 5, 3, 2]->[0, 5, 3, 2]<sep>[1, 5]->[5]<sep>[8, 1, 9]->[1, 9]<sep>[2]->[]<sep>[7, 3, 5, 9, 2, 1]->[3, 5, 9, 2, 1]<sep>[5, 9, 3, 2, 8, 1, 6, 4, 7, 0]->[9, 3, 2, 8, 1]<sep>[9, 7, 2, 6, 4, 1, 3, 8, 0, 5]->[7, 2, 6, 4, 1, 3, 8, 0, 5]<sep>[9, 2, 3, 8, 4, 1, 5, 6, 0, 7]->[2, 3, 8, 4, 1, 5, 6, 0, 7]<sep>[8, 2, 1, 4, 6, 5, 0, 9]->[2, 1, 4, 6, 5, 0, 9]<sep>[0, 5, 1, 4, 7]->[]
c010
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 2 through N + 1, N = element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [1, 8, 7, 3, 6, 6, 0, 2] -> [9] [4] -> [9] [2, 1, 5, 4] -> [9] [4, 1, 1, 0, 5, 5, 3, 1, 2] -> [9] [2] -> [9] [2, 3, 3, 2, 2, 3, 2, 3, 3, 3] -> [9] [2, 6, 2, 6] -> [9] [4, 4, 4, 4, 4] -> [9]
[0, 0]->[9]<sep>[6, 5, 8, 6, 1, 1, 3]->[9]<sep>[7, 2, 7, 4, 2, 1, 4, 7, 4, 1]->[9]<sep>[2, 8, 5, 6, 3, 2]->[9]<sep>[1, 0, 2, 8, 8, 6, 7, 3, 5]->[9]<sep>[2, 7, 0]->[9]<sep>[5, 0, 7]->[9]<sep>[8, 1, 4, 8, 6]->[9]<sep>[0, 2, 0]->[9]<sep>[0, 7, 7, 7]->[9]<sep>[4, 3, 4, 7, 1, 6, 3, 0]->[9]<sep>[3, 1]->[9]<sep>[5, 4, 2, 4, 5, 4, 7]->[9]<sep>[1]->[9]<sep>[0, 6, 6, 0, 0, 0, 6, 0, 6, 6]->[9]<sep>[3, 2, 3, 7, 0, 0, 0, 7, 2]->[9]<sep>[5, 5, 5, 5, 5, 5]->[9]<sep>[1, 6, 4, 7, 5]->[9]<sep>[6, 3]->[9]<sep>[7, 8, 7, 8, 7, 8, 7, 8]->[9]<sep>[5, 1, 1, 5, 8, 8, 6, 6, 5, 1]->[9]<sep>[2, 4, 1, 7, 2, 3]->[9]<sep>[]->[9]<sep>[8, 8, 8, 8, 8, 8, 8]->[9]
c041
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [9]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 7, 9, 8, 6, 4, 2, 3, 5, 1] -> [0, 0, 9, 8, 6, 4, 2, 3, 5, 1] [7, 8, 6] -> [7, 7, 6] [0, 7, 4, 9] -> [0, 0, 4, 9] [8, 7] -> [8, 8] [2, 7, 0, 3, 9, 4, 6, 5] -> [2, 2, 0, 3, 9, 4, 6, 5] [8] -> [8, 8] [8, 5, 7, 4] -> [8, 8, 7, 4] [9, 6, 3] -> [9, 9, 3]
[4, 9, 8, 1, 2, 3, 5, 6, 0, 7]->[4, 4, 8, 1, 2, 3, 5, 6, 0, 7]<sep>[1, 6]->[1, 1]<sep>[4, 5, 9, 2, 7]->[4, 4, 9, 2, 7]<sep>[0, 7, 6, 2, 9]->[0, 0, 6, 2, 9]<sep>[5, 6, 2]->[5, 5, 2]<sep>[7, 4, 8, 5, 6, 3, 1, 9, 0]->[7, 7, 8, 5, 6, 3, 1, 9, 0]<sep>[5, 8, 6, 9, 2, 4]->[5, 5, 6, 9, 2, 4]<sep>[3, 0, 4, 9, 6, 5, 2, 1]->[3, 3, 4, 9, 6, 5, 2, 1]<sep>[3, 0, 7]->[3, 3, 7]<sep>[1]->[1, 1]<sep>[9, 5, 1, 8, 3, 6, 2]->[9, 9, 1, 8, 3, 6, 2]<sep>[1, 2, 0, 8, 5, 4, 3, 7, 6]->[1, 1, 0, 8, 5, 4, 3, 7, 6]<sep>[4, 8, 1, 3, 6]->[4, 4, 1, 3, 6]<sep>[7, 0, 9, 1, 2, 8, 3]->[7, 7, 9, 1, 2, 8, 3]<sep>[7, 9, 6, 3, 2, 8, 5]->[7, 7, 6, 3, 2, 8, 5]<sep>[2, 3]->[2, 2]<sep>[0, 6, 9, 3, 8, 2]->[0, 0, 9, 3, 8, 2]<sep>[0, 2, 7, 5, 6, 9, 4, 3, 1, 8]->[0, 0, 7, 5, 6, 9, 4, 3, 1, 8]<sep>[1, 5, 0, 2, 4]->[1, 1, 0, 2, 4]<sep>[4, 2, 1, 7, 9, 0]->[4, 4, 1, 7, 9, 0]<sep>[4, 0, 5, 9]->[4, 4, 5, 9]<sep>[1, 8, 0, 2, 5, 9, 7, 6, 3]->[1, 1, 0, 2, 5, 9, 7, 6, 3]<sep>[6, 2, 8, 3, 5, 4, 1, 0]->[6, 6, 8, 3, 5, 4, 1, 0]<sep>[5, 6, 8, 7]->[5, 5, 8, 7]
c053
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 2 with element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0] -> [] [5, 0, 7] -> [0, 7] [8, 2] -> [2] [6] -> [] [7, 2] -> [2] [] -> [] [2, 3, 4, 9, 5, 6, 1, 8, 0] -> [3, 4, 9] [3, 4, 5, 1] -> [4, 5, 1]
[6, 1, 9]->[1, 9]<sep>[5, 9, 2, 3, 0, 4]->[9, 2, 3]<sep>[2, 9, 4, 3, 0, 7, 5, 8, 6, 1]->[9, 4, 3]<sep>[0, 2, 9, 6, 4, 8, 5, 1]->[2, 9, 6]<sep>[1, 0, 6, 8, 2, 7, 3, 5, 9, 4]->[0, 6, 8]<sep>[7, 3, 5, 0, 2]->[3, 5, 0]<sep>[1, 6, 4, 8, 9, 5, 0]->[6, 4, 8]<sep>[7, 5, 4]->[5, 4]<sep>[4, 2, 0]->[2, 0]<sep>[0, 7]->[7]<sep>[1, 9, 4, 7, 6, 3]->[9, 4, 7]<sep>[2, 6]->[6]<sep>[1]->[]<sep>[5, 7]->[7]<sep>[8]->[]<sep>[7, 6]->[6]<sep>[8, 0, 3]->[0, 3]<sep>[0, 2, 1, 8, 4, 7, 6, 3]->[2, 1, 8]<sep>[7, 6, 3, 8, 5, 9, 0, 4, 1]->[6, 3, 8]<sep>[5]->[]<sep>[3, 6, 8, 1]->[6, 8, 1]<sep>[3, 9, 1, 7, 5, 4, 2]->[9, 1, 7]<sep>[2, 5, 1]->[5, 1]<sep>[7, 9, 3, 8, 4]->[9, 3, 8]
c012
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but elements 2 through 4".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [1, 5, 1, 6, 3, 1, 6, 0] -> [1, 6, 3, 1, 6] [3, 4, 5, 7, 6, 0, 8, 9, 2, 1] -> [6, 0] [2, 4, 0, 3, 7, 9, 6, 1] -> [3, 7, 9] [2, 7, 9, 1, 0, 8, 3, 4, 5, 6] -> [1, 0, 8, 3, 4, 5] [1, 4, 9, 3, 7, 8, 6] -> [9, 3, 7, 8] [2, 3, 5, 4, 7, 1] -> [4, 7] [5, 9, 9, 3, 3, 9] -> [] [1, 2, 1, 4, 5, 5] -> [1, 4]
[1, 3, 1, 3, 3, 6]->[1, 3, 3]<sep>[7, 0, 6, 3, 4, 1, 8]->[]<sep>[1, 2, 5, 0, 4, 3, 7, 6, 7, 9]->[5, 0]<sep>[3, 6, 5, 2, 7, 5, 1, 8, 9, 4]->[7, 5, 1, 8]<sep>[1, 2, 5, 4, 0, 0, 2, 8, 8, 1]->[5, 4]<sep>[2, 3, 9, 5, 4, 8, 1, 7]->[5, 4]<sep>[1, 4, 0, 2, 6, 3, 8]->[0, 2, 6, 3]<sep>[1, 1, 5, 3]->[5]<sep>[6, 7, 1, 2, 8, 3, 0, 9, 2, 5]->[9, 2]<sep>[2, 4, 1, 1, 2, 6, 6]->[1, 2, 6]<sep>[2, 3, 7, 9, 4, 1]->[9, 4]<sep>[4, 5, 8, 0, 8, 0, 7, 7]->[0, 7]<sep>[2, 4, 9, 2, 0, 8, 4, 5]->[2, 0, 8]<sep>[3, 5, 0, 4, 4, 2, 1, 8, 9, 6]->[4, 2, 1]<sep>[4, 5, 1, 6, 2, 7, 0, 8]->[7, 0]<sep>[1, 5, 8, 4, 9, 2, 9, 6, 5, 9]->[8, 4, 9, 2, 9]<sep>[4, 5, 5, 5, 9, 3, 3, 4, 4, 9]->[3, 3]<sep>[3, 6, 9, 5, 9, 1, 5, 2]->[9, 1, 5, 2]<sep>[3, 6, 4, 9, 0, 7, 5, 2, 8, 1]->[0, 7, 5, 2]<sep>[3, 6, 6, 9, 4, 0, 7, 0, 1, 2]->[4, 0, 7, 0]<sep>[4, 6, 5, 3, 0, 8, 7, 2, 9]->[8, 7, 2]<sep>[2, 3, 9, 1, 0, 4, 7, 6]->[1, 0]<sep>[1, 4, 8, 0, 2, 0, 3, 1, 6, 8]->[8, 0, 2, 0]<sep>[2, 3, 4, 2, 7, 9, 7, 8, 9]->[2, 7]
c015
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements M + 2 through N + 2, M = element 1, N = element 2".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [7, 8, 9, 3, 4, 5, 1, 2] -> [7, 8, 9, 3, 4, 5] [7, 4, 3, 0, 9, 6, 8, 2] -> [7, 4, 3, 0, 9, 6] [4, 0, 1, 3, 2, 5, 7] -> [4, 0, 1, 3, 2] [8, 6] -> [] [9, 5, 2, 0, 1] -> [9, 5, 2] [7, 5, 9, 4, 8, 1, 0, 6, 2] -> [7, 5, 9, 4, 8, 1, 0] [5, 6, 7, 0, 4, 9] -> [5, 6, 7, 0] [6, 4, 0, 7] -> [6, 4]
[3, 1, 4, 0, 2, 7, 6, 9, 8]->[3, 1, 4, 0, 2, 7, 6]<sep>[0, 5, 2, 7, 9, 3, 6, 4, 8, 1]->[0, 5, 2, 7, 9, 3, 6, 4]<sep>[7, 2, 5, 8]->[7, 2]<sep>[9, 7, 1]->[9]<sep>[2, 5, 8, 0, 1, 3, 4]->[2, 5, 8, 0, 1]<sep>[8, 7]->[]<sep>[6, 1]->[]<sep>[1, 5, 2, 0, 9, 8, 6, 3, 4, 7]->[1, 5, 2, 0, 9, 8, 6, 3]<sep>[5, 3, 1, 4, 9, 0, 2, 6, 8, 7]->[5, 3, 1, 4, 9, 0, 2, 6]<sep>[1, 7, 3, 0, 8]->[1, 7, 3]<sep>[7, 6, 2, 1, 8, 4, 0]->[7, 6, 2, 1, 8]<sep>[7, 1, 4, 8, 2, 3, 6]->[7, 1, 4, 8, 2]<sep>[3, 1, 6]->[3]<sep>[9, 5, 4, 8, 6, 2]->[9, 5, 4, 8]<sep>[0, 8, 3, 9]->[0, 8]<sep>[6, 3, 9, 0, 4]->[6, 3, 9]<sep>[6, 7, 1, 2, 3, 5, 4, 0, 8, 9]->[6, 7, 1, 2, 3, 5, 4, 0]<sep>[5, 0, 8, 2]->[5, 0]<sep>[0, 5, 1, 9, 6, 2]->[0, 5, 1, 9]<sep>[4, 8, 7]->[4]<sep>[0, 5, 6, 9, 3, 8, 1, 2]->[0, 5, 6, 9, 3, 8]<sep>[5, 2, 4, 0, 1, 3, 8, 9, 7]->[5, 2, 4, 0, 1, 3, 8]<sep>[6, 7, 1, 2, 8, 9, 5, 4, 3]->[6, 7, 1, 2, 8, 9, 5]<sep>[9, 3, 4, 5, 7, 6, 2, 8]->[9, 3, 4, 5, 7, 6]
c030
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the last two elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 1, 7, 8, 9, 4, 0, 3, 2] -> [2, 1, 7, 8, 9, 4, 0, 3, 2] [0, 8, 5, 2, 7, 1, 4, 6, 9, 3] -> [3, 8, 5, 2, 7, 1, 4, 6, 9, 3] [7, 1, 0, 6, 3] -> [3, 1, 0, 6, 3] [5, 8, 6, 1, 0, 9, 7] -> [7, 8, 6, 1, 0, 9, 7] [3, 8, 6, 0] -> [0, 8, 6, 0] [8, 5, 7, 4, 2, 3, 6] -> [6, 5, 7, 4, 2, 3, 6] [0, 7, 1, 3, 4, 9, 6, 5] -> [5, 7, 1, 3, 4, 9, 6, 5] [1, 4, 9, 8, 2, 0, 5, 3, 6, 7] -> [7, 4, 9, 8, 2, 0, 5, 3, 6, 7]
[4, 0, 1]->[1, 0, 1]<sep>[4, 6, 8]->[8, 6, 8]<sep>[0, 9]->[9, 9]<sep>[5, 1, 9]->[9, 1, 9]<sep>[0]->[0]<sep>[6, 2, 1, 9, 4]->[4, 2, 1, 9, 4]<sep>[8, 3]->[3, 3]<sep>[2, 9, 7, 5, 3, 8, 1, 4]->[4, 9, 7, 5, 3, 8, 1, 4]<sep>[5, 6, 7, 4]->[4, 6, 7, 4]<sep>[0, 2]->[2, 2]<sep>[9, 0]->[0, 0]<sep>[3, 2, 0, 1, 6, 8, 7, 5]->[5, 2, 0, 1, 6, 8, 7, 5]<sep>[1, 3, 0, 2, 4, 5]->[5, 3, 0, 2, 4, 5]<sep>[4, 1, 2]->[2, 1, 2]<sep>[6, 1, 7, 5, 3, 2, 8, 4, 9]->[9, 1, 7, 5, 3, 2, 8, 4, 9]<sep>[9, 4, 7, 5, 6, 1]->[1, 4, 7, 5, 6, 1]<sep>[5, 8, 6, 2]->[2, 8, 6, 2]<sep>[0, 3, 1, 2, 7]->[7, 3, 1, 2, 7]<sep>[2, 3, 5, 1, 9]->[9, 3, 5, 1, 9]<sep>[4, 9, 3, 6, 2, 8, 7]->[7, 9, 3, 6, 2, 8, 7]<sep>[3, 0, 4, 8]->[8, 0, 4, 8]<sep>[5, 2, 0, 8, 9, 6]->[6, 2, 0, 8, 9, 6]<sep>[9, 5, 4, 7, 0, 3, 2, 6, 1, 8]->[8, 5, 4, 7, 0, 3, 2, 6, 1, 8]<sep>[2, 7, 0, 4, 9, 6, 8, 3, 5]->[5, 7, 0, 4, 9, 6, 8, 3, 5]
c020
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace the first element with the last element".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 8, 4, 3, 7, 6, 2, 0] -> [4, 4, 4, 3, 7, 6, 2, 0] [4, 8, 3, 6, 5, 1, 0] -> [3, 3, 3, 6, 5, 1, 0] [3, 1, 2, 8, 7, 9, 5] -> [2, 2, 2, 8, 7, 9, 5] [9, 0, 5, 7, 3] -> [5, 5, 5, 7, 3] [2, 1, 3, 8] -> [3, 3, 3, 8] [3, 4, 5] -> [5, 5, 5] [8, 2, 3, 9, 6, 7, 5] -> [3, 3, 3, 9, 6, 7, 5] [6, 3, 4] -> [4, 4, 4]
[0, 3, 8, 9, 5, 1, 6, 7, 2, 4]->[8, 8, 8, 9, 5, 1, 6, 7, 2, 4]<sep>[1, 4, 2, 0, 3, 5]->[2, 2, 2, 0, 3, 5]<sep>[2, 6, 7, 9, 4, 8, 1]->[7, 7, 7, 9, 4, 8, 1]<sep>[8, 5, 1, 0, 9, 2, 7, 4, 3, 6]->[1, 1, 1, 0, 9, 2, 7, 4, 3, 6]<sep>[9, 8, 4, 6, 2, 1, 5, 0, 7]->[4, 4, 4, 6, 2, 1, 5, 0, 7]<sep>[0, 8, 6, 9, 1, 3, 7, 5, 2]->[6, 6, 6, 9, 1, 3, 7, 5, 2]<sep>[3, 1, 2, 0, 4, 8, 9, 5, 6]->[2, 2, 2, 0, 4, 8, 9, 5, 6]<sep>[7, 4, 8, 9]->[8, 8, 8, 9]<sep>[3, 4, 6, 0, 8, 5, 7, 1]->[6, 6, 6, 0, 8, 5, 7, 1]<sep>[8, 3, 9, 5, 0, 7]->[9, 9, 9, 5, 0, 7]<sep>[0, 1, 6, 4, 7, 9]->[6, 6, 6, 4, 7, 9]<sep>[6, 0, 2, 7, 8, 4, 3, 9, 5, 1]->[2, 2, 2, 7, 8, 4, 3, 9, 5, 1]<sep>[8, 5, 0, 1, 6]->[0, 0, 0, 1, 6]<sep>[3, 7, 1, 9, 4, 5, 2, 8]->[1, 1, 1, 9, 4, 5, 2, 8]<sep>[1, 4, 2]->[2, 2, 2]<sep>[9, 5, 6, 1, 2, 7, 0, 8, 3]->[6, 6, 6, 1, 2, 7, 0, 8, 3]<sep>[5, 2, 4, 8, 0, 9, 6, 3, 1, 7]->[4, 4, 4, 8, 0, 9, 6, 3, 1, 7]<sep>[3, 4, 0, 7, 8]->[0, 0, 0, 7, 8]<sep>[5, 8, 0]->[0, 0, 0]<sep>[8, 9, 6, 4]->[6, 6, 6, 4]<sep>[8, 3, 1, 4, 0]->[1, 1, 1, 4, 0]<sep>[1, 9, 0, 5, 3, 6, 2, 7]->[0, 0, 0, 5, 3, 6, 2, 7]<sep>[1, 5, 9, 6]->[9, 9, 9, 6]<sep>[8, 3, 4, 9, 2, 7]->[4, 4, 4, 9, 2, 7]
c054
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace elements 1 and 2 with element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 8, 4] -> [8] [7, 1, 2, 9, 3, 0, 8, 4, 5, 6] -> [1, 2, 9, 3, 0, 8, 4, 5] [7, 9, 3, 6, 5, 1, 2, 8, 0] -> [9, 3, 6, 5, 1, 2, 8] [1, 6, 7, 2, 3, 5, 0, 4, 9] -> [6, 7, 2, 3, 5, 0, 4] [0, 5] -> [] [8, 7, 5, 2, 0, 4] -> [7, 5, 2, 0] [8, 3, 6, 1] -> [3, 6] [8, 2, 1, 0, 9, 7, 3, 6] -> [2, 1, 0, 9, 7, 3]
[3, 4, 6, 5]->[4, 6]<sep>[9, 7, 3, 2, 1]->[7, 3, 2]<sep>[0, 2, 4, 1, 7, 3, 9, 8]->[2, 4, 1, 7, 3, 9]<sep>[7, 9]->[]<sep>[1, 2, 0, 5, 4, 8, 9, 3, 7, 6]->[2, 0, 5, 4, 8, 9, 3, 7]<sep>[4, 1, 0, 3, 8, 5, 7]->[1, 0, 3, 8, 5]<sep>[0, 9, 7]->[9]<sep>[6, 1, 9, 8, 2]->[1, 9, 8]<sep>[9, 0]->[]<sep>[7, 0, 1, 4, 5, 2, 6]->[0, 1, 4, 5, 2]<sep>[5, 0, 6, 1, 8]->[0, 6, 1]<sep>[8, 4, 0, 5, 7, 6]->[4, 0, 5, 7]<sep>[3, 8, 0, 4, 1, 2, 5, 9]->[8, 0, 4, 1, 2, 5]<sep>[0, 5, 3, 8, 7, 1, 4, 6, 2, 9]->[5, 3, 8, 7, 1, 4, 6, 2]<sep>[5, 8, 4, 9, 6, 7, 0]->[8, 4, 9, 6, 7]<sep>[0, 6, 4, 3, 1, 2, 5, 8, 7, 9]->[6, 4, 3, 1, 2, 5, 8, 7]<sep>[1, 3, 5, 7, 6, 2]->[3, 5, 7, 6]<sep>[4, 1, 8, 5, 3, 6]->[1, 8, 5, 3]<sep>[3, 7, 0, 4, 5, 9, 2]->[7, 0, 4, 5, 9]<sep>[2, 0, 9, 8, 7, 1, 6, 3]->[0, 9, 8, 7, 1, 6]<sep>[8, 1, 3, 6, 2, 0, 9, 4, 7]->[1, 3, 6, 2, 0, 9, 4]<sep>[9, 3, 2, 6]->[3, 2]<sep>[9, 1, 4]->[1]<sep>[3, 8, 9, 0, 6, 2, 4, 7, 5]->[8, 9, 0, 6, 2, 4, 7]
c064
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first and last elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 3, 2, 4, 6, 7] -> [9, 5, 3, 2, 4, 6, 7] [6, 8, 2, 0, 1] -> [6, 5, 8, 2, 0, 1] [0, 1, 8, 4, 2, 6, 9, 7, 5] -> [0, 8, 1, 8, 4, 2, 6, 9, 7, 5] [0, 1, 5, 3, 2, 6, 9] -> [0, 8, 1, 5, 3, 2, 6, 9] [6, 7, 9, 1, 0] -> [6, 5, 7, 9, 1, 0] [6, 8, 3, 0, 5, 2, 4, 7] -> [6, 5, 8, 3, 0, 5, 2, 4, 7] [3, 0, 1, 4, 5, 9] -> [3, 8, 0, 1, 4, 5, 9] [0, 7, 1, 2, 4] -> [0, 8, 7, 1, 2, 4]
[4, 6, 8]->[4, 8, 6, 8]<sep>[6, 5, 3, 1, 7, 9, 4, 2, 0, 8]->[6, 5, 5, 3, 1, 7, 9, 4, 2, 0, 8]<sep>[5, 2, 6, 7, 4, 9, 1]->[5, 5, 2, 6, 7, 4, 9, 1]<sep>[7, 1]->[7, 5, 1]<sep>[9, 7, 4, 8, 0, 6, 2]->[9, 5, 7, 4, 8, 0, 6, 2]<sep>[2, 9]->[2, 8, 9]<sep>[8, 1, 9]->[8, 5, 1, 9]<sep>[6, 8, 3, 2, 4, 1, 5, 9, 0]->[6, 5, 8, 3, 2, 4, 1, 5, 9, 0]<sep>[4, 1, 9, 3, 8, 7, 0, 6, 5, 2]->[4, 8, 1, 9, 3, 8, 7, 0, 6, 5, 2]<sep>[7, 1, 6]->[7, 5, 1, 6]<sep>[1, 9, 0, 7, 5, 6, 8, 2, 3]->[1, 8, 9, 0, 7, 5, 6, 8, 2, 3]<sep>[0, 5, 7, 2, 3, 6, 8, 1, 9, 4]->[0, 8, 5, 7, 2, 3, 6, 8, 1, 9, 4]<sep>[7, 2]->[7, 5, 2]<sep>[3, 0, 4, 2]->[3, 8, 0, 4, 2]<sep>[9, 3, 2, 4, 5, 7, 6, 8]->[9, 5, 3, 2, 4, 5, 7, 6, 8]<sep>[9, 7, 0, 6, 4, 5, 8, 3]->[9, 5, 7, 0, 6, 4, 5, 8, 3]<sep>[0, 4, 3, 1]->[0, 8, 4, 3, 1]<sep>[6, 8, 1, 9, 0, 5, 7, 4, 3]->[6, 5, 8, 1, 9, 0, 5, 7, 4, 3]<sep>[3, 1, 4]->[3, 8, 1, 4]<sep>[0, 2, 9, 7, 5, 1, 3, 6]->[0, 8, 2, 9, 7, 5, 1, 3, 6]<sep>[3, 1]->[3, 8, 1]<sep>[9, 8, 1, 4]->[9, 5, 8, 1, 4]<sep>[9, 6, 3, 0, 1, 8, 2, 7, 5, 4]->[9, 5, 6, 3, 0, 1, 8, 2, 7, 5, 4]<sep>[4, 9, 5, 2, 8, 1]->[4, 8, 9, 5, 2, 8, 1]
c024
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert as element 2: 8 if element 1 > 5 else 5".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [31, 21, 57] -> [57, 57, 3, 31, 21] [61] -> [61, 61, 1, 61, 61] [90, 60, 70, 14, 44, 86, 43, 80, 56, 2] -> [90, 2, 10, 90, 2] [65] -> [65, 65, 1, 65, 65] [8, 63, 25, 2, 35, 41, 61, 79, 95] -> [95, 95, 9, 8, 2] [7, 9, 61, 37] -> [61, 37, 4, 7, 7] [9, 67] -> [67, 67, 2, 9, 9] [45, 1, 36] -> [45, 36, 3, 45, 1]
[24, 6, 30, 15, 2, 4, 94, 52]->[94, 52, 8, 24, 2]<sep>[20, 63, 38, 18, 69, 87]->[87, 87, 6, 20, 18]<sep>[5, 33, 59, 10, 16]->[59, 16, 5, 5, 5]<sep>[17, 33, 7, 23, 9, 54, 21, 5, 12, 36]->[54, 36, 10, 17, 5]<sep>[7, 66, 57, 8, 5, 0, 35, 78]->[78, 78, 8, 7, 0]<sep>[69, 8]->[69, 8, 2, 69, 8]<sep>[33, 44, 2, 0, 9, 62, 26, 92, 4]->[92, 4, 9, 33, 0]<sep>[0, 74, 19, 18, 96, 3, 27, 40, 6, 75]->[96, 75, 10, 0, 0]<sep>[68]->[68, 68, 1, 68, 68]<sep>[51, 56, 88, 98, 94, 64]->[98, 64, 6, 51, 51]<sep>[9, 38, 5, 3, 15, 1]->[38, 1, 6, 9, 1]<sep>[50, 83, 28]->[83, 28, 3, 50, 28]<sep>[93, 24]->[93, 24, 2, 93, 24]<sep>[2, 3, 94, 39, 48, 1, 4, 67]->[94, 67, 8, 2, 1]<sep>[49, 4, 6, 98, 87, 55, 72, 96, 46]->[98, 46, 9, 49, 4]<sep>[13, 58, 53, 7, 4]->[58, 4, 5, 13, 4]<sep>[43, 6, 64, 1, 8, 76, 5]->[76, 5, 7, 43, 1]<sep>[49, 74, 80, 11]->[80, 11, 4, 49, 11]<sep>[9, 50, 1, 2, 44, 4, 97]->[97, 97, 7, 9, 1]<sep>[3, 10, 62, 29]->[62, 29, 4, 3, 3]<sep>[0, 5, 83, 66, 48, 8, 17, 37, 61, 75]->[83, 75, 10, 0, 0]<sep>[26, 3, 2, 0, 1]->[26, 1, 5, 26, 0]<sep>[79]->[79, 79, 1, 79, 79]<sep>[6, 89, 2, 4, 8, 1, 85]->[89, 85, 7, 6, 1]
c076
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the maximum, last element, length, first element, and minimum, in that order".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 0, 2, 1, 3, 6, 8, 9, 7, 5] -> [4, 0, 2, 1, 3, 6, 8, 9, 7, 5, 3] [2, 8, 7, 5, 0, 4, 6, 1] -> [2, 8, 7, 5, 0, 4, 6, 1, 3] [5, 3, 4, 1, 9] -> [5, 3, 4, 1, 9, 3] [6, 5, 0] -> [6, 5, 0, 3] [7, 1] -> [7, 1, 3] [4, 9, 1, 6, 0, 8] -> [4, 9, 1, 6, 0, 8, 3] [0, 8] -> [0, 8, 3] [3, 5, 7, 6, 9, 1, 8, 2, 4] -> [3, 5, 7, 6, 9, 1, 8, 2, 4, 3]
[2, 9, 1, 4, 5, 7, 8]->[2, 9, 1, 4, 5, 7, 8, 3]<sep>[]->[3]<sep>[5, 6, 1, 4]->[5, 6, 1, 4, 3]<sep>[9, 4, 3, 6, 2, 1, 7, 8, 5, 0]->[9, 4, 3, 6, 2, 1, 7, 8, 5, 0, 3]<sep>[1]->[1, 3]<sep>[3, 8, 1, 4, 0, 6, 7, 5, 2, 9]->[3, 8, 1, 4, 0, 6, 7, 5, 2, 9, 3]<sep>[4, 5, 7, 2, 9, 1, 0]->[4, 5, 7, 2, 9, 1, 0, 3]<sep>[0, 9]->[0, 9, 3]<sep>[5, 9, 2, 4, 0]->[5, 9, 2, 4, 0, 3]<sep>[2, 8, 1, 6, 9]->[2, 8, 1, 6, 9, 3]<sep>[8, 2, 4, 0]->[8, 2, 4, 0, 3]<sep>[4, 0, 2, 6, 5, 8, 7]->[4, 0, 2, 6, 5, 8, 7, 3]<sep>[9, 8, 7, 5, 2, 6]->[9, 8, 7, 5, 2, 6, 3]<sep>[6, 4, 8, 9, 5, 0, 7, 1]->[6, 4, 8, 9, 5, 0, 7, 1, 3]<sep>[5, 7, 9, 3, 4, 2, 0, 6, 8, 1]->[5, 7, 9, 3, 4, 2, 0, 6, 8, 1, 3]<sep>[1, 0, 7, 3, 6, 4, 9, 5]->[1, 0, 7, 3, 6, 4, 9, 5, 3]<sep>[6, 8, 9, 1, 7, 2]->[6, 8, 9, 1, 7, 2, 3]<sep>[5, 7, 4]->[5, 7, 4, 3]<sep>[4, 6, 8, 9]->[4, 6, 8, 9, 3]<sep>[2, 7, 1]->[2, 7, 1, 3]<sep>[2, 6, 7, 4, 1, 8, 5, 3, 9]->[2, 6, 7, 4, 1, 8, 5, 3, 9, 3]<sep>[7]->[7, 3]<sep>[0]->[0, 3]<sep>[6, 2, 8, 5, 0, 1, 9, 7, 4]->[6, 2, 8, 5, 0, 1, 9, 7, 4, 3]
c037
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 7, 0, 5] -> [4, 4, 7, 0, 5] [1] -> [1, 1] [5, 2] -> [5, 5, 2] [1, 4, 0, 8, 6, 7, 3, 2] -> [1, 1, 4, 0, 8, 6, 7, 3, 2] [5] -> [5, 5] [6, 9, 2, 1, 3] -> [6, 6, 9, 2, 1, 3] [4, 3, 6, 2, 5, 0, 7, 8, 1, 9] -> [4, 4, 3, 6, 2, 5, 0, 7, 8, 1, 9] [2, 4, 1, 3, 8, 0, 9, 7, 5, 6] -> [2, 2, 4, 1, 3, 8, 0, 9, 7, 5, 6]
[4, 2, 5, 1, 7, 3, 6]->[4, 4, 2, 5, 1, 7, 3, 6]<sep>[7, 8, 9, 0, 3]->[7, 7, 8, 9, 0, 3]<sep>[2, 9, 4, 8, 7, 6, 3]->[2, 2, 9, 4, 8, 7, 6, 3]<sep>[2, 8, 0, 6, 1, 5, 9, 4, 7]->[2, 2, 8, 0, 6, 1, 5, 9, 4, 7]<sep>[7, 9, 6, 0, 3, 8, 2, 5, 4, 1]->[7, 7, 9, 6, 0, 3, 8, 2, 5, 4, 1]<sep>[3]->[3, 3]<sep>[6, 5, 2]->[6, 6, 5, 2]<sep>[0]->[0, 0]<sep>[8, 6]->[8, 8, 6]<sep>[6, 7, 8, 9, 3, 0, 5, 4, 1]->[6, 6, 7, 8, 9, 3, 0, 5, 4, 1]<sep>[6, 7, 0, 4, 2, 5, 9, 1, 8, 3]->[6, 6, 7, 0, 4, 2, 5, 9, 1, 8, 3]<sep>[8, 9, 1]->[8, 8, 9, 1]<sep>[8, 4, 3, 9, 0]->[8, 8, 4, 3, 9, 0]<sep>[4, 1, 2, 8, 5, 3]->[4, 4, 1, 2, 8, 5, 3]<sep>[1, 9, 4, 0, 7, 6, 8, 3]->[1, 1, 9, 4, 0, 7, 6, 8, 3]<sep>[6, 9, 1, 4, 7, 0, 2, 5]->[6, 6, 9, 1, 4, 7, 0, 2, 5]<sep>[3, 5]->[3, 3, 5]<sep>[2, 9, 8, 6, 7, 0]->[2, 2, 9, 8, 6, 7, 0]<sep>[1, 7, 3, 4, 6, 8, 2, 9, 5]->[1, 1, 7, 3, 4, 6, 8, 2, 9, 5]<sep>[9, 7, 5, 2]->[9, 9, 7, 5, 2]<sep>[0, 9, 3]->[0, 0, 9, 3]<sep>[4, 8, 1, 0, 6, 9, 5]->[4, 4, 8, 1, 0, 6, 9, 5]<sep>[0, 5, 2, 7, 9, 4]->[0, 0, 5, 2, 7, 9, 4]<sep>[7, 0, 1, 3]->[7, 7, 0, 1, 3]
c050
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [3, 4, 6, 4] -> [4] [3, 7, 9, 7, 1, 1, 8, 9] -> [7] [2, 5, 3, 1, 0, 4, 7, 8] -> [3] [7, 6, 8, 3, 1, 9, 0, 2, 4] -> [2] [4, 2, 6, 3, 1, 0] -> [1] [2, 6, 6] -> [6] [2, 8, 6, 3, 1] -> [6] [4, 2, 5, 7, 6, 9, 8] -> [6]
[4, 6, 2, 3, 8, 5, 0, 1, 9]->[8]<sep>[5, 7, 2, 3, 1, 0, 9, 6]->[0]<sep>[4, 9, 2, 3, 6, 0]->[6]<sep>[7, 8, 9, 4, 6, 1, 2, 5, 0, 3]->[5]<sep>[1, 7, 3, 2, 5, 6, 8, 9, 0, 4]->[7]<sep>[3, 8, 2, 1, 7, 5, 6, 4]->[1]<sep>[2, 0, 6, 1, 9]->[6]<sep>[5, 4, 0, 3, 7, 9]->[9]<sep>[5, 9, 4, 1, 6, 2, 3, 7, 0]->[2]<sep>[6, 8, 9, 3, 8, 7, 4, 1, 2]->[4]<sep>[2, 5, 3, 9]->[3]<sep>[5, 8, 7, 6, 9, 1, 0, 2]->[1]<sep>[9, 6, 0, 9, 8, 5, 1, 7, 3, 4]->[4]<sep>[8, 5, 3, 4, 1, 9, 7, 0, 2]->[2]<sep>[3, 6, 0, 1, 4, 2, 9, 5, 7, 8]->[1]<sep>[2, 0, 4, 8, 9, 6, 1, 5, 7, 3]->[4]<sep>[5, 2, 3, 7, 8, 9]->[9]<sep>[3, 8, 2, 9, 5, 7, 6]->[9]<sep>[8, 9, 1, 4, 3, 2, 5, 7, 0, 6]->[0]<sep>[2, 6, 7]->[7]<sep>[3, 9, 5, 7, 6]->[7]<sep>[2, 9, 7, 5, 0, 3, 4]->[7]<sep>[4, 9, 5, 8, 1, 6, 7]->[1]<sep>[7, 6, 1, 9, 4, 0, 5, 2, 3, 8]->[2]
c005
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element N + 1, N = element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 1, 5] -> [4, 1, 5, 9] [1, 4, 8, 2, 3, 5, 9, 0, 7, 6] -> [1, 4, 8, 2, 3, 5, 9, 0, 7, 6, 9] [2, 6] -> [2, 6, 9] [4, 6, 1, 0, 5, 8] -> [4, 6, 1, 0, 5, 8, 9] [2, 5, 3, 0, 6, 8, 1, 9] -> [2, 5, 3, 0, 6, 8, 1, 9, 9] [6, 1, 4, 5, 8] -> [6, 1, 4, 5, 8, 9] [3, 8, 9, 7, 5, 6, 1, 4] -> [3, 8, 9, 7, 5, 6, 1, 4, 9] [6, 3, 2, 0] -> [6, 3, 2, 0, 9]
[2, 8, 7, 6]->[2, 8, 7, 6, 9]<sep>[3, 1, 4, 8, 5, 6, 2, 7, 9, 0]->[3, 1, 4, 8, 5, 6, 2, 7, 9, 0, 9]<sep>[0, 3, 7, 2, 4]->[0, 3, 7, 2, 4, 9]<sep>[0, 8, 5, 3, 7, 1, 2]->[0, 8, 5, 3, 7, 1, 2, 9]<sep>[0, 8, 7, 4]->[0, 8, 7, 4, 9]<sep>[]->[9]<sep>[3, 8, 1, 4, 6, 7, 2]->[3, 8, 1, 4, 6, 7, 2, 9]<sep>[8, 5, 1]->[8, 5, 1, 9]<sep>[5]->[5, 9]<sep>[4, 3]->[4, 3, 9]<sep>[0, 5, 6, 3, 2, 1, 4, 7, 8]->[0, 5, 6, 3, 2, 1, 4, 7, 8, 9]<sep>[8, 1, 7, 3, 5, 0]->[8, 1, 7, 3, 5, 0, 9]<sep>[7, 0, 2, 9, 5, 8]->[7, 0, 2, 9, 5, 8, 9]<sep>[7]->[7, 9]<sep>[7, 0, 5, 4, 3, 2, 9, 1, 6]->[7, 0, 5, 4, 3, 2, 9, 1, 6, 9]<sep>[7, 9, 6, 2, 8, 3, 4, 0, 5, 1]->[7, 9, 6, 2, 8, 3, 4, 0, 5, 1, 9]<sep>[0, 6, 1, 9, 2, 8, 5]->[0, 6, 1, 9, 2, 8, 5, 9]<sep>[3]->[3, 9]<sep>[0, 5, 6, 7, 8, 4, 1, 2]->[0, 5, 6, 7, 8, 4, 1, 2, 9]<sep>[3, 0]->[3, 0, 9]<sep>[2, 1, 3, 4, 6]->[2, 1, 3, 4, 6, 9]<sep>[0, 7, 1, 3, 4, 5, 9, 2, 6]->[0, 7, 1, 3, 4, 5, 9, 2, 6, 9]<sep>[0, 7, 5, 9, 1, 8, 4, 2, 3, 6]->[0, 7, 5, 9, 1, 8, 4, 2, 3, 6, 9]<sep>[4, 7, 2]->[4, 7, 2, 9]
c038
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 9".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 0, 4, 1, 6, 8, 9] -> [7, 5, 0, 4, 1, 6, 8, 9] [2, 6, 9, 8] -> [7, 2, 6, 9, 8] [0, 6, 2, 4, 8, 1, 9] -> [7, 0, 6, 2, 4, 8, 1, 9] [1, 8, 2, 4, 9, 0, 3] -> [7, 1, 8, 2, 4, 9, 0, 3] [1, 9, 2, 0, 6, 4, 8, 5, 3] -> [7, 1, 9, 2, 0, 6, 4, 8, 5, 3] [7, 4, 1, 5, 6, 9, 8, 0, 2, 3] -> [7, 7, 4, 1, 5, 6, 9, 8, 0, 2, 3] [0, 8, 1, 3, 7, 6, 5, 9, 2] -> [7, 0, 8, 1, 3, 7, 6, 5, 9, 2] [5, 3, 2, 6, 0, 4, 8, 7] -> [7, 5, 3, 2, 6, 0, 4, 8, 7]
[]->[7]<sep>[8, 9, 5]->[7, 8, 9, 5]<sep>[1, 3, 9, 6, 5]->[7, 1, 3, 9, 6, 5]<sep>[2, 5, 8, 0, 6, 3, 7, 9, 4, 1]->[7, 2, 5, 8, 0, 6, 3, 7, 9, 4, 1]<sep>[8, 4, 6, 0, 3, 2, 5, 7, 1]->[7, 8, 4, 6, 0, 3, 2, 5, 7, 1]<sep>[3]->[7, 3]<sep>[4, 9, 7, 3, 5, 2, 0, 1, 6, 8]->[7, 4, 9, 7, 3, 5, 2, 0, 1, 6, 8]<sep>[4, 0]->[7, 4, 0]<sep>[2, 8, 3, 1]->[7, 2, 8, 3, 1]<sep>[7, 2, 6, 5, 1, 0, 3, 8, 4, 9]->[7, 7, 2, 6, 5, 1, 0, 3, 8, 4, 9]<sep>[6, 1, 3, 9, 0, 4]->[7, 6, 1, 3, 9, 0, 4]<sep>[8, 5, 3, 0, 6, 9, 1, 2]->[7, 8, 5, 3, 0, 6, 9, 1, 2]<sep>[6]->[7, 6]<sep>[3, 5]->[7, 3, 5]<sep>[1]->[7, 1]<sep>[3, 0, 1, 2, 7, 4, 5, 9]->[7, 3, 0, 1, 2, 7, 4, 5, 9]<sep>[2, 3, 5, 9]->[7, 2, 3, 5, 9]<sep>[2, 8, 4]->[7, 2, 8, 4]<sep>[2, 9, 4, 8, 7, 6]->[7, 2, 9, 4, 8, 7, 6]<sep>[6, 2, 3, 8, 0]->[7, 6, 2, 3, 8, 0]<sep>[0, 2, 1]->[7, 0, 2, 1]<sep>[4, 6]->[7, 4, 6]<sep>[5, 8, 1, 9, 4, 6]->[7, 5, 8, 1, 9, 4, 6]<sep>[5, 4, 9, 8, 2]->[7, 5, 4, 9, 8, 2]
c046
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [2, 6, 5, 9, 7, 1, 8, 3, 4] -> [8] [0, 4, 7, 3, 2, 9, 1, 8, 5, 6] -> [1] [9, 3, 2, 8] -> [] [0, 4, 5, 2, 8, 7, 1, 6] -> [1] [6] -> [] [0, 3, 5, 8, 2] -> [] [6, 8] -> [] [4, 7, 6] -> []
[9, 0, 6, 5, 1, 4, 3, 8]->[3]<sep>[2, 4, 9, 0, 1, 5]->[]<sep>[6, 4, 8, 1]->[]<sep>[7, 1, 4, 3, 2]->[]<sep>[7]->[]<sep>[5, 0]->[]<sep>[4, 6, 5, 3]->[]<sep>[7, 6, 1, 0, 8, 4, 9, 3]->[9]<sep>[7, 2, 9]->[]<sep>[1, 0, 2]->[]<sep>[2, 0, 6, 4, 9, 1, 3, 8, 5]->[3]<sep>[6, 3, 1, 8, 7, 4, 9, 0]->[9]<sep>[3, 2, 9, 7, 8, 4, 1]->[1]<sep>[1, 2, 8, 9, 7, 5, 0, 3, 6, 4]->[0]<sep>[1, 3, 8, 9, 4, 2, 0, 5, 6]->[0]<sep>[1, 9, 2, 7, 4, 0]->[]<sep>[0, 4, 3, 8, 7, 6, 2, 5, 1, 9]->[2]<sep>[6, 2, 4, 3, 7, 1, 5, 8, 9, 0]->[5]<sep>[5, 9, 1, 8, 3, 0, 6, 4, 2]->[6]<sep>[7, 3, 2, 8, 0, 5, 1]->[1]<sep>[2, 5, 0, 7, 6, 3, 9]->[9]<sep>[5, 3, 7, 2, 1, 4, 6, 9]->[6]<sep>[4]->[]<sep>[3, 7]->[]
c004
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 7, 3, 8, 3, 8] -> [4, 7, 8, 3, 8] [1, 0, 9, 8, 2, 7, 3, 6, 5, 4] -> [1, 9, 8, 2, 7, 3, 6, 5, 4] [8, 7, 9, 1, 4, 5, 5, 5, 3, 2] -> [8, 9, 1, 4, 5, 5, 5, 3, 2] [7, 0, 8] -> [7, 8] [4, 5, 1, 5, 4, 1, 4, 5] -> [4, 5, 5, 4, 1, 4, 5] [2, 9, 1, 5, 0, 3, 7, 8, 6, 4] -> [2, 9, 5, 0, 3, 7, 8, 6, 4] [3, 2, 9] -> [3, 9] [7, 9, 4, 2, 0, 5, 8] -> [7, 9, 2, 0, 5, 8]
[5, 0, 9, 3]->[5, 9, 3]<sep>[3, 0, 8, 5, 7, 6]->[3, 8, 5, 7, 6]<sep>[4, 5, 0, 5, 3, 1, 6, 9]->[4, 5, 5, 3, 1, 6, 9]<sep>[5, 3, 6, 4, 1, 0, 9]->[5, 6, 4, 1, 0, 9]<sep>[4, 7, 3, 2, 0, 9, 6, 5, 1]->[4, 7, 2, 0, 9, 6, 5, 1]<sep>[5, 6, 0, 4, 5, 2]->[5, 6, 4, 5, 2]<sep>[8, 9, 3, 6, 5, 0, 2, 7, 1, 4]->[8, 9, 6, 5, 0, 2, 7, 1, 4]<sep>[7, 8, 0, 2, 6]->[7, 8, 2, 6]<sep>[6, 0, 9, 3, 9, 5, 8, 4, 1]->[6, 9, 3, 9, 5, 8, 4, 1]<sep>[6, 5, 7, 4, 3, 0, 8, 9]->[6, 7, 4, 3, 0, 8, 9]<sep>[6, 8, 3, 4, 1, 0, 7, 9, 5, 0]->[6, 8, 4, 1, 0, 7, 9, 5, 0]<sep>[2, 0, 7]->[2, 7]<sep>[4, 1, 7]->[4, 7]<sep>[4, 6, 2, 0, 1, 3, 9, 5, 1, 7]->[4, 6, 0, 1, 3, 9, 5, 1, 7]<sep>[3, 5, 1, 0, 1, 2, 0, 2]->[3, 5, 0, 1, 2, 0, 2]<sep>[5, 8, 0, 1]->[5, 8, 1]<sep>[4, 2, 8, 0, 1, 2]->[4, 8, 0, 1, 2]<sep>[5, 1, 8, 8]->[5, 8, 8]<sep>[6, 9, 2, 1, 5, 8, 7, 2]->[6, 9, 1, 5, 8, 7, 2]<sep>[5, 2, 6, 4, 0, 3, 7]->[5, 6, 4, 0, 3, 7]<sep>[3, 7, 1, 7, 8, 3, 1]->[3, 7, 7, 8, 3, 1]<sep>[6, 4, 7, 4, 7, 1, 4, 4, 4]->[6, 7, 4, 7, 1, 4, 4, 4]<sep>[2, 5, 0, 1, 8, 3]->[2, 5, 1, 8, 3]<sep>[6, 2, 9, 1, 5]->[6, 9, 1, 5]
c028
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2 if element 1 > element 2, else remove element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 2, 8, 7, 6, 5, 1, 0] -> [8, 7, 6, 5, 1, 0] [8, 6, 7] -> [7] [3, 8, 6, 0] -> [6, 0] [0, 8, 5, 6, 3, 1, 7, 4, 9] -> [0, 8, 5, 6, 3, 1, 7] [0, 8, 3, 4, 2, 6, 5, 9, 7, 1] -> [0, 8, 3, 4, 2, 6, 5, 9] [3, 4, 9] -> [3] [6, 7, 8, 9, 3, 4, 0, 1, 5, 2] -> [8, 9, 3, 4, 0, 1, 5, 2] [5, 2, 9, 6, 8, 1, 7] -> [5, 2, 9, 6, 8]
[6, 2, 3]->[3]<sep>[7, 0, 4, 8, 2]->[4, 8, 2]<sep>[4, 8, 1, 3, 7, 9, 0]->[1, 3, 7, 9, 0]<sep>[6, 8, 2, 5, 9, 7]->[6, 8, 2, 5]<sep>[2, 5, 9, 0, 4]->[2, 5, 9]<sep>[4, 5, 9, 0, 3]->[9, 0, 3]<sep>[8, 2, 9, 1, 4, 6, 5, 0, 7]->[9, 1, 4, 6, 5, 0, 7]<sep>[3, 6, 8, 7, 0, 4, 9, 5, 1, 2]->[8, 7, 0, 4, 9, 5, 1, 2]<sep>[8, 9, 4, 3, 1, 0]->[4, 3, 1, 0]<sep>[4, 6, 9, 0, 7, 3, 5]->[4, 6, 9, 0, 7]<sep>[7, 9, 1]->[1]<sep>[6, 0, 3, 8, 4, 5]->[3, 8, 4, 5]<sep>[7, 1, 3, 8, 6, 2, 5, 4, 9]->[7, 1, 3, 8, 6, 2, 5]<sep>[6, 0, 8, 5, 4, 2, 3, 9]->[6, 0, 8, 5, 4, 2]<sep>[1, 7, 6, 3, 9, 4, 5, 8]->[1, 7, 6, 3, 9, 4]<sep>[1, 6, 9, 7, 4, 0, 5, 2]->[1, 6, 9, 7, 4, 0]<sep>[6, 7, 9, 2, 1, 0, 3]->[9, 2, 1, 0, 3]<sep>[4, 2, 5, 9, 6, 7, 1, 0, 3, 8]->[4, 2, 5, 9, 6, 7, 1, 0]<sep>[1, 0, 5, 7]->[1, 0]<sep>[5, 8, 9, 4, 6, 2, 1, 0, 3]->[9, 4, 6, 2, 1, 0, 3]<sep>[2, 6, 1, 8, 5]->[2, 6, 1]<sep>[2, 7, 5]->[2]<sep>[0, 6, 8, 5]->[0, 6]<sep>[6, 1, 3, 2]->[3, 2]
c032
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove two elements: the first two if element 1 > last element, else the last two".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 8, 4, 2, 3, 0, 6, 7] -> [8, 4, 2, 3, 0, 6, 7] [2, 9, 1, 3, 4, 6, 7, 8, 5] -> [9, 1, 3, 4, 6, 7, 8, 5] [2, 9, 4] -> [9, 4] [9] -> [] [1, 8, 4, 2, 6] -> [8, 4, 2, 6] [7, 1, 8, 3, 2, 4] -> [1, 8, 3, 2, 4] [1, 9] -> [9] [6, 0, 5] -> [0, 5]
[9, 4, 8, 2, 5, 3, 6, 7]->[4, 8, 2, 5, 3, 6, 7]<sep>[9, 8, 3, 2, 1, 0, 7, 5, 6]->[8, 3, 2, 1, 0, 7, 5, 6]<sep>[8, 7, 3]->[7, 3]<sep>[2, 7, 4, 8, 1, 0, 3]->[7, 4, 8, 1, 0, 3]<sep>[4, 2, 0, 9, 8, 3, 5, 7, 6]->[2, 0, 9, 8, 3, 5, 7, 6]<sep>[4]->[]<sep>[6, 2, 7, 9, 0, 3, 8, 1, 5]->[2, 7, 9, 0, 3, 8, 1, 5]<sep>[2]->[]<sep>[1, 8, 9, 0, 2, 4]->[8, 9, 0, 2, 4]<sep>[9, 0]->[0]<sep>[5, 1]->[1]<sep>[0, 4, 5, 6, 1, 9, 2]->[4, 5, 6, 1, 9, 2]<sep>[6, 0, 8, 1]->[0, 8, 1]<sep>[4, 9, 6, 7, 2, 1, 5]->[9, 6, 7, 2, 1, 5]<sep>[1, 3, 8, 6]->[3, 8, 6]<sep>[9, 6, 8, 1, 0, 7]->[6, 8, 1, 0, 7]<sep>[9, 2, 4, 8, 5, 6, 3, 1, 0, 7]->[2, 4, 8, 5, 6, 3, 1, 0, 7]<sep>[6, 7, 5, 8, 0, 9, 1, 4, 2, 3]->[7, 5, 8, 0, 9, 1, 4, 2, 3]<sep>[0, 5, 7, 4, 1, 9, 3, 2]->[5, 7, 4, 1, 9, 3, 2]<sep>[7, 5, 2, 0, 9, 3, 8, 4, 6, 1]->[5, 2, 0, 9, 3, 8, 4, 6, 1]<sep>[8, 4, 1, 9, 3, 5, 7, 2, 0, 6]->[4, 1, 9, 3, 5, 7, 2, 0, 6]<sep>[7, 6, 4, 5, 9]->[6, 4, 5, 9]<sep>[4, 3, 5, 7, 0]->[3, 5, 7, 0]<sep>[9, 6, 0, 5]->[6, 0, 5]
c049
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [7, 6, 4, 5, 3, 9, 2] -> [7, 8, 4, 5, 3, 9, 2] [1, 5, 6, 9] -> [1, 8, 6, 9] [2, 1, 7] -> [2, 8, 7] [5, 6] -> [5, 8] [2, 7, 3, 6, 4, 0, 5, 9, 1] -> [2, 8, 3, 6, 4, 0, 5, 9, 1] [5, 1, 0, 7, 9, 8, 2, 3, 4, 6] -> [5, 8, 0, 7, 9, 8, 2, 3, 4, 6] [4, 1, 9, 0, 6, 2, 5] -> [4, 8, 9, 0, 6, 2, 5] [0, 6, 7, 2, 9, 4, 1, 5] -> [0, 8, 7, 2, 9, 4, 1, 5]
[2, 4, 7, 8, 5, 0, 6, 1, 9, 3]->[2, 8, 7, 8, 5, 0, 6, 1, 9, 3]<sep>[9, 7, 3, 2]->[9, 8, 3, 2]<sep>[0, 1, 5]->[0, 8, 5]<sep>[4, 7]->[4, 8]<sep>[1, 7, 8, 9, 6, 2, 0, 5]->[1, 8, 8, 9, 6, 2, 0, 5]<sep>[4, 7, 3]->[4, 8, 3]<sep>[5, 1, 6, 3]->[5, 8, 6, 3]<sep>[]->[]<sep>[1, 4, 7, 0, 3, 9]->[1, 8, 7, 0, 3, 9]<sep>[0, 5, 4, 2, 9, 7, 1, 3]->[0, 8, 4, 2, 9, 7, 1, 3]<sep>[0, 3, 4, 7, 6, 2, 5, 9, 1]->[0, 8, 4, 7, 6, 2, 5, 9, 1]<sep>[7, 9, 8, 1, 5, 0, 4]->[7, 8, 8, 1, 5, 0, 4]<sep>[3]->[3]<sep>[0, 3, 7]->[0, 8, 7]<sep>[8, 3, 2, 7, 6]->[8, 8, 2, 7, 6]<sep>[2, 3, 9, 4, 5, 6]->[2, 8, 9, 4, 5, 6]<sep>[2, 1]->[2, 8]<sep>[4, 5, 7, 3, 0]->[4, 8, 7, 3, 0]<sep>[6, 9, 5, 4, 0, 8, 1, 7, 2]->[6, 8, 5, 4, 0, 8, 1, 7, 2]<sep>[4, 2, 6, 3]->[4, 8, 6, 3]<sep>[0, 4, 9, 6, 3]->[0, 8, 9, 6, 3]<sep>[2, 0, 6, 5, 4, 1]->[2, 8, 6, 5, 4, 1]<sep>[5, 4, 1, 6, 7, 0, 9]->[5, 8, 1, 6, 7, 0, 9]<sep>[2, 5, 1, 9, 4, 8, 6, 7, 3, 0]->[2, 8, 1, 9, 4, 8, 6, 7, 3, 0]
c017
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 2 with an 8 if there is an element 2".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 2, 7, 0, 5, 3] -> [9, 3, 4, 0, 4, 2, 7, 0, 5, 3, 7, 2, 9, 1] [4, 0, 6, 5, 8] -> [9, 3, 4, 0, 4, 0, 6, 5, 8, 7, 2, 9, 1] [9, 8] -> [9, 3, 4, 0, 9, 8, 7, 2, 9, 1] [6, 5, 2, 0, 1, 7, 9] -> [9, 3, 4, 0, 6, 5, 2, 0, 1, 7, 9, 7, 2, 9, 1] [5, 0, 8, 3] -> [9, 3, 4, 0, 5, 0, 8, 3, 7, 2, 9, 1] [1, 6, 5] -> [9, 3, 4, 0, 1, 6, 5, 7, 2, 9, 1] [7, 4, 6, 9, 3, 0, 8] -> [9, 3, 4, 0, 7, 4, 6, 9, 3, 0, 8, 7, 2, 9, 1] [2, 8, 6, 7] -> [9, 3, 4, 0, 2, 8, 6, 7, 7, 2, 9, 1]
[2, 1, 8, 3, 7, 4]->[9, 3, 4, 0, 2, 1, 8, 3, 7, 4, 7, 2, 9, 1]<sep>[0, 7, 6, 4, 3]->[9, 3, 4, 0, 0, 7, 6, 4, 3, 7, 2, 9, 1]<sep>[5, 6, 7, 8]->[9, 3, 4, 0, 5, 6, 7, 8, 7, 2, 9, 1]<sep>[6, 0, 2, 8, 3]->[9, 3, 4, 0, 6, 0, 2, 8, 3, 7, 2, 9, 1]<sep>[2, 6, 5, 8, 9, 1]->[9, 3, 4, 0, 2, 6, 5, 8, 9, 1, 7, 2, 9, 1]<sep>[3, 5]->[9, 3, 4, 0, 3, 5, 7, 2, 9, 1]<sep>[5, 4, 0, 6, 1]->[9, 3, 4, 0, 5, 4, 0, 6, 1, 7, 2, 9, 1]<sep>[8, 4, 5]->[9, 3, 4, 0, 8, 4, 5, 7, 2, 9, 1]<sep>[8, 1, 5, 3, 7, 2, 4]->[9, 3, 4, 0, 8, 1, 5, 3, 7, 2, 4, 7, 2, 9, 1]<sep>[6, 8, 5, 7]->[9, 3, 4, 0, 6, 8, 5, 7, 7, 2, 9, 1]<sep>[7, 0, 6, 5]->[9, 3, 4, 0, 7, 0, 6, 5, 7, 2, 9, 1]<sep>[6, 8, 4]->[9, 3, 4, 0, 6, 8, 4, 7, 2, 9, 1]<sep>[8, 0, 5, 6, 9, 3]->[9, 3, 4, 0, 8, 0, 5, 6, 9, 3, 7, 2, 9, 1]<sep>[2, 1, 6]->[9, 3, 4, 0, 2, 1, 6, 7, 2, 9, 1]<sep>[]->[9, 3, 4, 0, 7, 2, 9, 1]<sep>[7, 6, 8]->[9, 3, 4, 0, 7, 6, 8, 7, 2, 9, 1]<sep>[5, 6, 1]->[9, 3, 4, 0, 5, 6, 1, 7, 2, 9, 1]<sep>[0, 5, 3, 2, 8, 4]->[9, 3, 4, 0, 0, 5, 3, 2, 8, 4, 7, 2, 9, 1]<sep>[8]->[9, 3, 4, 0, 8, 7, 2, 9, 1]<sep>[8, 2, 1, 4, 3]->[9, 3, 4, 0, 8, 2, 1, 4, 3, 7, 2, 9, 1]<sep>[2, 1, 9, 5, 3, 8, 0]->[9, 3, 4, 0, 2, 1, 9, 5, 3, 8, 0, 7, 2, 9, 1]<sep>[6, 2, 1, 5, 9, 3]->[9, 3, 4, 0, 6, 2, 1, 5, 9, 3, 7, 2, 9, 1]<sep>[5]->[9, 3, 4, 0, 5, 7, 2, 9, 1]<sep>[8, 6, 9, 1, 0, 7, 4]->[9, 3, 4, 0, 8, 6, 9, 1, 0, 7, 4, 7, 2, 9, 1]
c069
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate [9, 3, 4, 0], input, and [7, 2, 9, 1]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 6] -> [2, 8] [0, 4, 6, 2, 3, 1] -> [2, 6, 8, 4, 5, 3] [2] -> [4] [3, 6, 5, 0, 1, 2] -> [5, 8, 7, 2, 3, 4] [1, 6] -> [3, 8] [1, 2] -> [3, 4] [1] -> [3] [5, 3, 0, 1] -> [7, 5, 2, 3]
[5]->[7]<sep>[0, 5, 1, 6, 7, 4]->[2, 7, 3, 8, 9, 6]<sep>[2, 0, 4, 5, 1, 7, 6, 3]->[4, 2, 6, 7, 3, 9, 8, 5]<sep>[6, 5, 7]->[8, 7, 9]<sep>[0, 1, 2, 3, 7, 4, 5, 6]->[2, 3, 4, 5, 9, 6, 7, 8]<sep>[7, 4, 1, 6, 5]->[9, 6, 3, 8, 7]<sep>[3, 7, 6, 1]->[5, 9, 8, 3]<sep>[6]->[8]<sep>[3, 2, 0]->[5, 4, 2]<sep>[1, 0, 6, 3, 2, 5]->[3, 2, 8, 5, 4, 7]<sep>[7]->[9]<sep>[]->[]<sep>[0, 2, 4, 1]->[2, 4, 6, 3]<sep>[1, 5, 4, 7, 0]->[3, 7, 6, 9, 2]<sep>[3, 5, 4]->[5, 7, 6]<sep>[7, 5, 3, 6, 1, 4, 0]->[9, 7, 5, 8, 3, 6, 2]<sep>[1, 0]->[3, 2]<sep>[4, 2, 6]->[6, 4, 8]<sep>[6, 4, 1, 7, 3]->[8, 6, 3, 9, 5]<sep>[2, 3]->[4, 5]<sep>[1, 7, 4]->[3, 9, 6]<sep>[0, 1, 3, 6, 7]->[2, 3, 5, 8, 9]<sep>[7, 6, 0, 3]->[9, 8, 2, 5]<sep>[0, 4, 7, 3, 5]->[2, 6, 9, 5, 7]
c071
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "add 2 to every element".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [3, 5, 0, 4, 2, 6] -> [0, 4, 2, 6] [8, 3] -> [] [2, 8, 1] -> [1] [2, 1, 3, 8] -> [3, 8] [5, 2, 6, 3, 9, 0, 8, 1] -> [6, 3, 9, 0, 8, 1] [0, 9, 6, 5, 3, 8, 2, 1] -> [6, 5, 3, 8, 2, 1] [5, 4, 1, 6, 9, 8, 7] -> [1, 6, 9, 8, 7] [0, 4, 8, 2, 7, 5, 6] -> [8, 2, 7, 5, 6]
[5, 1, 4, 3, 0, 6, 8, 7, 2]->[4, 3, 0, 6, 8, 7, 2]<sep>[4, 6, 0, 8, 9, 7, 5, 3]->[0, 8, 9, 7, 5, 3]<sep>[1, 7, 4, 2, 3, 8, 9, 0, 5, 6]->[4, 2, 3, 8, 9, 0, 5, 6]<sep>[7, 9, 8, 1, 3]->[8, 1, 3]<sep>[1, 0, 2, 5, 4]->[2, 5, 4]<sep>[4, 1, 6]->[6]<sep>[2, 0, 9, 7]->[9, 7]<sep>[3, 5]->[]<sep>[0, 9, 4, 8]->[4, 8]<sep>[2, 3, 5, 6, 8, 0, 4, 9, 7]->[5, 6, 8, 0, 4, 9, 7]<sep>[0, 1, 9, 4, 2, 3, 5]->[9, 4, 2, 3, 5]<sep>[8, 6, 2]->[2]<sep>[5, 6, 0, 7, 8, 1, 2, 3, 4, 9]->[0, 7, 8, 1, 2, 3, 4, 9]<sep>[1, 6, 5, 3, 0, 9]->[5, 3, 0, 9]<sep>[7, 3, 1, 2, 9, 4]->[1, 2, 9, 4]<sep>[9, 5, 6, 1, 0]->[6, 1, 0]<sep>[1, 4, 0, 7, 9]->[0, 7, 9]<sep>[2, 8, 4, 7, 1, 6, 3, 5, 9]->[4, 7, 1, 6, 3, 5, 9]<sep>[8, 6, 1, 9, 4, 7]->[1, 9, 4, 7]<sep>[2, 6, 7, 9, 1, 3, 5, 4, 8]->[7, 9, 1, 3, 5, 4, 8]<sep>[3, 9, 7, 5, 4, 0, 2, 6]->[7, 5, 4, 0, 2, 6]<sep>[0, 7]->[]<sep>[9, 4, 3, 6, 0, 1, 5, 2, 8, 7]->[3, 6, 0, 1, 5, 2, 8, 7]<sep>[0, 9, 3, 7, 1, 8, 2, 4, 5, 6]->[3, 7, 1, 8, 2, 4, 5, 6]
c029
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first two elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 2, 6, 5] -> [9, 8, 2, 6, 5] [4, 1] -> [4, 8, 1] [2, 3] -> [2, 8, 3] [5, 0, 1, 3, 8, 2, 4, 9, 6, 7] -> [5, 8, 0, 1, 3, 8, 2, 4, 9, 6, 7] [6, 0, 8, 4, 9, 1, 3] -> [6, 8, 0, 8, 4, 9, 1, 3] [3, 7, 1] -> [3, 8, 7, 1] [2, 3, 1] -> [2, 8, 3, 1] [3, 9, 8, 2, 5, 4] -> [3, 8, 9, 8, 2, 5, 4]
[6, 2, 8, 1, 0, 3, 9, 5]->[6, 8, 2, 8, 1, 0, 3, 9, 5]<sep>[6, 2]->[6, 8, 2]<sep>[8, 0, 4, 6, 7, 2, 5, 9, 3, 1]->[8, 8, 0, 4, 6, 7, 2, 5, 9, 3, 1]<sep>[6, 7, 3, 5]->[6, 8, 7, 3, 5]<sep>[6, 5, 1, 0, 4, 7, 2]->[6, 8, 5, 1, 0, 4, 7, 2]<sep>[6, 4, 5, 9, 1]->[6, 8, 4, 5, 9, 1]<sep>[2, 8, 3, 6, 9, 0, 1, 5]->[2, 8, 8, 3, 6, 9, 0, 1, 5]<sep>[3, 9, 4, 1, 7, 2, 6, 5, 0]->[3, 8, 9, 4, 1, 7, 2, 6, 5, 0]<sep>[3, 0, 7, 9]->[3, 8, 0, 7, 9]<sep>[7, 5]->[7, 8, 5]<sep>[1, 9, 0, 7, 6, 5]->[1, 8, 9, 0, 7, 6, 5]<sep>[0, 3, 4, 9, 7]->[0, 8, 3, 4, 9, 7]<sep>[6, 5, 0, 2, 9, 7, 3, 1]->[6, 8, 5, 0, 2, 9, 7, 3, 1]<sep>[9, 6, 4, 3, 5, 1, 0]->[9, 8, 6, 4, 3, 5, 1, 0]<sep>[8, 9, 5, 4, 0, 2, 7, 3, 1]->[8, 8, 9, 5, 4, 0, 2, 7, 3, 1]<sep>[4, 3, 0, 7, 8]->[4, 8, 3, 0, 7, 8]<sep>[8, 0, 2, 5, 1, 3, 4, 7, 6, 9]->[8, 8, 0, 2, 5, 1, 3, 4, 7, 6, 9]<sep>[7, 0, 2, 4, 5, 9]->[7, 8, 0, 2, 4, 5, 9]<sep>[9, 0, 8, 4, 5, 1, 7, 2, 3]->[9, 8, 0, 8, 4, 5, 1, 7, 2, 3]<sep>[7, 8, 0, 9, 1, 2, 6, 4, 5]->[7, 8, 8, 0, 9, 1, 2, 6, 4, 5]<sep>[9, 2, 0]->[9, 8, 2, 0]<sep>[1, 3, 8, 9, 5, 2, 6, 4]->[1, 8, 3, 8, 9, 5, 2, 6, 4]<sep>[2, 5, 3, 1, 9, 0, 6]->[2, 8, 5, 3, 1, 9, 0, 6]<sep>[5, 1, 0, 4, 3]->[5, 8, 1, 0, 4, 3]
c021
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert an 8 as element 2".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [1, 0, 6, 2, 3, 8, 5, 9, 4] -> [5] [5, 6, 2, 3, 9, 7, 1, 0] -> [1] [9, 8, 7, 4, 0, 3, 6, 5, 2, 1] -> [6] [1, 2, 0, 8, 5, 9, 3, 6, 7, 4] -> [3] [1, 0, 9, 5, 4, 2, 8] -> [8] [4, 5, 8, 3, 1, 6, 0] -> [0] [8, 3, 4, 0, 5, 1, 6, 9, 2] -> [6] [1, 7, 9, 4, 6, 2, 0] -> [0]
[4, 6, 1, 9, 5, 7, 2, 3, 0, 8]->[2]<sep>[8, 3, 2, 6, 7, 9, 4, 5, 1]->[4]<sep>[1, 4, 5, 6, 8, 3, 2, 0, 7, 9]->[2]<sep>[6, 9, 4, 0, 3, 8, 5, 7]->[5]<sep>[0, 3, 1, 8, 5, 2, 7, 6]->[7]<sep>[0, 4, 6, 7, 2, 5, 8, 9, 3, 1]->[8]<sep>[9, 4, 5, 2, 6, 8, 7, 3]->[7]<sep>[7, 9, 1, 4, 6, 0, 2]->[2]<sep>[3, 9, 1, 4, 7, 0, 8, 6, 5]->[8]<sep>[8, 9, 2, 4, 0, 6, 5, 3]->[5]<sep>[9, 4, 1, 7, 6, 2, 0, 8, 3, 5]->[0]<sep>[9, 3, 5, 1, 8, 2, 0, 7, 4]->[0]<sep>[3, 2, 1, 7, 8, 5, 9, 6]->[9]<sep>[1, 0, 7, 5, 3, 2, 9, 4, 6]->[9]<sep>[4, 3, 0, 5, 6, 7, 9, 1]->[9]<sep>[1, 6, 4, 0, 7, 8, 4, 3, 5, 9]->[4]<sep>[5, 1, 2, 9, 8, 0, 3, 4, 7]->[3]<sep>[3, 1, 7, 2, 9, 6, 8, 4, 5, 0]->[8]<sep>[8, 4, 5, 9, 0, 6, 1]->[1]<sep>[5, 9, 8, 3, 7, 4, 0, 1, 6]->[0]<sep>[4, 2, 9, 3, 7, 5, 1, 0]->[1]<sep>[1, 9, 4, 0, 6, 5, 2]->[2]<sep>[2, 5, 8, 3, 6, 9, 7]->[7]<sep>[3, 2, 5, 7, 6, 0, 8]->[8]
c003
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 4, 5, 6, 2, 0, 7, 8] -> [9, 4, 5, 6, 2, 3, 7, 8] [4] -> [4] [1, 6, 5, 4, 9, 8, 0, 3] -> [1, 6, 5, 4, 9, 3, 0, 3] [0, 9, 1, 7, 3, 5] -> [0, 9, 1, 7, 3, 3] [5, 7, 8, 2, 1, 4, 6] -> [5, 7, 8, 2, 1, 3, 6] [7] -> [7] [9, 2, 6, 0, 1, 4, 7] -> [9, 2, 6, 0, 1, 3, 7] [8, 2, 0, 9] -> [8, 2, 0, 9]
[3, 5, 7, 0, 2, 4, 8, 6, 1]->[3, 5, 7, 0, 2, 3, 8, 6, 1]<sep>[5, 3, 4, 7, 1, 8, 9, 6, 0]->[5, 3, 4, 7, 1, 3, 9, 6, 0]<sep>[6, 2, 4, 7, 5, 0, 1, 9, 8]->[6, 2, 4, 7, 5, 3, 1, 9, 8]<sep>[1, 4, 9, 0, 8, 6, 5, 7, 2, 3]->[1, 4, 9, 0, 8, 3, 5, 7, 2, 3]<sep>[4, 1, 7]->[4, 1, 7]<sep>[1, 5, 3, 6, 9, 2, 0]->[1, 5, 3, 6, 9, 3, 0]<sep>[5, 8, 0, 6, 2]->[5, 8, 0, 6, 2]<sep>[8, 4, 2, 5, 3, 7]->[8, 4, 2, 5, 3, 3]<sep>[9, 2, 0, 8, 6, 1]->[9, 2, 0, 8, 6, 3]<sep>[2, 4, 0, 6, 5, 7]->[2, 4, 0, 6, 5, 3]<sep>[4, 5, 7, 2, 8, 6, 9, 1, 0]->[4, 5, 7, 2, 8, 3, 9, 1, 0]<sep>[]->[]<sep>[9, 8, 3, 7, 1, 0, 4, 5]->[9, 8, 3, 7, 1, 3, 4, 5]<sep>[9, 8, 7, 3, 4, 5, 2, 0, 6, 1]->[9, 8, 7, 3, 4, 3, 2, 0, 6, 1]<sep>[0, 4]->[0, 4]<sep>[2, 3, 5, 4, 1, 9, 0, 7]->[2, 3, 5, 4, 1, 3, 0, 7]<sep>[2, 7]->[2, 7]<sep>[2, 5, 8, 6, 0]->[2, 5, 8, 6, 0]<sep>[7, 9, 3, 1, 4, 0, 6, 5, 8, 2]->[7, 9, 3, 1, 4, 3, 6, 5, 8, 2]<sep>[4, 8, 9, 1]->[4, 8, 9, 1]<sep>[9]->[9]<sep>[7, 8, 6]->[7, 8, 6]<sep>[1, 8, 3, 5, 9, 2, 6]->[1, 8, 3, 5, 9, 3, 6]<sep>[9, 2, 6]->[9, 2, 6]
c019
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "replace element 6 with a 3 if there is an element 6".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 0, 6, 5, 4, 7, 1] -> [5, 0, 6, 9, 4, 7, 1] [9, 1, 8, 7, 5, 0] -> [7, 1, 8, 9, 5, 0] [7, 2, 0, 7] -> [7, 0, 2, 7] [4, 8, 2, 9, 6, 0, 5, 1] -> [4, 2, 8, 9, 6, 0, 5, 1] [0, 7, 5, 2, 1, 8, 6, 9] -> [0, 5, 7, 2, 1, 8, 6, 9] [6, 7, 8, 1, 0, 2, 4] -> [1, 7, 8, 6, 0, 2, 4] [1, 7, 4, 5, 8, 9] -> [1, 4, 7, 5, 8, 9] [1, 1, 0, 7, 6] -> [1, 0, 1, 7, 6]
[1, 6, 0, 8, 3, 5]->[1, 0, 6, 8, 3, 5]<sep>[2, 8, 7, 5, 4, 9, 0, 1]->[2, 7, 8, 5, 4, 9, 0, 1]<sep>[6, 8, 2, 7, 1, 9, 4, 2]->[6, 2, 8, 7, 1, 9, 4, 2]<sep>[8, 7, 9, 4, 5, 3, 1, 6, 2, 0]->[4, 7, 9, 8, 5, 3, 1, 6, 2, 0]<sep>[3, 2, 5, 0, 1, 6]->[0, 2, 5, 3, 1, 6]<sep>[8, 3, 7, 6, 5, 4, 1, 9, 3, 4]->[6, 3, 7, 8, 5, 4, 1, 9, 3, 4]<sep>[8, 6, 6, 4, 8]->[4, 6, 6, 8, 8]<sep>[3, 8, 2, 6, 9, 4, 0]->[3, 2, 8, 6, 9, 4, 0]<sep>[3, 4, 6, 0]->[0, 4, 6, 3]<sep>[3, 4, 9, 0, 1, 7, 2, 8, 6, 5]->[0, 4, 9, 3, 1, 7, 2, 8, 6, 5]<sep>[3, 8, 1, 6]->[3, 1, 8, 6]<sep>[1, 6, 4, 8]->[1, 4, 6, 8]<sep>[4, 5, 9, 3, 0, 6, 8, 2]->[3, 5, 9, 4, 0, 6, 8, 2]<sep>[3, 6, 8, 1, 9]->[1, 6, 8, 3, 9]<sep>[5, 8, 9, 2, 7, 6]->[2, 8, 9, 5, 7, 6]<sep>[0, 8, 7, 4, 8, 3, 2, 9, 1]->[0, 7, 8, 4, 8, 3, 2, 9, 1]<sep>[6, 8, 1, 9, 7, 3, 2]->[6, 1, 8, 9, 7, 3, 2]<sep>[2, 6, 1, 4, 9, 0, 7, 3, 8]->[2, 1, 6, 4, 9, 0, 7, 3, 8]<sep>[6, 2, 3, 4, 0, 7, 5, 9, 1, 8]->[4, 2, 3, 6, 0, 7, 5, 9, 1, 8]<sep>[0, 3, 2, 5, 1, 8, 9, 7, 4]->[0, 2, 3, 5, 1, 8, 9, 7, 4]<sep>[3, 2, 5, 0, 9]->[0, 2, 5, 3, 9]<sep>[8, 0, 9, 7, 3]->[7, 0, 9, 8, 3]<sep>[6, 0, 0, 5, 1, 5, 3, 8, 9]->[5, 0, 0, 6, 1, 5, 3, 8, 9]<sep>[1, 4, 0, 3]->[1, 0, 4, 3]
c036
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 2 and 3 if element 2 > element 3, else swap elements 1 and 4".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 6, 1, 9] -> [1, 9] [3, 0] -> [] [8, 1, 6, 9, 7, 2, 3] -> [6, 9, 7, 2, 3] [1, 9, 7, 3, 0, 5, 8, 6] -> [7, 3, 0, 5, 8] [3, 0, 9, 2] -> [9, 2] [3, 9, 7, 4, 6] -> [7, 4, 6] [2, 5, 1, 8] -> [1, 8] [8, 1, 5, 2] -> [5, 2]
[9, 7, 2, 0, 6]->[2, 0, 6]<sep>[6, 0, 3, 8, 9, 7]->[3, 8, 9, 7]<sep>[9, 1, 3, 7, 5, 2, 6, 8, 0, 4]->[3, 7, 5, 2, 6]<sep>[7, 1, 4, 8, 3, 0, 5]->[4, 8, 3, 0, 5]<sep>[9, 7, 0, 6, 3, 5, 4, 8, 2]->[0, 6, 3, 5, 4]<sep>[1, 3, 9]->[9]<sep>[8, 3, 5, 6, 7, 0]->[5, 6, 7, 0]<sep>[3, 9, 0]->[0]<sep>[2, 1, 9, 4, 7, 8]->[9, 4, 7, 8]<sep>[7]->[]<sep>[2, 8, 1, 3, 5, 0, 4, 7]->[1, 3, 5, 0, 4]<sep>[5, 2, 4]->[4]<sep>[8, 1, 9, 2, 6]->[9, 2, 6]<sep>[7, 9, 1, 8, 6, 0, 4, 2, 3, 5]->[1, 8, 6, 0, 4]<sep>[6, 2, 0, 7]->[0, 7]<sep>[8, 7, 4, 1, 2, 0]->[4, 1, 2, 0]<sep>[8, 3, 5]->[5]<sep>[8]->[]<sep>[4, 1]->[]<sep>[1, 4]->[]<sep>[3, 2, 5, 4, 6]->[5, 4, 6]<sep>[3, 4, 7, 8, 6, 1, 5, 0, 9]->[7, 8, 6, 1, 5]<sep>[4]->[]<sep>[4, 8, 2, 1, 9, 5]->[2, 1, 9, 5]
c014
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but elements 3 through 7".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 0, 3, 8, 7, 1, 4, 9, 1, 5] -> [3, 8, 7, 1, 4, 9, 1, 5] [0, 0, 1, 5, 7, 2, 9, 4, 3] -> [1, 5, 7, 2, 9, 4, 3] [2, 2, 7, 9, 1, 5, 9, 8, 0, 3] -> [7, 9, 1, 5, 9, 8, 0, 3] [3, 8, 5, 1, 1] -> [3, 8, 5] [2, 1, 4, 3, 9, 0, 0] -> [2, 1, 4, 3, 9] [9, 7, 9, 9] -> [9, 7] [7, 7, 5, 1, 9, 4, 3, 2] -> [5, 1, 9, 4, 3, 2] [8, 7, 7] -> [8]
[6, 6, 4, 3, 7, 9]->[4, 3, 7, 9]<sep>[0, 3, 0, 6, 6, 3, 3]->[0, 3, 0, 6, 6]<sep>[8, 8, 2, 5]->[2, 5]<sep>[2, 6, 6, 2, 2]->[2, 6, 6]<sep>[1, 1, 6, 3, 5, 1, 8, 4]->[6, 3, 5, 1, 8, 4]<sep>[4, 4, 5, 0, 7, 6, 8, 7, 9, 8]->[5, 0, 7, 6, 8, 7, 9, 8]<sep>[1, 4, 9, 2, 2]->[1, 4, 9]<sep>[5, 5, 7, 3, 1, 6]->[7, 3, 1, 6]<sep>[8, 9, 0, 0]->[8, 9]<sep>[7, 7, 5, 4]->[5, 4]<sep>[0, 0, 1]->[1]<sep>[5, 5, 1]->[1]<sep>[3, 3, 0, 4, 5, 7, 9, 1, 3]->[0, 4, 5, 7, 9, 1, 3]<sep>[0, 0, 2, 8, 9]->[2, 8, 9]<sep>[8, 6, 4, 4, 1, 7, 3, 5, 5]->[8, 6, 4, 4, 1, 7, 3]<sep>[7, 0, 9, 3, 0, 1, 2, 2]->[7, 0, 9, 3, 0, 1]<sep>[6, 6, 7, 5, 0, 2, 9]->[7, 5, 0, 2, 9]<sep>[8, 4, 4, 4]->[8, 4]<sep>[2, 6, 8, 9, 9]->[2, 6, 8]<sep>[8, 3, 9, 4, 6, 2, 5, 6, 0, 0]->[8, 3, 9, 4, 6, 2, 5, 6]<sep>[3, 3, 1, 2, 6, 0, 7, 4, 9, 8]->[1, 2, 6, 0, 7, 4, 9, 8]<sep>[7, 0, 6, 3, 9, 1, 5, 5]->[7, 0, 6, 3, 9, 1]<sep>[5, 3, 0, 6, 4, 4]->[5, 3, 0, 6]<sep>[8, 9, 9]->[8]
c031
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove whichever are equal: the two elements or the last two".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8, 2, 0, 6, 3, 1, 5, 7, 9] -> [9, 6, 3, 8, 5, 8, 2, 0, 6, 3, 1, 5, 7, 9] [7, 1, 9, 2] -> [9, 6, 3, 8, 5, 7, 1, 9, 2] [0, 5, 4] -> [9, 6, 3, 8, 5, 0, 5, 4] [1] -> [9, 6, 3, 8, 5, 1] [6, 1, 0, 2, 7, 8, 9, 3, 5, 4] -> [9, 6, 3, 8, 5, 6, 1, 0, 2, 7, 8, 9, 3, 5, 4] [2, 8, 6, 7, 1] -> [9, 6, 3, 8, 5, 2, 8, 6, 7, 1] [1, 7, 4, 8, 5, 2, 3, 9, 6, 0] -> [9, 6, 3, 8, 5, 1, 7, 4, 8, 5, 2, 3, 9, 6, 0] [] -> [9, 6, 3, 8, 5]
[4, 0, 7, 2, 8]->[9, 6, 3, 8, 5, 4, 0, 7, 2, 8]<sep>[5, 0]->[9, 6, 3, 8, 5, 5, 0]<sep>[0]->[9, 6, 3, 8, 5, 0]<sep>[0, 7, 1, 9, 5, 4]->[9, 6, 3, 8, 5, 0, 7, 1, 9, 5, 4]<sep>[5, 6, 2, 4, 9, 0, 7]->[9, 6, 3, 8, 5, 5, 6, 2, 4, 9, 0, 7]<sep>[0, 3, 7, 4, 6, 9, 1, 8]->[9, 6, 3, 8, 5, 0, 3, 7, 4, 6, 9, 1, 8]<sep>[7, 4]->[9, 6, 3, 8, 5, 7, 4]<sep>[1, 2, 3, 7]->[9, 6, 3, 8, 5, 1, 2, 3, 7]<sep>[4, 1, 5, 7, 9]->[9, 6, 3, 8, 5, 4, 1, 5, 7, 9]<sep>[2, 7, 3, 6, 0, 4]->[9, 6, 3, 8, 5, 2, 7, 3, 6, 0, 4]<sep>[2]->[9, 6, 3, 8, 5, 2]<sep>[6, 5, 7, 1, 4, 0, 8, 2]->[9, 6, 3, 8, 5, 6, 5, 7, 1, 4, 0, 8, 2]<sep>[7, 4, 2]->[9, 6, 3, 8, 5, 7, 4, 2]<sep>[3, 6, 4, 2, 7, 9, 0]->[9, 6, 3, 8, 5, 3, 6, 4, 2, 7, 9, 0]<sep>[1, 9, 6, 2, 0, 3]->[9, 6, 3, 8, 5, 1, 9, 6, 2, 0, 3]<sep>[6, 0, 2, 5, 4, 8, 7, 1]->[9, 6, 3, 8, 5, 6, 0, 2, 5, 4, 8, 7, 1]<sep>[1, 4, 9, 8, 2, 0, 7, 5]->[9, 6, 3, 8, 5, 1, 4, 9, 8, 2, 0, 7, 5]<sep>[2, 9, 3, 7, 6, 4, 1]->[9, 6, 3, 8, 5, 2, 9, 3, 7, 6, 4, 1]<sep>[2, 5]->[9, 6, 3, 8, 5, 2, 5]<sep>[0, 7, 8, 3]->[9, 6, 3, 8, 5, 0, 7, 8, 3]<sep>[9, 2, 3, 7, 0, 1, 4, 8, 5]->[9, 6, 3, 8, 5, 9, 2, 3, 7, 0, 1, 4, 8, 5]<sep>[8, 0, 5]->[9, 6, 3, 8, 5, 8, 0, 5]<sep>[1, 7, 8, 4, 0, 6, 3, 9, 5, 2]->[9, 6, 3, 8, 5, 1, 7, 8, 4, 0, 6, 3, 9, 5, 2]<sep>[8, 7, 3, 4, 1, 5, 0, 2, 6]->[9, 6, 3, 8, 5, 8, 7, 3, 4, 1, 5, 0, 2, 6]
c047
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate [9, 6, 3, 8, 5] and input".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [6, 4, 5, 1, 2] -> [5] [6, 4, 9, 0, 5, 7, 3, 2, 8, 1] -> [9] [4, 1, 8, 2, 0, 6, 7] -> [8] [1, 5, 3, 8, 2, 0, 4, 7] -> [3] [1, 6, 4] -> [4] [8, 3, 6, 2, 4, 5, 1, 9] -> [6] [4, 0, 7] -> [7] [8, 0, 6, 4, 7, 5, 3, 9, 2] -> [6]
[5, 6, 9, 4, 1, 2, 3]->[9]<sep>[9, 8, 1, 6, 3, 2, 0, 7]->[1]<sep>[4, 7, 6, 3, 8]->[6]<sep>[0, 3, 7, 5, 6, 8, 2, 1, 9]->[7]<sep>[5, 9, 7, 2, 8, 0]->[7]<sep>[9, 3, 5, 0, 1, 2]->[5]<sep>[4, 3, 7, 2]->[7]<sep>[4, 9, 3]->[3]<sep>[2, 1, 5, 3, 6, 0, 8, 4]->[5]<sep>[5, 0, 6, 8, 2, 9, 4, 7, 3]->[6]<sep>[9, 4, 8, 0, 2, 6, 7]->[8]<sep>[5, 2, 4, 0]->[4]<sep>[6, 3, 1, 4, 9, 0, 7]->[1]<sep>[6, 7, 2, 9, 3]->[2]<sep>[7, 6, 0, 9, 5, 3, 2, 4, 1, 8]->[0]<sep>[8, 3, 9, 1, 7, 0]->[9]<sep>[2, 9, 1, 8, 0]->[1]<sep>[9, 5, 7, 2]->[7]<sep>[0, 4, 8, 2, 5, 1, 9, 7, 6, 3]->[8]<sep>[8, 3, 6, 5]->[6]<sep>[7, 6, 0, 9, 2, 3, 4, 5, 8, 1]->[0]<sep>[4, 3, 5]->[5]<sep>[3, 4, 1, 5, 2, 0, 8, 6, 9]->[1]<sep>[8, 6, 1, 0, 5, 9]->[1]
c001
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 0, 8, 5, 9, 1, 6, 2, 7] -> [4, 0, 8, 5, 9, 1, 6, 2, 7, 9] [9, 0] -> [9, 0, 9] [5, 0, 2, 9] -> [5, 0, 2, 9, 9] [7, 5, 8, 3, 4, 1, 6] -> [7, 5, 8, 3, 4, 1, 6, 3] [2, 8, 0, 5] -> [2, 8, 0, 5] [1, 8, 4, 3, 0, 6] -> [1, 8, 4, 3, 0, 6, 3] [] -> [] [3, 4, 7, 6, 0] -> [3, 4, 7, 6, 0, 3]
[1, 9, 5, 0]->[1, 9, 5, 0, 9]<sep>[3, 5]->[3, 5, 3]<sep>[8, 1, 2, 3, 7]->[8, 1, 2, 3, 7, 3]<sep>[3, 2, 7]->[3, 2, 7, 3]<sep>[7, 0, 2, 5]->[7, 0, 2, 5]<sep>[0, 2, 7, 5, 6]->[0, 2, 7, 5, 6]<sep>[9, 7, 8, 1, 0]->[9, 7, 8, 1, 0, 9]<sep>[6, 4, 9]->[6, 4, 9, 9]<sep>[6, 2, 0, 3, 1, 8, 7]->[6, 2, 0, 3, 1, 8, 7, 3]<sep>[4, 3, 0, 1, 7, 8]->[4, 3, 0, 1, 7, 8, 3]<sep>[6]->[6]<sep>[6, 9, 1]->[6, 9, 1, 9]<sep>[0, 5, 6, 4, 9, 1]->[0, 5, 6, 4, 9, 1, 9]<sep>[4, 2, 8]->[4, 2, 8]<sep>[4, 8]->[4, 8]<sep>[2]->[2]<sep>[9, 1]->[9, 1, 9]<sep>[3, 6, 0, 2, 5, 4, 8, 7, 1]->[3, 6, 0, 2, 5, 4, 8, 7, 1, 3]<sep>[5, 3, 1, 8, 0, 2, 4, 6, 7]->[5, 3, 1, 8, 0, 2, 4, 6, 7, 3]<sep>[4, 6, 9, 0, 7, 8, 1, 2]->[4, 6, 9, 0, 7, 8, 1, 2, 9]<sep>[3]->[3, 3]<sep>[7, 2, 0, 1, 4, 9, 5, 8]->[7, 2, 0, 1, 4, 9, 5, 8, 9]<sep>[3, 6, 4, 1, 0, 8]->[3, 6, 4, 1, 0, 8, 3]<sep>[5]->[5]
c040
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "append 3 if the list contains a 3, else append 9 if the list contains a 9".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [4, 3, 8, 7, 9, 2, 5, 1, 0, 6] -> [4] [7, 6, 5, 9, 0, 4, 2, 3] -> [7] [9, 7, 1] -> [9] [7, 8, 1, 9, 6, 2, 4, 5, 3] -> [7] [9, 4, 0, 8, 6, 7, 5, 2, 3] -> [9] [7, 2, 4, 5] -> [7] [0, 5, 2, 8, 7, 6, 4, 1] -> [0] [1, 8, 7, 9, 0, 3] -> [1]
[4, 5, 9, 2, 8, 7, 0]->[4]<sep>[4, 1, 7, 9, 3]->[4]<sep>[6, 8, 9, 4, 3, 2, 1, 0, 7, 5]->[6]<sep>[2, 8, 0, 3, 5, 6, 9]->[2]<sep>[4, 0]->[4]<sep>[0, 2, 8, 5, 7, 6]->[0]<sep>[5, 3, 2, 4]->[5]<sep>[7, 8, 0, 5, 1, 2, 3, 9]->[7]<sep>[6, 7, 2, 3, 4, 0, 5, 9, 1, 8]->[6]<sep>[6, 1, 0, 7, 2, 3, 5, 8]->[6]<sep>[6, 1, 5, 8, 0, 9]->[6]<sep>[1, 6, 3, 4, 2, 0, 7, 9, 5, 8]->[1]<sep>[1, 3, 4, 2, 9, 7, 8, 0, 5]->[1]<sep>[4, 2, 7, 8, 5, 1, 9]->[4]<sep>[8, 6, 9, 4, 2]->[8]<sep>[5, 6, 8, 0]->[5]<sep>[2, 1, 4, 6, 0, 9]->[2]<sep>[1, 3, 0]->[1]<sep>[7, 8, 3, 0, 5, 1, 6]->[7]<sep>[3, 4]->[3]<sep>[3, 8]->[3]<sep>[9, 7, 2, 3, 8]->[9]<sep>[3, 2, 1]->[3]<sep>[6, 0, 9, 3, 8, 1, 4, 2, 5]->[6]
c048
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove all but element 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [3, 6, 6, 6, 6, 3] -> [8, 2, 7, 0, 3] [6] -> [8, 2, 7, 0, 3] [5, 5, 5, 5, 5, 5, 5, 5, 5, 5] -> [8, 2, 7, 0, 3] [5, 5, 5, 5, 5] -> [8, 2, 7, 0, 3] [1, 1, 1, 1, 1, 1] -> [8, 2, 7, 0, 3] [5, 1, 5, 9, 6, 5, 1] -> [8, 2, 7, 0, 3] [6, 1, 9, 5, 0, 4] -> [8, 2, 7, 0, 3] [1, 1, 1, 6, 5, 6, 1, 5] -> [8, 2, 7, 0, 3]
[4, 6, 1, 1, 4, 6, 6]->[8, 2, 7, 0, 3]<sep>[3, 4]->[8, 2, 7, 0, 3]<sep>[9, 0, 0, 4, 1, 0, 1, 1]->[8, 2, 7, 0, 3]<sep>[9, 9, 9, 9, 9, 9, 9, 9, 9]->[8, 2, 7, 0, 3]<sep>[5, 1, 2, 1, 1]->[8, 2, 7, 0, 3]<sep>[4, 9, 9, 6, 9, 9, 9]->[8, 2, 7, 0, 3]<sep>[8]->[8, 2, 7, 0, 3]<sep>[6, 6, 9]->[8, 2, 7, 0, 3]<sep>[1, 1]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 6, 6, 6, 6, 6]->[8, 2, 7, 0, 3]<sep>[3, 5, 6, 4, 6, 7, 5, 1, 6, 7]->[8, 2, 7, 0, 3]<sep>[9, 6, 4, 6]->[8, 2, 7, 0, 3]<sep>[4, 4, 9, 4, 4, 9, 9, 4, 9]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 4, 4]->[8, 2, 7, 0, 3]<sep>[4, 4, 4]->[8, 2, 7, 0, 3]<sep>[6, 6, 6]->[8, 2, 7, 0, 3]<sep>[9]->[8, 2, 7, 0, 3]<sep>[5, 6, 6, 6]->[8, 2, 7, 0, 3]<sep>[6, 1, 9, 2, 3, 1, 8, 5, 2]->[8, 2, 7, 0, 3]<sep>[4, 4, 4, 4, 4, 1, 4, 1, 1]->[8, 2, 7, 0, 3]<sep>[]->[8, 2, 7, 0, 3]<sep>[1, 1, 1, 1]->[8, 2, 7, 0, 3]<sep>[9, 9]->[8, 2, 7, 0, 3]<sep>[9, 5, 9, 0, 9, 5, 9, 5, 5, 5]->[8, 2, 7, 0, 3]
c043
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [8, 2, 7, 0, 3]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [5, 7, 1, 2, 0, 3, 9, 4] -> [9] [2, 4] -> [4] [1, 9, 5, 7, 4, 6, 2, 3] -> [9] [2, 7, 4, 3, 5, 0, 6, 1] -> [7] [0, 6, 5] -> [6] [2, 7, 0, 8, 3] -> [8] [0, 1] -> [1] [8, 1, 9, 6, 3, 0, 2, 4, 5, 7] -> [9]
[3, 7, 5, 4, 1, 9]->[9]<sep>[3, 1, 4, 6]->[6]<sep>[1, 4, 9, 2, 7, 3, 8]->[9]<sep>[4, 6, 9, 7]->[9]<sep>[3, 0, 8, 7, 5]->[8]<sep>[1, 0, 5]->[5]<sep>[1, 8, 7, 4, 2, 6]->[8]<sep>[0]->[0]<sep>[8, 7, 4, 6]->[8]<sep>[2, 1]->[2]<sep>[2, 6]->[6]<sep>[9, 2, 4, 7, 6, 3, 5, 0, 8]->[9]<sep>[2, 7, 6, 5, 4, 3, 1]->[7]<sep>[1, 0, 2, 7, 6, 4]->[7]<sep>[4, 5, 2]->[5]<sep>[6, 9, 5, 8, 4, 7, 3, 2, 0]->[9]<sep>[9, 4, 5, 2, 8, 7, 6, 0, 3]->[9]<sep>[0, 3]->[3]<sep>[5, 2, 4, 6, 3]->[6]<sep>[9, 4, 8, 7, 2, 3, 5, 6, 1, 0]->[9]<sep>[4, 8, 1, 2, 3, 7, 0]->[8]<sep>[4, 0, 6, 7]->[7]<sep>[8, 7, 6, 4, 5]->[8]<sep>[4, 9, 7]->[9]
c078
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "maximum element".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [7, 2, 8, 4, 6, 1, 3, 5, 9, 0] -> [8, 2, 7, 4, 6, 3] [8, 4, 9, 1, 3, 2, 7] -> [9, 4, 8, 4, 3, 7] [0, 1, 2, 3, 6, 9, 8, 4] -> [2, 1, 0, 4, 6, 8] [1, 4, 5, 2, 3, 7, 9, 6, 0] -> [5, 4, 1, 4, 3, 9] [9, 7, 5, 4, 8, 3, 0, 2] -> [5, 7, 9, 4, 8, 0] [4, 2, 1, 7, 6, 4, 0, 8, 5] -> [1, 2, 4, 4, 6, 0] [3, 1, 0, 4, 5, 8, 9, 2] -> [0, 1, 3, 4, 5, 9] [6, 2, 1, 0, 9, 8, 5] -> [1, 2, 6, 4, 9, 5]
[4, 2, 9, 0, 5, 7, 6]->[9, 2, 4, 4, 5, 6]<sep>[2, 6, 7, 5, 4, 9, 8, 3, 1, 0]->[7, 6, 2, 4, 4, 8]<sep>[0, 8, 9, 2, 3, 1, 6, 4]->[9, 8, 0, 4, 3, 6]<sep>[4, 1, 2, 9, 7, 5, 0, 3, 6, 8]->[2, 1, 4, 4, 7, 0]<sep>[3, 9, 2, 0, 6, 8, 5, 1, 7]->[2, 9, 3, 4, 6, 5]<sep>[9, 0, 7, 2, 4, 5, 3, 1, 6]->[7, 0, 9, 4, 4, 3]<sep>[2, 5, 9, 7, 8, 1, 0, 6, 4, 3]->[9, 5, 2, 4, 8, 0]<sep>[1, 3, 7, 8, 9, 2, 4, 6]->[7, 3, 1, 4, 9, 4]<sep>[3, 8, 4, 6, 1, 5, 7, 0]->[4, 8, 3, 4, 1, 7]<sep>[2, 9, 7, 0, 3, 8, 6, 5, 1]->[7, 9, 2, 4, 3, 6]<sep>[1, 0, 9, 7, 4, 2, 5, 3, 6, 8]->[9, 0, 1, 4, 4, 5]<sep>[2, 1, 7, 8, 4, 0, 5]->[7, 1, 2, 4, 4, 5]<sep>[3, 9, 7, 6, 0, 5, 1]->[7, 9, 3, 4, 0, 1]<sep>[0, 9, 6, 1, 3, 8, 5]->[6, 9, 0, 4, 3, 5]<sep>[8, 3, 7, 0, 4, 2, 5]->[7, 3, 8, 4, 4, 5]<sep>[3, 4, 1, 7, 0, 2, 5, 8, 9, 6]->[1, 4, 3, 4, 0, 5]<sep>[9, 2, 1, 3, 4, 7, 6, 8, 5, 0]->[1, 2, 9, 4, 4, 6]<sep>[3, 6, 8, 7, 1, 9, 4]->[8, 6, 3, 4, 1, 4]<sep>[9, 4, 8, 5, 1, 7, 0, 3, 6, 2]->[8, 4, 9, 4, 1, 0]<sep>[2, 3, 9, 7, 4, 8, 0, 8, 6]->[9, 3, 2, 4, 4, 0]<sep>[0, 7, 9, 3, 1, 5, 8, 2, 6]->[9, 7, 0, 4, 1, 8]<sep>[2, 0, 5, 8, 9, 4, 7, 1]->[5, 0, 2, 4, 9, 7]<sep>[5, 4, 7, 2, 9, 3, 8, 1]->[7, 4, 5, 4, 9, 8]<sep>[8, 7, 9, 3, 2, 6, 4, 5, 1]->[9, 7, 8, 4, 2, 4]
c060
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements 3, 2, 1, the number 4, then elements 5 and 7, in that order".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [2, 8, 7, 0, 6, 5, 3, 4, 1] -> [1, 4, 3, 5, 6, 0, 7, 8, 2] [9, 1, 2, 8, 0] -> [0, 8, 2, 1, 9] [5, 3, 0, 7, 4, 6, 2, 9] -> [9, 2, 6, 4, 7, 0, 3, 5] [1, 0, 7, 3, 9, 2] -> [2, 9, 3, 7, 0, 1] [4, 0, 9] -> [9, 0, 4] [4, 2] -> [2, 4] [3, 6, 1, 7, 0, 4] -> [4, 0, 7, 1, 6, 3] [1, 8, 0, 7, 5] -> [5, 7, 0, 8, 1]
[9, 3, 5, 1, 6, 2, 4]->[4, 2, 6, 1, 5, 3, 9]<sep>[1, 8]->[8, 1]<sep>[7, 9]->[9, 7]<sep>[6, 4, 0]->[0, 4, 6]<sep>[2, 7, 8]->[8, 7, 2]<sep>[5, 4, 2, 7]->[7, 2, 4, 5]<sep>[0, 6, 4, 9, 8, 2, 7, 3, 5, 1]->[1, 5, 3, 7, 2, 8, 9, 4, 6, 0]<sep>[6, 5, 8]->[8, 5, 6]<sep>[7, 8, 4, 9, 6, 0, 5]->[5, 0, 6, 9, 4, 8, 7]<sep>[2, 1, 9, 6, 3, 5, 4, 8]->[8, 4, 5, 3, 6, 9, 1, 2]<sep>[1, 5, 6, 2, 8, 3, 7]->[7, 3, 8, 2, 6, 5, 1]<sep>[8, 1]->[1, 8]<sep>[6, 0, 3, 5, 9, 7, 4, 1, 2, 8]->[8, 2, 1, 4, 7, 9, 5, 3, 0, 6]<sep>[4, 8, 1, 3]->[3, 1, 8, 4]<sep>[9, 4, 5, 3, 2, 8, 7, 6, 0]->[0, 6, 7, 8, 2, 3, 5, 4, 9]<sep>[2, 6, 5, 7, 8, 0, 4, 3, 1, 9]->[9, 1, 3, 4, 0, 8, 7, 5, 6, 2]<sep>[8, 9, 1, 0, 6, 3]->[3, 6, 0, 1, 9, 8]<sep>[9, 3, 6, 8]->[8, 6, 3, 9]<sep>[5, 9, 0, 6]->[6, 0, 9, 5]<sep>[9]->[9]<sep>[7, 6, 3, 0, 4, 1, 5, 2]->[2, 5, 1, 4, 0, 3, 6, 7]<sep>[7, 3, 5, 8, 0, 9, 1, 4, 2]->[2, 4, 1, 9, 0, 8, 5, 3, 7]<sep>[5, 7, 6, 2, 3]->[3, 2, 6, 7, 5]<sep>[]->[]
c080
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "elements in reverse order".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8, 5, 9, 3, 1, 6, 0, 7, 4, 2] -> [8, 5, 9, 3, 1, 6] [0, 4, 6] -> [0, 4, 6] [4, 8, 2, 3, 6] -> [4, 8, 2, 3, 6] [1, 0, 7, 3, 4, 2, 8, 9, 6, 5] -> [1, 0, 7, 3, 4, 2] [1] -> [1] [6, 4, 2, 1, 0, 7, 3, 5, 9] -> [6, 4, 2, 1, 0, 7] [1, 5, 6, 9, 0, 4, 8, 2, 3] -> [1, 5, 6, 9, 0, 4] [0, 6, 1, 3, 8, 9, 7] -> [0, 6, 1, 3, 8, 9]
[2, 9, 4]->[2, 9, 4]<sep>[5, 8, 7, 1, 0, 6, 2, 4, 9]->[5, 8, 7, 1, 0, 6]<sep>[5, 3, 7, 9]->[5, 3, 7, 9]<sep>[6, 1, 7, 4, 9, 8, 0, 5, 3, 2]->[6, 1, 7, 4, 9, 8]<sep>[5, 7, 2, 3, 8, 6, 0, 9, 1, 4]->[5, 7, 2, 3, 8, 6]<sep>[6, 5, 9, 2, 1, 8, 7, 0]->[6, 5, 9, 2, 1, 8]<sep>[5, 2, 7, 9, 1, 3, 0]->[5, 2, 7, 9, 1, 3]<sep>[6, 2]->[6, 2]<sep>[3, 8, 7, 9, 2, 0, 4, 5]->[3, 8, 7, 9, 2, 0]<sep>[0, 9, 8, 4, 5, 2, 1, 6, 7]->[0, 9, 8, 4, 5, 2]<sep>[2, 5]->[2, 5]<sep>[3, 0, 6, 4]->[3, 0, 6, 4]<sep>[8, 3, 9, 0, 5, 1, 2]->[8, 3, 9, 0, 5, 1]<sep>[8, 5, 1, 4, 0]->[8, 5, 1, 4, 0]<sep>[0, 2, 4, 3, 7, 8, 1]->[0, 2, 4, 3, 7, 8]<sep>[]->[]<sep>[8, 0, 3, 9, 6, 4]->[8, 0, 3, 9, 6, 4]<sep>[3, 4]->[3, 4]<sep>[7]->[7]<sep>[2, 7, 4, 1, 5, 6, 0, 8]->[2, 7, 4, 1, 5, 6]<sep>[9, 1, 5, 7, 2]->[9, 1, 5, 7, 2]<sep>[8, 3, 6, 1]->[8, 3, 6, 1]<sep>[7, 9, 0]->[7, 9, 0]<sep>[7, 8, 1, 3, 4, 5, 2, 6]->[7, 8, 1, 3, 4, 5]
c008
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the first 6 elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 9] -> [0, 9, 7, 3, 8, 4, 3] [4, 6, 9, 0, 5] -> [4, 6, 9, 0, 5, 7, 3, 8, 4, 3] [9, 5, 7, 0, 1, 6, 2, 4, 8, 3] -> [9, 5, 7, 0, 1, 6, 2, 4, 8, 3, 7, 3, 8, 4, 3] [2, 7] -> [2, 7, 7, 3, 8, 4, 3] [4, 8, 1, 9, 3, 0, 2, 5, 6, 7] -> [4, 8, 1, 9, 3, 0, 2, 5, 6, 7, 7, 3, 8, 4, 3] [2] -> [2, 7, 3, 8, 4, 3] [1, 6, 7, 5, 2, 0] -> [1, 6, 7, 5, 2, 0, 7, 3, 8, 4, 3] [3, 7, 1, 2, 6, 9, 0, 4, 8, 5] -> [3, 7, 1, 2, 6, 9, 0, 4, 8, 5, 7, 3, 8, 4, 3]
[6, 2, 8, 7, 0, 9, 1, 5]->[6, 2, 8, 7, 0, 9, 1, 5, 7, 3, 8, 4, 3]<sep>[9, 0, 7]->[9, 0, 7, 7, 3, 8, 4, 3]<sep>[9, 6, 5, 1, 7, 8, 4, 2, 0]->[9, 6, 5, 1, 7, 8, 4, 2, 0, 7, 3, 8, 4, 3]<sep>[6, 0, 7, 4, 1]->[6, 0, 7, 4, 1, 7, 3, 8, 4, 3]<sep>[5, 4, 1, 7, 8, 2]->[5, 4, 1, 7, 8, 2, 7, 3, 8, 4, 3]<sep>[0, 2, 9, 4, 1, 7, 6, 8]->[0, 2, 9, 4, 1, 7, 6, 8, 7, 3, 8, 4, 3]<sep>[9, 5, 1, 6]->[9, 5, 1, 6, 7, 3, 8, 4, 3]<sep>[0, 1, 2]->[0, 1, 2, 7, 3, 8, 4, 3]<sep>[]->[7, 3, 8, 4, 3]<sep>[7, 1, 9, 5, 6, 2, 3]->[7, 1, 9, 5, 6, 2, 3, 7, 3, 8, 4, 3]<sep>[9]->[9, 7, 3, 8, 4, 3]<sep>[6]->[6, 7, 3, 8, 4, 3]<sep>[8, 9, 5, 1]->[8, 9, 5, 1, 7, 3, 8, 4, 3]<sep>[2, 1, 4, 6]->[2, 1, 4, 6, 7, 3, 8, 4, 3]<sep>[6, 1, 9, 0, 4, 7, 8, 5, 2]->[6, 1, 9, 0, 4, 7, 8, 5, 2, 7, 3, 8, 4, 3]<sep>[1, 6, 0, 4, 7, 8, 3, 2, 9]->[1, 6, 0, 4, 7, 8, 3, 2, 9, 7, 3, 8, 4, 3]<sep>[9, 3, 0, 1, 6, 8, 4, 2]->[9, 3, 0, 1, 6, 8, 4, 2, 7, 3, 8, 4, 3]<sep>[5, 1]->[5, 1, 7, 3, 8, 4, 3]<sep>[4, 0, 6, 5, 8, 9, 1]->[4, 0, 6, 5, 8, 9, 1, 7, 3, 8, 4, 3]<sep>[4, 6, 5, 8, 9, 0, 2]->[4, 6, 5, 8, 9, 0, 2, 7, 3, 8, 4, 3]<sep>[2, 9, 3, 0, 4, 5, 6]->[2, 9, 3, 0, 4, 5, 6, 7, 3, 8, 4, 3]<sep>[9, 4, 2, 6, 1]->[9, 4, 2, 6, 1, 7, 3, 8, 4, 3]<sep>[9, 7, 0, 2, 4, 6]->[9, 7, 0, 2, 4, 6, 7, 3, 8, 4, 3]<sep>[6, 2, 9]->[6, 2, 9, 7, 3, 8, 4, 3]
c068
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "concatenate input and [7, 3, 8, 4, 3]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [3, 6, 0] -> [9] [8, 1] -> [9] [0, 8] -> [8] [0, 1, 3] -> [4] [5, 2] -> [7] [1, 7] -> [8] [2, 4, 3] -> [9] [2, 0] -> [2]
[1, 5]->[6]<sep>[2, 5]->[7]<sep>[2, 4, 1]->[7]<sep>[4, 0, 3, 2]->[9]<sep>[0, 1]->[1]<sep>[0, 4, 1]->[5]<sep>[1, 0, 6]->[7]<sep>[5, 3]->[8]<sep>[7]->[7]<sep>[3, 0]->[3]<sep>[4]->[4]<sep>[6]->[6]<sep>[5, 1, 2]->[8]<sep>[2, 5, 1]->[8]<sep>[]->[0]<sep>[0, 6]->[6]<sep>[3, 2]->[5]<sep>[0, 7]->[7]<sep>[4, 5]->[9]<sep>[6, 2]->[8]<sep>[0, 9]->[9]<sep>[1, 8]->[9]<sep>[3, 4]->[7]<sep>[8]->[8]
c079
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "sum of elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8, 4, 5, 0, 3, 6, 9, 1] -> [8, 4, 5, 0, 3, 6, 9, 1] [7, 4, 2, 3] -> [7, 4, 2, 3] [0, 9, 5] -> [0, 9, 5] [5, 3, 7, 6, 0, 9, 2, 1, 8] -> [5, 3, 7, 6, 0, 9, 2, 1, 8] [0, 3, 4, 6, 1, 8, 9, 7, 2] -> [0, 3, 4, 6, 1, 8, 9, 7, 2] [3, 5, 8, 4, 1, 0, 2, 7] -> [3, 5, 8, 4, 1, 0, 2, 7] [9, 1, 8, 4, 2] -> [9, 1, 8, 4, 2] [7] -> [7]
[5, 7, 4, 1, 0, 6, 2, 8, 9, 3]->[5, 7, 4, 1, 0, 6, 2, 8, 9, 3]<sep>[5, 2, 3, 7, 0, 8]->[5, 2, 3, 7, 0, 8]<sep>[4, 0, 6, 5, 2, 9, 7]->[4, 0, 6, 5, 2, 9, 7]<sep>[9, 7, 1, 4, 8, 3, 6, 2]->[9, 7, 1, 4, 8, 3, 6, 2]<sep>[4, 5, 2, 6, 9, 3, 7, 1, 0, 8]->[4, 5, 2, 6, 9, 3, 7, 1, 0, 8]<sep>[5, 6, 9, 0, 1, 8, 7]->[5, 6, 9, 0, 1, 8, 7]<sep>[]->[]<sep>[5, 8, 0, 4, 7, 6, 1, 2, 3, 9]->[5, 8, 0, 4, 7, 6, 1, 2, 3, 9]<sep>[7, 3, 8, 0, 1]->[7, 3, 8, 0, 1]<sep>[8, 4, 5, 3]->[8, 4, 5, 3]<sep>[0, 6]->[0, 6]<sep>[3]->[3]<sep>[2, 8]->[2, 8]<sep>[2, 6, 0, 5, 4, 1]->[2, 6, 0, 5, 4, 1]<sep>[4, 2, 3]->[4, 2, 3]<sep>[6, 1]->[6, 1]<sep>[4, 9, 7, 6, 3, 0]->[4, 9, 7, 6, 3, 0]<sep>[9, 5, 0]->[9, 5, 0]<sep>[6]->[6]<sep>[9, 5, 3, 1]->[9, 5, 3, 1]<sep>[5, 4, 9, 0, 3, 8, 1]->[5, 4, 9, 0, 3, 8, 1]<sep>[7, 9, 4, 2, 6, 5, 3]->[7, 9, 4, 2, 6, 5, 3]<sep>[9, 8, 1, 5, 6, 4, 2, 7, 0]->[9, 8, 1, 5, 6, 4, 2, 7, 0]<sep>[1, 7, 6, 8, 2]->[1, 7, 6, 8, 2]
c045
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the input".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [6, 7, 4, 2, 9, 0, 8] -> [6, 7, 2, 9, 0, 8] [3, 6, 0, 1, 5, 7, 4, 2] -> [3, 6, 1, 5, 7, 4, 2] [9, 9, 3, 9, 5, 5] -> [9, 3, 9, 5, 5] [9, 3, 0, 1, 2, 6, 8, 7] -> [9, 3, 1, 2, 6, 8, 7] [1, 9, 8, 4, 6, 2, 0, 3, 7, 5] -> [1, 9, 4, 6, 2, 0, 3, 7, 5] [9, 9, 6, 8, 2, 4, 1, 0] -> [9, 6, 8, 2, 4, 1, 0] [9, 0, 3, 8, 1, 4, 2] -> [9, 0, 8, 1, 4, 2] [3, 9, 8, 1, 2, 4, 6, 0, 7, 5] -> [3, 9, 1, 2, 4, 6, 0, 7, 5]
[9, 5, 2, 1, 3, 0, 7, 6, 4]->[9, 5, 1, 3, 0, 7, 6, 4]<sep>[3, 3, 9, 3]->[3, 9, 3]<sep>[5, 5, 3]->[5, 3]<sep>[8, 7, 4, 9, 1]->[8, 7, 9, 1]<sep>[7, 7, 3, 1, 1, 1, 3, 9]->[7, 3, 1, 1, 1, 3, 9]<sep>[1, 2, 9, 5, 0, 4, 8, 6, 7, 3]->[1, 2, 5, 0, 4, 8, 6, 7, 3]<sep>[4, 9, 3, 0]->[4, 9, 0]<sep>[1, 1, 0, 7, 3, 2, 5, 9, 4, 6]->[1, 0, 7, 3, 2, 5, 9, 4, 6]<sep>[0, 0, 3, 5, 1]->[0, 3, 5, 1]<sep>[5, 5, 7, 3, 7, 6, 3]->[5, 7, 3, 7, 6, 3]<sep>[8, 8, 6, 4]->[8, 6, 4]<sep>[3, 3, 7, 9, 6]->[3, 7, 9, 6]<sep>[6, 2, 5, 8, 3, 4, 9, 7]->[6, 2, 8, 3, 4, 9, 7]<sep>[3, 5, 9, 6, 1, 8, 2, 4]->[3, 5, 6, 1, 8, 2, 4]<sep>[8, 8, 6]->[8, 6]<sep>[4, 3, 0, 7, 5, 1]->[4, 3, 7, 5, 1]<sep>[2, 2, 6]->[2, 6]<sep>[0, 9, 2, 5, 1, 6, 4]->[0, 9, 5, 1, 6, 4]<sep>[5, 8, 9, 6, 2, 0]->[5, 8, 6, 2, 0]<sep>[6, 6, 7]->[6, 7]<sep>[0, 0, 4, 6, 1, 7, 8, 5, 9]->[0, 4, 6, 1, 7, 8, 5, 9]<sep>[5, 5, 3, 8]->[5, 3, 8]<sep>[4, 1, 0, 3, 5, 9, 2, 6, 8]->[4, 1, 3, 5, 9, 2, 6, 8]<sep>[4, 4, 3, 9, 0]->[4, 3, 9, 0]
c027
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove element 2 if element 1 = element 2, else remove element 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 5, 1, 0] -> [0, 1, 5, 0] [7, 5, 7, 7, 4, 2, 8] -> [7, 7, 5, 7, 4, 2, 8] [0, 7, 5, 0, 8, 5, 0, 1, 9, 7] -> [0, 5, 7, 0, 8, 5, 0, 1, 9, 7] [4, 9, 9, 9, 4, 4, 6, 9] -> [9, 9, 9, 4, 4, 4, 6, 9] [1, 1, 9, 1, 8, 7] -> [1, 9, 1, 1, 8, 7] [3, 1, 1, 6] -> [6, 1, 1, 3] [3, 4, 4, 0, 5, 9, 9, 7, 5] -> [0, 4, 4, 3, 5, 9, 9, 7, 5] [2, 5, 1, 2, 8, 6] -> [2, 1, 5, 2, 8, 6]
[1, 5, 5, 5]->[5, 5, 5, 1]<sep>[7, 9, 9, 1, 4, 6, 5, 2, 2]->[1, 9, 9, 7, 4, 6, 5, 2, 2]<sep>[0, 2, 2, 2, 2, 7, 5]->[2, 2, 2, 0, 2, 7, 5]<sep>[8, 0, 0, 6, 6, 2]->[6, 0, 0, 8, 6, 2]<sep>[0, 6, 5, 0, 2, 1, 0, 7, 4, 7]->[0, 5, 6, 0, 2, 1, 0, 7, 4, 7]<sep>[6, 8, 8, 2, 1, 0]->[2, 8, 8, 6, 1, 0]<sep>[6, 3, 3, 2, 0]->[2, 3, 3, 6, 0]<sep>[1, 3, 5, 1, 3]->[1, 5, 3, 1, 3]<sep>[4, 8, 8, 7, 9]->[7, 8, 8, 4, 9]<sep>[1, 1, 8, 1]->[1, 8, 1, 1]<sep>[1, 3, 4, 1, 3, 6]->[1, 4, 3, 1, 3, 6]<sep>[0, 3, 0, 0]->[0, 0, 3, 0]<sep>[0, 6, 6, 8, 8]->[8, 6, 6, 0, 8]<sep>[8, 9, 0, 8, 1, 5, 1, 2, 2]->[8, 0, 9, 8, 1, 5, 1, 2, 2]<sep>[0, 7, 7, 2, 6, 1]->[2, 7, 7, 0, 6, 1]<sep>[5, 1, 8, 5, 9, 3, 0]->[5, 8, 1, 5, 9, 3, 0]<sep>[8, 8, 0, 8, 5]->[8, 0, 8, 8, 5]<sep>[4, 4, 6, 4, 1, 2, 6, 9]->[4, 6, 4, 4, 1, 2, 6, 9]<sep>[4, 2, 2, 9, 2, 0, 5]->[9, 2, 2, 4, 2, 0, 5]<sep>[1, 4, 6, 1, 0, 5, 2, 8, 9, 3]->[1, 6, 4, 1, 0, 5, 2, 8, 9, 3]<sep>[7, 6, 2, 7]->[7, 2, 6, 7]<sep>[4, 6, 6, 6, 3, 3, 4, 6]->[6, 6, 6, 4, 3, 3, 4, 6]<sep>[6, 0, 0, 1, 4, 4, 9, 5]->[1, 0, 0, 6, 4, 4, 9, 5]<sep>[8, 8, 8, 7, 3]->[7, 8, 8, 8, 3]
c035
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "swap elements 1 and 4 if element 2 = element 3, else swap elements 2 and 3".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 8, 3, 5, 4] -> [0, 0, 0, 0, 0, 0, 8, 3, 5, 4] [4, 0, 6, 5, 3, 8, 9, 1, 7, 2] -> [4, 4, 4, 4, 4, 4, 0, 6, 5, 3, 8, 9, 1, 7, 2] [9, 4] -> [9, 9, 9, 9, 9, 9, 4] [0] -> [0, 0, 0, 0, 0, 0] [1, 6, 5, 2, 3, 7, 8, 4] -> [1, 1, 1, 1, 1, 1, 6, 5, 2, 3, 7, 8, 4] [5] -> [5, 5, 5, 5, 5, 5] [5, 6, 9, 2, 4] -> [5, 5, 5, 5, 5, 5, 6, 9, 2, 4] [7, 4, 1] -> [7, 7, 7, 7, 7, 7, 4, 1]
[9, 7, 8, 0]->[9, 9, 9, 9, 9, 9, 7, 8, 0]<sep>[5, 9]->[5, 5, 5, 5, 5, 5, 9]<sep>[6, 0, 8, 1, 3, 2]->[6, 6, 6, 6, 6, 6, 0, 8, 1, 3, 2]<sep>[2, 1, 0, 5, 6, 7, 3, 8, 9]->[2, 2, 2, 2, 2, 2, 1, 0, 5, 6, 7, 3, 8, 9]<sep>[2, 7, 4, 3]->[2, 2, 2, 2, 2, 2, 7, 4, 3]<sep>[7, 9, 1, 6, 2, 3, 4]->[7, 7, 7, 7, 7, 7, 9, 1, 6, 2, 3, 4]<sep>[3, 6, 8, 9, 2, 0, 1, 5, 4, 7]->[3, 3, 3, 3, 3, 3, 6, 8, 9, 2, 0, 1, 5, 4, 7]<sep>[7, 1, 9, 0, 6, 4, 2, 8]->[7, 7, 7, 7, 7, 7, 1, 9, 0, 6, 4, 2, 8]<sep>[3, 0, 9, 4, 2, 1, 6, 8, 5]->[3, 3, 3, 3, 3, 3, 0, 9, 4, 2, 1, 6, 8, 5]<sep>[5, 0, 8, 3, 7, 1, 6, 9, 4]->[5, 5, 5, 5, 5, 5, 0, 8, 3, 7, 1, 6, 9, 4]<sep>[1, 9, 0, 3, 4, 7, 8, 6]->[1, 1, 1, 1, 1, 1, 9, 0, 3, 4, 7, 8, 6]<sep>[1, 3, 0, 6]->[1, 1, 1, 1, 1, 1, 3, 0, 6]<sep>[6, 8, 4]->[6, 6, 6, 6, 6, 6, 8, 4]<sep>[9, 6, 1, 0, 5, 7, 2, 8, 4, 3]->[9, 9, 9, 9, 9, 9, 6, 1, 0, 5, 7, 2, 8, 4, 3]<sep>[5, 8, 7, 0, 4, 2]->[5, 5, 5, 5, 5, 5, 8, 7, 0, 4, 2]<sep>[1, 8, 2]->[1, 1, 1, 1, 1, 1, 8, 2]<sep>[6]->[6, 6, 6, 6, 6, 6]<sep>[4, 5]->[4, 4, 4, 4, 4, 4, 5]<sep>[8, 2, 0, 3, 7]->[8, 8, 8, 8, 8, 8, 2, 0, 3, 7]<sep>[8, 6, 2, 1, 3, 9, 4]->[8, 8, 8, 8, 8, 8, 6, 2, 1, 3, 9, 4]<sep>[0, 1, 9, 4, 3, 8]->[0, 0, 0, 0, 0, 0, 1, 9, 4, 3, 8]<sep>[2, 0, 6, 4, 3, 1, 7]->[2, 2, 2, 2, 2, 2, 0, 6, 4, 3, 1, 7]<sep>[3, 5, 7, 2, 0, 8, 6]->[3, 3, 3, 3, 3, 3, 5, 7, 2, 0, 8, 6]<sep>[9, 4, 2, 7, 5, 0, 6, 8, 1, 3]->[9, 9, 9, 9, 9, 9, 4, 2, 7, 5, 0, 6, 8, 1, 3]
c051
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "prepend element 1 five times".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8] -> [] [2, 3, 1, 0, 8, 5, 6, 7, 9] -> [7, 9] [8, 3, 2, 1, 9, 5, 4, 6, 0, 7] -> [6, 0, 7] [1, 9, 5, 3] -> [] [1] -> [] [1, 8, 4, 9, 0, 6, 7, 3] -> [3] [2, 4, 8, 9, 7, 3, 0, 6, 5] -> [6, 5] [8, 7, 2, 9, 0, 5, 3, 6] -> [6]
[1, 2, 7]->[]<sep>[6, 8, 1, 4, 5]->[]<sep>[6, 5, 3, 9, 7, 8, 2]->[]<sep>[8, 7, 4, 6, 2, 5, 1, 9, 0, 3]->[9, 0, 3]<sep>[1, 5]->[]<sep>[1, 5, 2, 8, 4, 3, 6, 9]->[9]<sep>[3, 4]->[]<sep>[2, 4, 0, 7]->[]<sep>[9, 7, 6, 0, 4, 5]->[]<sep>[2, 4, 9, 5, 6, 0, 3, 8, 1]->[8, 1]<sep>[8, 5, 3, 2, 1, 6, 7, 9, 4]->[9, 4]<sep>[5, 8, 2, 0, 6, 3, 9, 1, 7, 4]->[1, 7, 4]<sep>[7, 6, 2, 1, 5, 8, 4, 9, 3]->[9, 3]<sep>[4, 3, 9, 1, 5, 6, 0, 2, 8, 7]->[2, 8, 7]<sep>[4, 2, 3, 9, 8, 0]->[]<sep>[0, 4, 1, 5, 9, 2, 6, 8]->[8]<sep>[5, 9, 2, 0, 8, 3, 1]->[]<sep>[4, 8, 3]->[]<sep>[7, 3, 9, 5, 1, 6, 4, 2, 8, 0]->[2, 8, 0]<sep>[3, 0, 9, 6, 1, 5, 7, 2]->[2]<sep>[7, 3, 5, 6, 2]->[]<sep>[5, 6, 3, 7, 4, 1, 0, 2, 9]->[2, 9]<sep>[4, 0, 7, 3, 2, 9, 1, 5]->[5]<sep>[8, 9, 1, 0, 6, 2, 5, 7, 3, 4]->[7, 3, 4]
c058
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "remove the first 7 elements".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [9, 3, 8, 0, 7, 6, 4, 2] -> [9, 5, 3, 8, 0, 7, 6, 4, 2] [4, 1, 2, 0, 6, 9] -> [4, 5, 1, 2, 0, 6, 9] [6, 2, 8, 5, 1, 9, 7, 3, 4] -> [6, 5, 2, 8, 5, 1, 9, 7, 3, 4] [6, 2] -> [6, 8, 2] [7, 9, 2, 1, 4, 3, 8, 6, 0] -> [7, 5, 9, 2, 1, 4, 3, 8, 6, 0] [6, 2, 4, 3] -> [6, 8, 2, 4, 3] [0, 7, 1, 5, 4] -> [0, 5, 7, 1, 5, 4] [4, 8, 9, 5, 1, 7, 6, 3, 0, 2] -> [4, 5, 8, 9, 5, 1, 7, 6, 3, 0, 2]
[9, 8]->[9, 8, 8]<sep>[6, 4, 3, 0]->[6, 8, 4, 3, 0]<sep>[1, 2, 4, 3, 7]->[1, 5, 2, 4, 3, 7]<sep>[9, 7, 8]->[9, 8, 7, 8]<sep>[3, 5, 0, 2, 8, 7, 9]->[3, 5, 5, 0, 2, 8, 7, 9]<sep>[8, 7, 0, 6]->[8, 8, 7, 0, 6]<sep>[9, 6, 1, 7, 4, 8, 2, 3]->[9, 5, 6, 1, 7, 4, 8, 2, 3]<sep>[2, 0, 9]->[2, 8, 0, 9]<sep>[3, 8, 1, 4, 9, 0]->[3, 5, 8, 1, 4, 9, 0]<sep>[9, 1, 7, 5, 8, 2, 3, 0, 4]->[9, 5, 1, 7, 5, 8, 2, 3, 0, 4]<sep>[1, 9, 6, 5, 0, 3, 8, 4, 7, 2]->[1, 5, 9, 6, 5, 0, 3, 8, 4, 7, 2]<sep>[6, 1, 9, 0, 2, 4, 3]->[6, 5, 1, 9, 0, 2, 4, 3]<sep>[2, 3, 1, 7, 0, 6, 4, 9, 8, 5]->[2, 5, 3, 1, 7, 0, 6, 4, 9, 8, 5]<sep>[7, 4, 6, 8, 0, 1, 3]->[7, 5, 4, 6, 8, 0, 1, 3]<sep>[1, 8, 6]->[1, 8, 8, 6]<sep>[6, 4]->[6, 8, 4]<sep>[9, 3, 5, 8, 0, 2, 4, 1]->[9, 5, 3, 5, 8, 0, 2, 4, 1]<sep>[8, 3, 2, 0, 9, 7]->[8, 5, 3, 2, 0, 9, 7]<sep>[3, 5, 2, 9, 1]->[3, 5, 5, 2, 9, 1]<sep>[0, 8, 4, 1, 5, 2, 9, 7]->[0, 5, 8, 4, 1, 5, 2, 9, 7]<sep>[1, 2, 6, 0, 9, 3]->[1, 5, 2, 6, 0, 9, 3]<sep>[3, 8, 1, 5, 7, 4, 9]->[3, 5, 8, 1, 5, 7, 4, 9]<sep>[6, 2, 4]->[6, 8, 2, 4]<sep>[7, 9, 5, 3, 6, 0, 4, 2, 8]->[7, 5, 9, 5, 3, 6, 0, 4, 2, 8]
c023
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert as element 2: 8 if the list length > 5 else 5".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [0, 5, 6] -> [1, 7, 9] [1, 3] -> [2, 5] [0, 1] -> [1, 3] [8, 0, 6, 1] -> [9, 2, 9, 5] [7] -> [8] [5, 2, 6, 4] -> [6, 4, 9, 8] [6, 0, 3, 1] -> [7, 2, 6, 5] [5, 7, 6, 0, 2, 3] -> [6, 9, 9, 4, 7, 9]
[0, 4]->[1, 6]<sep>[2, 6, 5, 1, 4]->[3, 8, 8, 5, 9]<sep>[6, 7, 5, 3, 1, 0]->[7, 9, 8, 7, 6, 6]<sep>[5, 4]->[6, 6]<sep>[6, 2, 5, 1, 0]->[7, 4, 8, 5, 5]<sep>[1, 5]->[2, 7]<sep>[7, 3, 4, 2]->[8, 5, 7, 6]<sep>[1]->[2]<sep>[0]->[1]<sep>[2, 7, 4, 1, 3]->[3, 9, 7, 5, 8]<sep>[0, 7, 5]->[1, 9, 8]<sep>[8]->[9]<sep>[8, 6, 0, 4, 2]->[9, 8, 3, 8, 7]<sep>[7, 3, 2, 4, 1]->[8, 5, 5, 8, 6]<sep>[3]->[4]<sep>[7, 5, 4]->[8, 7, 7]<sep>[1, 2, 5, 3]->[2, 4, 8, 7]<sep>[3, 0, 2]->[4, 2, 5]<sep>[6, 4, 3, 0, 2]->[7, 6, 6, 4, 7]<sep>[]->[]<sep>[1, 7]->[2, 9]<sep>[2]->[3]<sep>[1, 2, 0]->[2, 4, 3]<sep>[7, 1, 4]->[8, 3, 7]
c073
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "add the index to every element".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [1, 7, 8] -> [5, 2] [1, 8, 7, 7, 8] -> [5, 2] [4, 0, 1, 4, 0, 6, 0, 9, 6, 6] -> [5, 2] [3, 7, 0, 7, 7, 0] -> [5, 2] [0, 8, 4, 8] -> [5, 2] [6, 3, 7, 7, 4, 6] -> [5, 2] [3, 4, 4, 1, 1, 3, 3, 4, 1, 3] -> [5, 2] [3, 8] -> [5, 2]
[6]->[5, 2]<sep>[6, 6]->[5, 2]<sep>[1, 1, 1, 1, 1, 1]->[5, 2]<sep>[7, 7, 7]->[5, 2]<sep>[]->[5, 2]<sep>[8, 6, 6, 8, 6, 9, 0, 6, 1]->[5, 2]<sep>[0, 4, 4, 4, 4, 0, 4, 0]->[5, 2]<sep>[9, 8, 7, 4, 1, 6, 0]->[5, 2]<sep>[9, 0, 0, 0, 9]->[5, 2]<sep>[4, 4, 4]->[5, 2]<sep>[9, 4, 7, 1, 5, 7, 7, 6, 0]->[5, 2]<sep>[9, 4, 9, 9, 9, 4, 9, 9]->[5, 2]<sep>[0, 9, 0, 7, 7]->[5, 2]<sep>[7]->[5, 2]<sep>[7, 6, 4, 3, 9, 3, 3, 9, 4]->[5, 2]<sep>[3, 0]->[5, 2]<sep>[1, 1, 1, 1, 7, 7, 7]->[5, 2]<sep>[4, 6, 3, 0]->[5, 2]<sep>[3, 3, 3, 3, 3, 3, 3, 3, 3, 3]->[5, 2]<sep>[0, 8, 0, 8, 8, 8, 8, 0]->[5, 2]<sep>[9]->[5, 2]<sep>[9, 8, 8, 6, 8, 6, 9, 8, 8, 6]->[5, 2]<sep>[1, 9, 9, 8, 8, 8, 9]->[5, 2]<sep>[6, 6, 1, 8]->[5, 2]
c042
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "the list [5, 2]".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [8, 2, 7, 3, 6, 5, 1, 9] -> [2, 7, 3, 6, 5, 1, 9, 8] [5, 3] -> [3, 5] [4, 1, 9, 0] -> [1, 9, 0, 4] [2, 8, 6, 9, 1] -> [8, 6, 9, 1, 2] [7] -> [7] [6, 3, 4] -> [3, 4, 6] [1, 2, 6, 3, 5, 8, 0, 7, 4] -> [2, 6, 3, 5, 8, 0, 7, 4, 1] [8, 4, 5, 0] -> [4, 5, 0, 8]
[8, 0]->[0, 8]<sep>[5, 4, 1]->[4, 1, 5]<sep>[3, 6, 7, 0, 2, 8, 9, 5, 4]->[6, 7, 0, 2, 8, 9, 5, 4, 3]<sep>[3, 7, 2, 9, 1, 8, 4]->[7, 2, 9, 1, 8, 4, 3]<sep>[1, 6, 0, 9, 8, 2, 4, 3, 7, 5]->[6, 0, 9, 8, 2, 4, 3, 7, 5, 1]<sep>[4, 0, 7, 5, 2, 8, 1, 6]->[0, 7, 5, 2, 8, 1, 6, 4]<sep>[6, 7, 0, 8, 1, 3]->[7, 0, 8, 1, 3, 6]<sep>[5, 7, 8, 2]->[7, 8, 2, 5]<sep>[7, 1]->[1, 7]<sep>[0, 9, 2, 5]->[9, 2, 5, 0]<sep>[9, 5, 4]->[5, 4, 9]<sep>[3, 8, 9]->[8, 9, 3]<sep>[6, 0, 3, 9, 1, 7]->[0, 3, 9, 1, 7, 6]<sep>[7, 4, 1, 3, 2, 6, 0, 5]->[4, 1, 3, 2, 6, 0, 5, 7]<sep>[6, 4, 7, 3, 0, 1, 2]->[4, 7, 3, 0, 1, 2, 6]<sep>[1, 4, 0, 7, 3, 2, 5, 8, 6, 9]->[4, 0, 7, 3, 2, 5, 8, 6, 9, 1]<sep>[7, 8, 6, 5, 3, 4, 9, 0]->[8, 6, 5, 3, 4, 9, 0, 7]<sep>[1, 3, 5, 2, 9]->[3, 5, 2, 9, 1]<sep>[2, 8]->[8, 2]<sep>[6, 9, 3, 4, 2, 0, 1]->[9, 3, 4, 2, 0, 1, 6]<sep>[6, 4, 2, 8, 1, 5, 9, 0, 7]->[4, 2, 8, 1, 5, 9, 0, 7, 6]<sep>[6, 7, 5, 4, 3, 9]->[7, 5, 4, 3, 9, 6]<sep>[8, 2, 0, 9, 6]->[2, 0, 9, 6, 8]<sep>[9, 0, 7, 5, 2, 6, 1, 8, 4, 3]->[0, 7, 5, 2, 6, 1, 8, 4, 3, 9]
c066
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "left-rotate by 1".
P1
Infer the principles behind the examples below so that the principles can be applied to unseen problems for someone else. Keep your thinking concise. Examples: [6, 0, 3] -> [6, 5, 0, 3] [1, 4] -> [1, 5, 4] [5, 6, 3, 9, 2, 0] -> [5, 5, 6, 3, 9, 2, 0] [6, 8, 9, 0, 5, 3, 2, 4, 7, 1] -> [6, 5, 8, 9, 0, 5, 3, 2, 4, 7, 1] [7, 2, 4, 8, 9, 3, 5, 1, 6, 0] -> [7, 5, 2, 4, 8, 9, 3, 5, 1, 6, 0] [1, 7, 3, 0] -> [1, 5, 7, 3, 0] [1, 7, 6, 8, 4] -> [1, 5, 7, 6, 8, 4] [4, 8, 3] -> [4, 5, 8, 3]
[6, 9, 7]->[6, 5, 9, 7]<sep>[9, 8]->[9, 5, 8]<sep>[6, 2, 5, 7, 3, 0, 8]->[6, 5, 2, 5, 7, 3, 0, 8]<sep>[9, 2, 1, 0, 8]->[9, 5, 2, 1, 0, 8]<sep>[9, 7, 2, 1, 3, 5, 0, 6, 8, 4]->[9, 5, 7, 2, 1, 3, 5, 0, 6, 8, 4]<sep>[4, 1, 8, 2, 9, 7]->[4, 5, 1, 8, 2, 9, 7]<sep>[6, 2, 8]->[6, 5, 2, 8]<sep>[3, 4, 2, 9, 6, 8, 1, 7]->[3, 5, 4, 2, 9, 6, 8, 1, 7]<sep>[6, 2, 7, 3, 0, 8]->[6, 5, 2, 7, 3, 0, 8]<sep>[5, 2, 3, 0, 4, 8, 7]->[5, 5, 2, 3, 0, 4, 8, 7]<sep>[4, 1, 9, 3, 7]->[4, 5, 1, 9, 3, 7]<sep>[7, 9, 3, 5, 1, 4, 0]->[7, 5, 9, 3, 5, 1, 4, 0]<sep>[9, 3, 2, 5, 1, 8, 7, 4]->[9, 5, 3, 2, 5, 1, 8, 7, 4]<sep>[3, 0, 9, 7, 6, 2]->[3, 5, 0, 9, 7, 6, 2]<sep>[7, 8, 6, 0, 1, 9, 4, 3, 5]->[7, 5, 8, 6, 0, 1, 9, 4, 3, 5]<sep>[6, 7, 2, 8, 1, 3, 9, 4, 0]->[6, 5, 7, 2, 8, 1, 3, 9, 4, 0]<sep>[4, 9, 0, 1, 6, 3, 2, 8]->[4, 5, 9, 0, 1, 6, 3, 2, 8]<sep>[6, 1, 2, 5]->[6, 5, 1, 2, 5]<sep>[0, 9, 7, 3, 5, 1, 2, 4, 8]->[0, 5, 9, 7, 3, 5, 1, 2, 4, 8]<sep>[8, 1, 6, 7, 2]->[8, 5, 1, 6, 7, 2]<sep>[1, 9, 8, 0, 2, 5, 3, 4, 7]->[1, 5, 9, 8, 0, 2, 5, 3, 4, 7]<sep>[7, 0]->[7, 5, 0]<sep>[4, 0, 1, 6]->[4, 5, 0, 1, 6]<sep>[2, 8, 6, 0, 1, 3, 4, 7]->[2, 5, 8, 6, 0, 1, 3, 4, 7]
c022
Infer and compute a function over lists of natural numbers for a given input given a predetermined set of examples The target function is "insert a 5 as element 2".
P1
README.md exists but content is empty.
Downloads last month
37