Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Job manager crashed while running this job (missing heartbeats).
Error code:   JobManagerCrashedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image_name
string
chunk
string
font_name
string
image_base64
string
dataset_Alukah_Arabic_font_Amiri_article_1_part_1.png
"ุงู„ุบู„ูˆ ููŠ ู†ุธุฑูŠุฉ ุงู„ู…ุคุงู…ุฑุฉ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฎุงู„ู‚ู ุงู„ุณู…ุงูˆุงุช ูˆุงู„ุฃ(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzddWBT1//4/5O0tBQrLsOGDIa7O8MZNhyGDjrcJ8i(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_1_part_2.png
"ูƒูŠููŠุฉ ุชุนุงู…ู„ ุงู„ู†ุงุณ ู…ุน ุงู„ุฃุฒู…ุงุชุŒ ู…ู† ุงู„ู…ุญุชู…ู„ ุฃู† ูŠูƒูˆู† ู„ู„ุฃุฒู…(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzddXxTV9z48ZO0tKWF4g7DvbjDYNgoLsPdGe4bDGc(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_1_part_3.png
"ุฃู…ุฑู‡ุงุŒ ูˆูƒู„ ู…ุง ูŠุญุฏุซ ู…ู† ุดุฑู‘ู ูู‡ูˆ ุชุญุช ุชุฏุจูŠุฑู‡ุงุŸ! ุฅู† ู…ู…ุง ุชููˆ(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzddWBT1//4/5PUaItT3N3dhssYUtwZMnQ4wxk2ZAw(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_1_part_4.png
"ุชุฏุจูŠุฑู‡ุŒ ุฃูˆ ูŠุชู…ู†ู‘ูŽูˆุง ุณูˆุงู‡ุŒ ูˆู‡ู… ุฃุนู„ู… ุจู‡ ูˆุฃุนุฑู ุจุฃุณู…ุงุฆู‡ ูˆุต(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdZWAbR7io4ZE5dthhZmZmZoY2zAxN03Cbpk3Shpk(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_2_part_1.png
"ุงู„ุงุฎุชู„ุงู: ู…ูู‡ูˆู…ู‡ ููŠ ุงู„ู„ุบุฉ ูˆุงู„ุงุตุทู„ุงุญ ูˆููŠ ุงู„ู‚ุฑุขู† ุงู„ูƒุฑูŠู… (...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzddXwUx//48bkkxHAI7iVoIEUKNLgXp1AcWtydDxQ(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_2_part_2.png
"ุฅู„ุง ููŠู…ุง ู„ุง ุฏู„ูŠู„ ุนู„ูŠู‡\" [12] . ูˆู‡ุฐุง ุงู„ุชูุฑูŠู‚ ุณุจู‚ู‡ ุฅู„ูŠู‡ ุฃุจูˆ ุง(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdZWAU1/uw4bMbI4Hg7sEdAgWKB5dQ3KW4W7FSpGh(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_2_part_3.png
"ุงู„ู†ุธุฑ... ูˆู„ู‡ุฐุง ู„ุง ุชุฌุฏ ูุฑู‚ู‹ุง ุจูŠู†ู‡ู…ุง ููŠ ุงุณุชุนู…ุงู„ ุงู„ูู‚ู‡ุงุก\" [(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdZ1wU1/v4/bOAINixd1HsWLBh712TWLHHhjX2aIz(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_2_part_4.png
"ุงู„ุชููƒูŠุฑุŒ ูˆุชู†ูˆูŠุน ุงู„ุชุตุฑู ููŠ ูˆุถุน ุงู„ู„ุบุงุชุŒ ูˆุชุจุฏู„ ูƒูŠููŠุงุชู‡ุง (...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdd2BTVdzw8ZPuwWjZe29K2SBUQBFBhgiWvUFkKnu(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_2_part_5.png
"ุนุจุฏุงู„ุฑุคูˆู ุจู† ุชุงุฌ ุงู„ุนุงุฑููŠู† ุงุจู† ุนู„ูŠ ุจู† ุฒูŠู† ุงู„ุนุงุจุฏูŠู† ุงู„ุญุฏ(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdZXwUV/vw8RMnwaFYcEhxglPkxt1di7e4U7R4cYc(...TRUNCATED)
dataset_Alukah_Arabic_font_Amiri_article_3_part_1.png
"[21] ุงู„ู…ุญุฑุฑ ุงู„ูˆุฌูŠุฒ ููŠ ุชูุณูŠุฑ ุงู„ูƒุชุงุจ ุงู„ุนุฒูŠุฒุŒ ุงุจู† ุนุทูŠุฉ ุงู„ุฃู†(...TRUNCATED)
Amiri
"iVBORw0KGgoAAAANSUhEUgAACbEAAA20CAIAAABOHAVkAAEAAElEQVR4nOzdZYATV/v4/ZOsw+LutrguFHco7kWLuzsUWqRAabF(...TRUNCATED)
End of preview.

SAND: A Large-Scale Synthetic Arabic OCR Dataset

Hugging Face Datasets GitHub

Overview

SAND (Synthetic Arabic OCR Dataset) is a large-scale, synthetically generated dataset designed for training and evaluating Optical Character Recognition (OCR) models for Arabic text. This dataset addresses the critical need for comprehensive Arabic text recognition resources by providing controlled, diverse, and scalable training data that simulates real-world book layouts.

Key Features

  • Massive Scale: 843,622 document images containing approximately 690 million words
  • Extensive Typographic Diversity: Ten distinct Arabic fonts covering a wide range of styles
  • Structured Formatting: Designed to mimic real-world book layouts with consistent typography
  • Clean Data: Synthetically generated with no scanning artifacts, blur, or distortions
  • Content Diversity: Text spans multiple domains including culture, literature, Shariah, social topics, and more

Dataset Structure

The dataset is divided into ten splits based on font name:

  • Amiri: Classical Naskh typeface inspired by early 20th century typography
  • Sakkal Majalla: Widely used font in contemporary Arabic publishing
  • Arial: Modern sans-serif font common in digital publications
  • Calibri: Microsoft's default font representing contemporary digital typography
  • Scheherazade New: Traditional-style font based on classical manuscript styles
  • Jozoor Font: Decorative Arabic font with more stylized character forms
  • Lateef: Extended Arabic script font designed for readability at small sizes
  • Noto Naskh Arabic UI: Part of Google's Noto family, designed for user interfaces
  • Thabit: Monospaced Arabic font for technical documentation
  • Al Jazeera Arabic Regular: Based on the typography used by Al Jazeera media

๐Ÿ“‹ Sample Images

Sample 1 - Amiri Font Sample 2 - Arial Font
Sample 3 - Calibri Font Sample 4 - Scheherazade Font

Each split contains data specific to a single font with the following attributes:

  • image_name: Unique identifier for each image
  • chunk: The text content associated with the image
  • font_name: The font used in text rendering
  • image_base64: Base64-encoded image representation

Content Distribution

Category Number of Articles
Culture 13,253
Fatawa & Counsels 8,096
Literature & Language 11,581
Bibliography 26,393
Publications & Competitions 1,123
Shariah 46,665
Social 8,827
Translations 443
Muslim's News 16,725
Total Articles 133,105

Font Specifications

Font Words Per Page Font Size Characteristics
Sakkal Majalla 50โ€“300 14 pt Contemporary publishing style
Arial 50โ€“500 12 pt Modern sans-serif
Calibri 50โ€“500 12 pt Contemporary digital document
Amiri 50โ€“300 12 pt Classical Naskh typeface
Scheherazade New 50โ€“250 12 pt Traditional manuscript style
Noto Naskh Arabic UI 50โ€“400 12 pt Clear UI rendering
Lateef 50โ€“350 14 pt Optimized for small sizes
Al-Jazeera-Arabic 50โ€“250 12 pt Media/journalistic style
Thabit 50โ€“240 12 pt Monospaced technical font
Jozoor Font 50โ€“200 12 pt Decorative with stylization

Page Layout

Specification Measurement
Page Size A4 (8.27 ร— 11.69 in)
Left Margin 0.9 in
Right Margin 0.9 in
Top Margin 1.0 in
Bottom Margin 1.0 in
Gutter Margin 0.2 in
Resolution 300 DPI
Color Mode Grayscale
Page Direction Right-to-Left
Text Alignment Right
Line Spacing 1.15

Usage Example

from datasets import load_dataset
import base64
from io import BytesIO
from PIL import Image
import matplotlib.pyplot as plt

# Load dataset with streaming enabled
ds = load_dataset("riotu-lab/SAND-Extended", streaming=True)
print(ds)

# Iterate over a specific font dataset (e.g., Amiri)
for sample in ds["Amiri"]:
    image_name = sample["image_name"]
    chunk = sample["chunk"]  # Arabic text transcription
    font_name = sample["font_name"]
    
    # Decode Base64 image
    image_data = base64.b64decode(sample["image_base64"])
    image = Image.open(BytesIO(image_data))

    # Display the image
    plt.figure(figsize=(10, 10))
    plt.imshow(image)
    plt.axis('off')
    plt.title(f"Font: {font_name}")
    plt.show()

    # Print the details
    print(f"Image Name: {image_name}")
    print(f"Font Name: {font_name}")
    print(f"Text Chunk: {chunk}")
    
    # Break after one sample for testing
    break

Working with Multiple Fonts

To train or evaluate models across different font styles:

from datasets import load_dataset
import random

# Load the dataset
ds = load_dataset("riotu-lab/SAND")

# Select a balanced sample from multiple fonts
fonts_to_use = ["Amiri", "Arial", "Scheherazade_New", "Thabit", "Noto_Naskh_Arabic_UI"]
samples_per_font = 1000
combined_samples = []

for font in fonts_to_use:
    # Get random samples from this font
    font_samples = ds[font].shuffle(seed=42).select(range(samples_per_font))
    combined_samples.extend([(sample, font) for sample in font_samples])

# Shuffle the combined samples
random.shuffle(combined_samples)

# Now you can use these samples for training or evaluation
for sample, font in combined_samples[:5]:  # Just show first 5 as example
    print(f"Font: {font}, Image: {sample['image_name']}")

Applications

SAND is designed to support various Arabic text recognition tasks:

  • Training and evaluating OCR models for Arabic text
  • Developing vision-language models for document understanding
  • Fine-tuning existing OCR models for better Arabic script recognition
  • Benchmarking OCR performance across different fonts and layouts
  • Research in Arabic natural language processing and computer vision
  • Developing font-adaptive OCR systems that generalize across typographic styles

Citation

If you use SAND in your research, please cite:

@misc{sand2025,
  title={SAND: A Large-Scale Synthetic Arabic OCR Dataset for Vision-Language Models},
  author={RIOTU Lab},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/riotu-lab/SAND}}
}

Acknowledgments

The authors thank Prince Sultan University for their support in developing this dataset.

Downloads last month
12

Collection including riotu-lab/SAND-Extended