|
--- |
|
dataset_info: |
|
features: |
|
- name: query_id |
|
dtype: string |
|
- name: query |
|
dtype: string |
|
- name: positive_passages |
|
list: |
|
- name: docid |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: negative_passages |
|
list: |
|
- name: docid |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
- name: title |
|
dtype: string |
|
- name: subset |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 10961970907 |
|
num_examples: 648766 |
|
download_size: 6447294919 |
|
dataset_size: 10961970907 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
license: cc-by-sa-4.0 |
|
task_categories: |
|
- question-answering |
|
language: |
|
- en |
|
pretty_name: RLHN-680K |
|
size_categories: |
|
- 100K<n<1M |
|
--- |
|
|
|
# Dataset Card for RLHN-680K |
|
|
|
## Dataset Description |
|
[Repository](https://github.com/castorini/rlhn) | |
|
[Paper](https://huggingface.co/papers/2505.16967) | |
|
[ArXiv](https://arxiv.org/abs/2505.16967) |
|
|
|
RLHN is a cascading LLM framework designed to accurately relabel hard negatives in existing IR/RAG training datasets, such as MS MARCO and HotpotQA. |
|
|
|
This Tevatron dataset (680K training pairs) contains the queries, positives + relabeled hard negatives, remaining hard negatives for 7 datasets in the BGE training collection. |
|
|
|
This repository contains the training pairs that can be used to fine-tune embedding, ColBERT or multi-vector, and reranker models. |
|
|
|
The original dataset (bad quality; containing false negatives) can be found at [rlhn/default-680K](https://huggingface.co/datasets/rlhn/default-680K/). |
|
|
|
> Note: RLHN datasets are not **new** training datasets, but rather existing BGE collection training datasets with hard negatives cleaned! |
|
|
|
## Dataset Structure |
|
|
|
To access the data using HuggingFace `datasets`: |
|
```python |
|
rlhn = datasets.load_dataset('rlhn/rlhn-680K') |
|
|
|
# training set: |
|
for data in freshstack['train']: |
|
query_id = data["query_id"] # md5 hash of the query_id |
|
query = data["query"] # query text |
|
subset = data["subset"] # training dataset, e.g., fiqa or msmarco_passage |
|
|
|
# positive passages |
|
for positive_passage in data["positive_passages"]: |
|
doc_id = positive_passage["docid"] |
|
title = positive_passage["title"] # title is usually empty, added in text |
|
text = positive_passage["text"] # contains both the title & text |
|
|
|
# hard negative passages |
|
for negative_passage in data["negative_passages"]: |
|
doc_id = negative_passage["docid"] |
|
title = negative_passage["title"] # title is usually empty, added in text |
|
text = negative_passage["text"] # contains both the title & text |
|
``` |
|
|
|
|
|
## Original Dataset Statistics |
|
The following table contains the number of training pairs for each training dataset included in RLHN. These numbers are for the default setting. |
|
|
|
| Dataset | 100K splits | 250K splits | 400K splits | 680K splits | |
|
|-------------------|-------------|-------------|-------------|------------- | |
|
| arguana | 4,065 | 4,065 | 4,065 | 4,065 | |
|
| fever | 28,755 | 28,755 | 28,755 | 28,755 | |
|
| fiqa | 5,500 | 5,500 | 5,500 | 5,500 | |
|
| hotpotqa | 10,250 | 30,000 | 84,516 | 84,516 | |
|
| msmarco_passage | 49,571 | 145,000 | 210,000 | 485,823 | |
|
| nq | 6,110 | 30,000 | 58,568 | 58,568 | |
|
| scidocsrr | 12,654 | 12,654 | 12,654 | 12,654 | |
|
| **total** | **96,167** | **255,974** | **404,058** | **679,881** | |
|
|
|
|
|
## License |
|
The RLHN dataset is made available with the CC-BY-SA 4.0 license. |
|
|
|
## Hashing & IDs |
|
|
|
We generate the md5 hash as the unique identifier (ID) for both the query \& documents, using the code below: |
|
|
|
```python |
|
import hashlib |
|
|
|
def get_md5_hash(text): |
|
"""Calculates the MD5 hash of a given string. |
|
Args: |
|
text: The string to hash. |
|
Returns: |
|
The MD5 hash of the string as a hexadecimal string. |
|
""" |
|
text_bytes = text.encode('utf-8') # Encode the string to bytes |
|
md5_hash = hashlib.md5(text_bytes).hexdigest() |
|
return md5_hash |
|
``` |
|
|
|
## Citation |
|
``` |
|
@misc{thakur2025relabel, |
|
title={Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval}, |
|
author={Nandan Thakur and Crystina Zhang and Xueguang Ma and Jimmy Lin}, |
|
year={2025}, |
|
eprint={2505.16967}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2505.16967}, |
|
} |
|
``` |