Dataset Viewer
Auto-converted to Parquet
audio
audio
genre
class label
track_id
int64
title
string
artist
string
0Electronic
55,183
Intro To Horror
Dylan Palme
6Pop
120,184
Lavender Hip Mob
Lee Rosevere
7Rock
85,816
Break It Now
Radio 421
5International
36,277
Restaurant Concert, Song 2
Demiran Ćerimović and His Orkestar
7Rock
56,552
Celebration
Krebs
6Pop
138,041
Lydia
Massage
2Folk
11,505
A Quiet Lousy Roar
Big Blood
7Rock
3,721
Pow Wow
Indian Jewelry
2Folk
14,809
The New Year
Sebastien Duclos
2Folk
38,363
Conclusion
A Way
5International
80,680
Snoshti Sum Libe
Black Sea Hotel
6Pop
85,957
Waiting
Pete Galub
0Electronic
108,415
AstroTurf
UncleBibby
3Hip-Hop
61,884
Old Western Firefight
Cullah
4Instrumental
86,486
Frammenti
Andrea Carri
3Hip-Hop
61,175
KING NeLSON
Alaclair Ensemble
7Rock
256
Toggle
Black Elk
3Hip-Hop
144,180
Pulso (Por Stray)
Pulso
3Hip-Hop
146,727
ALLMACKS (Drunken Masters Version) (Live)
Regenerated Headpiece
3Hip-Hop
50,264
Mandala
Square Flare
2Folk
126,747
Child of the 70's
Derek Clegg
2Folk
116,451
December Mourning
Montana Skies
4Instrumental
126,188
Just Dream
Joao Picoito
6Pop
52,037
Alesser Whale
Poland
7Rock
55,715
Chain splendour 2
et_
1Experimental
119,118
human nature is nature nature
FortyOne
2Folk
105,714
Working On a Building
Sam Moss
7Rock
87,153
Southern spirit
Still Pluto
3Hip-Hop
75,752
Internal Trouble
Kellee Maize
5International
141,593
Temple Ball
Mikuś
7Rock
73,486
Sleep Walk
Ylajali
1Experimental
118,196
The Blues With No Horizon
PC-ONE
3Hip-Hop
123,975
AYYYYYYYYYYYYYY
BenJamin Banger
1Experimental
110,204
La tapa del domingo
Circus Marcus
5International
110,448
Demmadont
Papascandy
0Electronic
148,443
Arid Badlands
No Human
6Pop
131,446
A11 Turn Out The Lights
Mom Jeans
2Folk
106,342
Holiday
Julie Byrne
3Hip-Hop
71,241
Neva Give Up
Dengaz
6Pop
64,834
Music For Baby
Radioactive Sparrow
7Rock
122,080
Dory Honey
Jahzzar
3Hip-Hop
134,825
Needy Ass
Tha Silent Partner
3Hip-Hop
97,692
Hell Yeah
Tickle
6Pop
126,104
Just Fine
No Lala
4Instrumental
108,906
Did you know? (Curiouser and curiouser)
Fabian Measures
6Pop
122,809
foolsgame
The Carnys
4Instrumental
130,927
The Stars Look Different (Ziggy Stardust Mix)
spinningmerkaba
4Instrumental
128,812
Lathe
Blue Dot Sessions
3Hip-Hop
123,979
Moments
BenJamin Banger
5International
114,936
Ikn hob ongehoybn shplin a libe
Zingeray!
5International
56,469
Yrlaazhyly
Alash Ensemble
7Rock
109,497
Police Bastard
Doom
1Experimental
127,469
Mama Medusa
HighWay17
4Instrumental
133,975
Yes She Can
Marcos H. Bolanos
3Hip-Hop
43,866
contemplate jat
Katrah-Quey
6Pop
92,124
#800080
The Craters
5International
76,075
Tylynka (Overture Flute)
Koliadnyky of Kryvorivnia
7Rock
123,832
Drawn by the Stars
Mesmerists
3Hip-Hop
98,624
Please Tell Me
KINGS OF THE CITY
5International
73,768
Jewel
ZOE.LEELA
2Folk
45,519
Swimmer
Plusplus
7Rock
123,273
Relax
Son Altesse Furieuse
3Hip-Hop
138,213
Vintage (OG Mixx) featuring The Honorable Sleaze
C-Doc
4Instrumental
126,220
Monder
Blue Dot Sessions
5International
24,742
Pajdusko
Druzina
5International
60,041
Moussa
Lessazo
5International
33,426
CANTOS DE LAS JOVENES
CONCHACCOTA PROGRESO GRAU
7Rock
123,834
Three Times
Mesmerists
5International
43,698
Syrtos
MWE
5International
4,079
Extranjero
Pistolera
0Electronic
71,513
M0NOR4V3N
XC3N
2Folk
12,045
The WInds House
Big Blood
4Instrumental
143,299
Hardwired
Chase Alan Willis
7Rock
107,388
Le kid de la plage
Aussitôt Mort / MORT MORT MORT
7Rock
145,067
Ngrumme
TxSxBx
0Electronic
134,447
Intro
Grav
7Rock
14,745
Pearl
Throwing Muses
3Hip-Hop
108,838
On Harry Love Drums
Tha Silent Partner
1Experimental
140,935
Fly Blackbird Fly : rewrite
-ono-
6Pop
69,747
04
Manueljgrotesque
6Pop
90,592
Bullets Have No Effect
Pilesar
5International
25,216
Kolo Iz Sumadije
Zlatne Uste Balkan Brass Band
3Hip-Hop
29,602
L'Automne En Amour
KenLo Craqnuques
3Hip-Hop
67,235
Love Me/Hate Me (Featuring Joey Ripps) (Acapella)
The Honorable Sleaze
1Experimental
11,242
280405 seoul
Justice Yeldham
1Experimental
27,455
Track 2
Sun Araw
7Rock
26,639
03
Flowerheads
7Rock
106,955
Contaminate
Mutilation Rites
0Electronic
107,434
Bubbling Pots and Troubling Thoughts
UncleBibby
5International
125,312
Girl From The North
Dengue Fever
0Electronic
100,550
Beyond The Universe (Transcendance)
Megatone
6Pop
62,452
Jardins du Luxembourg
Jahzzar
0Electronic
124,752
Aitken Basin
Damscray
4Instrumental
118,060
Janitor
Blue Dot Sessions
2Folk
43,623
Steak and Acid/Claudette colbert
Kreamy 'Lectric Santa
4Instrumental
127,648
Bkls
Blue Dot Sessions
7Rock
11,264
My Fair Lady
David Byrne
2Folk
80,002
Morning Flowers
Brock Tyler
6Pop
54,034
Wood Detective
alright lover
4Instrumental
126,718
Jackbird
Blue Dot Sessions
End of preview. Expand in Data Studio

FMA Genre Classification Dataset

The FMA Genre Classification Dataset is a subset of the Free Music Archive (FMA), containing audio samples and genre labels for music classification tasks. This version uses the "small" subset of FMA, which contains 8,000 tracks of 30 seconds each, evenly distributed across 8 genres.

Dataset Description

Dataset Summary

This dataset consists of 8,000 audio tracks from the Free Music Archive (FMA), each 30 seconds in length, distributed across 8 musical genres. The audio has been preprocessed to ensure consistent format and sampling rate (16 kHz). The dataset is split into training (80%) and validation (20%) sets.

Supported Tasks

  • Audio Classification: The dataset can be used to train models for music genre classification
  • Audio Feature Learning: The dataset is suitable for training audio representation models

Languages

The audio content spans multiple languages, but the metadata is in English.

Dataset Structure

Number of tracks: 8,000
Audio length: 30 seconds each
Sampling rate: 16kHz (resampled from 44.1kHz)
Format: MP3
Split: 80% training, 20% validation

Data Fields

  • audio: Audio file (MP3 format, 30s, resampled to 16kHz)
  • genre: Genre label (one of 8 classes)
  • track_id: Unique identifier for the track
  • title: Track title
  • artist: Artist name

Genres

  1. Electronic
  2. Experimental
  3. Folk
  4. Hip-Hop
  5. Instrumental
  6. International
  7. Pop
  8. Rock

Dataset Creation

Source Data

The dataset is derived from the Free Music Archive (FMA), specifically the "small" subset. FMA is an open and easily accessible dataset consisting of full-length audio tracks with associated metadata.

Original FMA Dataset Paper

Preprocessing

  1. Audio files are loaded from MP3 format
  2. Resampled from 44.1kHz to 16kHz
  3. Converted to mono if stereo
  4. Verified for consistent length (30 seconds)
  5. Metadata cleaned and verified to match existing audio files

Considerations for Using the Data

Social Impact of Dataset

This dataset promotes research in music information retrieval and machine learning while respecting creative commons licensing. It helps advance automated music understanding while providing proper attribution to artists.

Discussion of Biases

The dataset may contain biases in:

  • Genre representation (equal distribution might not reflect real-world music distribution)
  • Western music bias
  • English language bias in metadata
  • Artist representation

Other Known Limitations

  • Limited to 30-second clips
  • Genre boundaries can be subjective
  • Some tracks might fit multiple genres
  • Audio quality varies between tracks

Additional Information

Dataset Curators

This version of the dataset was curated by [rpmon], based on the original FMA dataset created by Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst, and Xavier Bresson.

Licensing Information

The dataset is released under Creative Commons licenses. Individual tracks may have different Creative Commons licenses. Please refer to the original FMA dataset for specific license information.

Citation Information

If you use this dataset, please cite the original FMA paper:

@inproceedings{defferrard2017fma,
  title={FMA: A Dataset for Music Analysis},
  author={Defferrard, Michal and Benzi, Kirell and Vandergheynst, Pierre and Bresson, Xavier},
  booktitle={18th International Society for Music Information Retrieval Conference},
  year={2017}
}

Usage Examples

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("rpmon/fma-genre-classification")

# Access training data
train_data = dataset['train']

# Get an audio sample and its genre
audio = train_data[0]['audio']
genre = train_data[0]['genre']

# Process with AST feature extractor
from transformers import ASTFeatureExtractor
feature_extractor = ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
inputs = feature_extractor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt")
Downloads last month
60