Dataset Viewer
Auto-converted to Parquet
Lecture Notes for
stringlengths
1
100
Unnamed: 1
nullclasses
7 values
Unnamed: 2
null
Unnamed: 3
null
Data Structures and Algorithms
null
null
null
Revised each year by John Bullinaria
null
null
null
School of Computer Science
null
null
null
University of Birmingham
null
null
null
Birmingham, UK
null
null
null
Version of 27 March 2019ThesenotesarecurrentlyrevisedeachyearbyJohnBullinaria. Theyincludesectionsba
null
null
null
notes originally written by Mart´ın Escard´o and revised by Manfred Kerber. All are members
null
null
null
of the School of Computer Science, University of Birmingham, UK.
null
null
null
(cid:13)c School of Computer Science, University of Birmingham, UK, 2018
null
null
null
1Contents
null
null
null
1 Introduction 5
null
null
null
1.1 Algorithms as opposed to programs . . . . . . . . . . . . . . . . . . . . . . . . . 5
null
null
null
1.2 Fundamental questions about algorithms . . . . . . . . . . . . . . . . . . . . . . 6
null
null
null
1.3 Data structures, abstract data types, design patterns . . . . . . . . . . . . . . . 7
null
null
null
1.4 Textbooks and web-resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
null
null
null
1.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
null
null
null
2 Arrays, Iteration, Invariants 9
null
null
null
2.1 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
null
null
null
2.2 Loops and Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
null
null
null
2.3 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
null
null
null
3 Lists, Recursion, Stacks, Queues 12
null
null
null
3.1 Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
null
null
null
3.2 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
null
null
null
3.3 Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
null
null
null
3.4 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
null
null
null
3.5 Doubly Linked Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
null
null
null
3.6 Advantage of Abstract Data Types . . . . . . . . . . . . . . . . . . . . . . . . . 20
null
null
null
4 Searching 21
null
null
null
4.1 Requirements for searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
null
null
null
4.2 Specification of the search problem . . . . . . . . . . . . . . . . . . . . . . . . . 22
null
null
null
4.3 A simple algorithm: Linear Search . . . . . . . . . . . . . . . . . . . . . . . . . 22
null
null
null
4.4 A more efficient algorithm: Binary Search . . . . . . . . . . . . . . . . . . . . . 23
null
null
null
5 Efficiency and Complexity 25
null
null
null
5.1 Time versus space complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
null
null
null
5.2 Worst versus average complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 25
null
null
null
5.3 Concrete measures for performance . . . . . . . . . . . . . . . . . . . . . . . . . 26
null
null
null
5.4 Big-O notation for complexity class . . . . . . . . . . . . . . . . . . . . . . . . . 26
null
null
null
5.5 Formal definition of complexity classes . . . . . . . . . . . . . . . . . . . . . . . 29
null
null
null
6 Trees 31
null
null
null
6.1 General specification of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
null
null
null
6.2 Quad-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
null
null
null
6.3 Binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
null
null
null
26.4 Primitive operations on binary trees . . . . . . . . . . . . . . . . . . . . . . . . 34
null
null
null
6.5 The height of a binary tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
null
null
null
6.6 The size of a binary tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
null
null
null
6.7 Implementation of trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
null
null
null
6.8 Recursive algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
null
null
null
7 Binary Search Trees 40
null
null
null
7.1 Searching with arrays or lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
null
null
null
7.2 Search keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
null
null
null
7.3 Binary search trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
null
null
null
7.4 Building binary search trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
null
null
null
7.5 Searching a binary search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
null
null
null
7.6 Time complexity of insertion and search . . . . . . . . . . . . . . . . . . . . . . 43
null
null
null
7.7 Deleting nodes from a binary search tree . . . . . . . . . . . . . . . . . . . . . . 44
null
null
null
7.8 Checking whether a binary tree is a binary search tree . . . . . . . . . . . . . . 46
null
null
null
7.9 Sorting using binary search trees . . . . . . . . . . . . . . . . . . . . . . . . . . 47
null
null
null
7.10 Balancing binary search trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
null
null
null
7.11 Self-balancing AVL trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
null
null
null
7.12 B-trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
null
null
null
8 Priority Queues and Heap Trees 51
null
null
null
8.1 Trees stored in arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
null
null
null
8.2 Priority queues and binary heap trees . . . . . . . . . . . . . . . . . . . . . . . 52
null
null
null
8.3 Basic operations on binary heap trees . . . . . . . . . . . . . . . . . . . . . . . 53
null
null
null
8.4 Inserting a new heap tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
null
null
null
8.5 Deleting a heap tree node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
null
null
null
8.6 Building a new heap tree from scratch . . . . . . . . . . . . . . . . . . . . . . . 56
null
null
null
8.7 Merging binary heap trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
null
null
null
8.8 Binomial heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
null
null
null
8.9 Fibonacci heaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
null
null
null
8.10 Comparison of heap time complexities . . . . . . . . . . . . . . . . . . . . . . . 62
null
null
null
9 Sorting 63
null
null
null
9.1 The problem of sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
null
null
null
9.2 Common sorting strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
null
null
null
9.3 How many comparisons must it take? . . . . . . . . . . . . . . . . . . . . . . . 64
null
null
null
9.4 Bubble Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
null
null
null
9.5 Insertion Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
null
null
null
9.6 Selection Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
null
null
null
9.7 Comparison of O(n2) sorting algorithms . . . . . . . . . . . . . . . . . . . . . . 70
null
null
null
9.8 Sorting algorithm stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
null
null
null
9.9 Treesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
null
null
null
9.10 Heapsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
null
null
null
9.11 Divide and conquer algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
null
null
null
9.12 Quicksort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
null
null
null
9.13 Mergesort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
null
null
null
9.14 Summary of comparison-based sorting algorithms . . . . . . . . . . . . . . . . . 81
null
null
null
39.15 Non-comparison-based sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
null
null
null
9.16 Bin, Bucket, Radix Sorts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
null
null
null
10 Hash Tables 85
null
null
null
10.1 Storing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
null
null
null
10.2 The Table abstract data type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
null
null
null
10.3 Implementations of the table data structure . . . . . . . . . . . . . . . . . . . . 87
null
null
null
10.4 Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
null
null
null
10.5 Collision likelihoods and load factors for hash tables . . . . . . . . . . . . . . . 88
null
null
null
10.6 A simple Hash Table in operation . . . . . . . . . . . . . . . . . . . . . . . . . . 89
null
null
null
10.7 Strategies for dealing with collisions . . . . . . . . . . . . . . . . . . . . . . . . 90
null
null
null
10.8 Linear Probing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
null
null
null
10.9 Double Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
null
null
null
10.10Choosing good hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
null
null
null
10.11Complexity of hash tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
null
null
null
End of preview. Expand in Data Studio

Dataset Card for Dataset Name

Dataset Summary

This dataset card aims to be a base template for new datasets. It has been generated using this raw template.

Supported Tasks and Leaderboards

[More Information Needed]

Languages

[More Information Needed]

Dataset Structure

Data Instances

[More Information Needed]

Data Fields

[More Information Needed]

Data Splits

[More Information Needed]

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]

Downloads last month
3