Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    RuntimeError
Message:      Dataset scripts are no longer supported, but found JMTEB-lite.py
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/load.py", line 989, in dataset_module_factory
                  raise RuntimeError(f"Dataset scripts are no longer supported, but found {filename}")
              RuntimeError: Dataset scripts are no longer supported, but found JMTEB-lite.py

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

JMTEB-lite: The Lightweight Version of JMTEB

JMTEB-lite is a lightweight version of JMTEB. It makes agile evaluation possible by reaching an average of 5x faster evaluation comparing with JMTEB. The result of JMTEB-lite is proved to be highly relevant with that of JMTEB, making it a faithful preview of JMTEB.

TL;DR

from datasets import load_dataset

dataset = load_dataset("sbintuitions/JMTEB-lite", name="<dataset_name>", split="<split>")

SPLITS = ("train", "validation", "test", "corpus")
JMTEB_LITE_DATASET_NAMES = (
    'livedoor_news',
    'mewsc16_ja',
    'sib200_japanese_clustering',
    'amazon_review_classification',
    'amazon_counterfactual_classification',
    'massive_intent_classification',
    'massive_scenario_classification',
    'japanese_sentiment_classification',
    'sib200_japanese_classification',
    'wrime_classification',
    'jsts',
    'jsick',
    'jaqket-query',
    'jaqket-corpus',  # lightweight
    'mrtydi-query',
    'mrtydi-corpus',  # lightweight
    'jagovfaqs_22k-query',
    'jagovfaqs_22k-corpus',
    'nlp_journal_title_abs-query',
    'nlp_journal_title_abs-corpus',
    'nlp_journal_title_intro-query',
    'nlp_journal_title_intro-corpus',
    'nlp_journal_abs_intro-query',
    'nlp_journal_abs_intro-corpus',
    'nlp_journal_abs_article-query',
    'nlp_journal_abs_article-corpus',
    'jacwir-retrieval-query',
    'jacwir-retrieval-corpus',  # lightweight
    'miracl-retrieval-query',
    'miracl-retrieval-corpus',  # lightweight
    'mldr-retrieval-query',
    'mldr-retrieval-corpus',
    'mintaka-retrieval-query',
    'mintaka-retrieval-corpus',
    'esci-query',
    'esci-corpus',
    'jqara-query',
    'jqara-corpus',
    'jacwir-reranking-query',  # lightweight
    'jacwir-reranking-corpus',  # lightweight
    'miracl-reranking-query',  # lightweight
    'miracl-reranking-corpus',  # lightweight
    'mldr-reranking-query',
    'mldr-reranking-corpus',
)

Introduction

We introduced JMTEB (Japanese Massive Text Embedding Benchmark), a comprehensive evaluation benchmark of Japanese text embedding models. However, the massive size of JMTEB makes evaluation slow and resource demanding. To address this, we now introduce JMTEB-lite, a lightweight version of JMTEB constructed by substaintially reducing corpus size in retrieval and reranking tasks. We have also verified that JMTEB-lite significantly accelerates evaluation while maintaining high fidelity to the full JMTEB.

We recommand to use JMTEB-lite to obtain the preview evaluation results in agile development, and use JMTEB for full and final evaluation.

JMTEB-lite is compatible with the evaluation script of JMTEB: https://github.com/sbintuitions/JMTEB.

Tasks and Datasets

Here is an overview of the tasks and datasets currently included in JMTEB-lite.

Note that only datasets in bold are lightweight, and the rest are exactly the same with the counterparts in JMTEB.

Task Dataset Train Dev Test Document (Retrieval)
Clustering Livedoor-News 5,163 1,106 1,107 -
MewsC-16-ja - 992 992 -
SIB200 Japanese Clustering 701 99 204 -
Classification AmazonCounterfactualClassification 5,600 466 934 -
AmazonReviewClassification 200,000 5,000 5,000 -
MassiveIntentClassification 11,514 2,033 2,974 -
MassiveScenarioClassification 11,514 2,033 2,974 -
Japanese Sentiment Classification 9,831 1,677 2,552 -
SIB200 Japanese Classification 701 99 204 -
WRIME Classification 30,000 2,500 2,500 -
STS JSTS 12,451 - 1,457 -
JSICK 5,956 1,985 1,986 -
Retrieval JAQKET 13,061 995 997 65,802
Mr.TyDi-ja 3,697 928 720 93,382
NLP Journal title-abs - 127 510 637
NLP Journal title-intro - 127 510 637
NLP Journal abs-intro - 127 510 637
NLP Journal abs-abstract - 127 510 637
JaGovFaqs-22k 15,955 3,419 3,420 22,794
JaCWIR-Retrieval - 1,000 4,000 302,638
MIRACL-Retrieval 2,433 1,044 860 105,064
MLDR-Retrieval 2,262 200 200 10,000
Mintaka-Retrieval - 2,313[^1] 2,313 2,313
Reranking Esci 10,141 1,790 4,206 149,999
JaCWIR-Reranking - 1,000 4,000 188,033
JQaRA 498 1,737 1,667 172,897
MIRACL-Reranking 2,433 1,044 860 37,124
MLDR-Reranking 2,262 200 200 5,339

[^1]: To keep consistent with MTEB where Mintaka-Retrieval doesn't have a validation set, we set our validation set the same as the test set.

Construction Process

For the 4 retrieval datasets (JAQKET, Mr.TyDi, JaCWIR-Retrieval, MIRACL-Retrieval), we use 5 highly performant models to predict hard negative documents for each query (the query's most 50 semantically similar documents in the corpus), and merge these hard negatives along with golden documents.

For the 2 reranking datasets (JQaRA, JaCWIR-Reranking), we use 5 highly performant models to rerank the documents for each query, and retain top-50 hard negative documents for each query. Then we merge these hard negatives with golden documents.

For the rest, they are kept exactly the same with their counterparts in JMTEB.

Reference

@misc{jmteb_lite,
    author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
    title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
    howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
    year = {2025},
}

@techreport{jmteb_lite,
    author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
    title = {{JMTEB} and {JMTEB}-lite: {J}apanese {M}assive {T}ext {E}mbedding {B}enchmark and {I}ts {L}ightweight {V}ersion},
    institution = {SB Intuitions / Waseda University},
    number = {IPSJ SIG Technical Reports Vol.2025-NL-265 No.3},
    year = {2025},
    month = {09},
}

License

Regarding the license information of datasets, please refer to the individual datasets.

Our code is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License.

Downloads last month
69