lsz05 commited on
Commit
8928c5f
·
0 Parent(s):

first commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.lz4 filter=lfs diff=lfs merge=lfs -text
12
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
+ *.model filter=lfs diff=lfs merge=lfs -text
14
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
15
+ *.npy filter=lfs diff=lfs merge=lfs -text
16
+ *.npz filter=lfs diff=lfs merge=lfs -text
17
+ *.onnx filter=lfs diff=lfs merge=lfs -text
18
+ *.ot filter=lfs diff=lfs merge=lfs -text
19
+ *.parquet filter=lfs diff=lfs merge=lfs -text
20
+ *.pb filter=lfs diff=lfs merge=lfs -text
21
+ *.pickle filter=lfs diff=lfs merge=lfs -text
22
+ *.pkl filter=lfs diff=lfs merge=lfs -text
23
+ *.pt filter=lfs diff=lfs merge=lfs -text
24
+ *.pth filter=lfs diff=lfs merge=lfs -text
25
+ *.rar filter=lfs diff=lfs merge=lfs -text
26
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
27
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
29
+ *.tar filter=lfs diff=lfs merge=lfs -text
30
+ *.tflite filter=lfs diff=lfs merge=lfs -text
31
+ *.tgz filter=lfs diff=lfs merge=lfs -text
32
+ *.wasm filter=lfs diff=lfs merge=lfs -text
33
+ *.xz filter=lfs diff=lfs merge=lfs -text
34
+ *.zip filter=lfs diff=lfs merge=lfs -text
35
+ *.zst filter=lfs diff=lfs merge=lfs -text
36
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
37
+ # Audio files - uncompressed
38
+ *.pcm filter=lfs diff=lfs merge=lfs -text
39
+ *.sam filter=lfs diff=lfs merge=lfs -text
40
+ *.raw filter=lfs diff=lfs merge=lfs -text
41
+ # Audio files - compressed
42
+ *.aac filter=lfs diff=lfs merge=lfs -text
43
+ *.flac filter=lfs diff=lfs merge=lfs -text
44
+ *.mp3 filter=lfs diff=lfs merge=lfs -text
45
+ *.ogg filter=lfs diff=lfs merge=lfs -text
46
+ *.wav filter=lfs diff=lfs merge=lfs -text
47
+ # Image files - uncompressed
48
+ *.bmp filter=lfs diff=lfs merge=lfs -text
49
+ *.gif filter=lfs diff=lfs merge=lfs -text
50
+ *.png filter=lfs diff=lfs merge=lfs -text
51
+ *.tiff filter=lfs diff=lfs merge=lfs -text
52
+ # Image files - compressed
53
+ *.jpg filter=lfs diff=lfs merge=lfs -text
54
+ *.jpeg filter=lfs diff=lfs merge=lfs -text
55
+ *.webp filter=lfs diff=lfs merge=lfs -text
56
+ Retrieval-lite-data/jacwir-retrieval-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
57
+ Retrieval-lite-data/jaqket-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
58
+ Retrieval-lite-data/miracl-retrieval-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
59
+ Retrieval-lite-data/mrtydi-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
60
+ Reranking-lite-data/jacwir-reranking-lite-query-test.jsonl filter=lfs diff=lfs merge=lfs -text
61
+ Reranking-lite-data/jacwir-reranking-lite-query-validation.jsonl filter=lfs diff=lfs merge=lfs -text
62
+ Reranking-lite-data/jqara-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
63
+ Reranking-lite-data/jqara-lite-query-test.jsonl filter=lfs diff=lfs merge=lfs -text
64
+ Reranking-lite-data/jqara-lite-query-validation.jsonl filter=lfs diff=lfs merge=lfs -text
65
+ Reranking-lite-data/jacwir-reranking-lite-corpus.jsonl filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
JMTEB-lite.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+
3
+ import datasets
4
+
5
+
6
+ class JMTEBlite(datasets.GeneratorBasedBuilder):
7
+ # Define builder configs directly in the class
8
+ BUILDER_CONFIGS = [
9
+ datasets.BuilderConfig(
10
+ name=name,
11
+ description=f"JMTEB-lite dataset configuration for {name}",
12
+ )
13
+ for name in [
14
+ "livedoor_news",
15
+ "mewsc16_ja",
16
+ "sib200_japanese_clustering",
17
+ "amazon_review_classification",
18
+ "amazon_counterfactual_classification",
19
+ "massive_intent_classification",
20
+ "massive_scenario_classification",
21
+ "japanese_sentiment_classification",
22
+ "sib200_japanese_classification",
23
+ "wrime_classification",
24
+ "jsts",
25
+ "jsick",
26
+ "jaqket-query",
27
+ "jaqket-corpus", # lightweight
28
+ "mrtydi-query",
29
+ "mrtydi-corpus", # lightweight
30
+ "jagovfaqs_22k-query",
31
+ "jagovfaqs_22k-corpus",
32
+ "nlp_journal_title_abs-query",
33
+ "nlp_journal_title_abs-corpus",
34
+ "nlp_journal_title_intro-query",
35
+ "nlp_journal_title_intro-corpus",
36
+ "nlp_journal_abs_intro-query",
37
+ "nlp_journal_abs_intro-corpus",
38
+ "nlp_journal_abs_article-query",
39
+ "nlp_journal_abs_article-corpus",
40
+ "jacwir-retrieval-query",
41
+ "jacwir-retrieval-corpus", # lightweight
42
+ "miracl-retrieval-query",
43
+ "miracl-retrieval-corpus", # lightweight
44
+ "mldr-retrieval-query",
45
+ "mldr-retrieval-corpus",
46
+ "mintaka-retrieval-query",
47
+ "mintaka-retrieval-corpus",
48
+ "esci-query",
49
+ "esci-corpus",
50
+ "jqara-query",
51
+ "jqara-corpus", # lightweight
52
+ "jacwir-reranking-query",
53
+ "jacwir-reranking-corpus", # lightweight
54
+ "miracl-reranking-query",
55
+ "miracl-reranking-corpus",
56
+ "mldr-reranking-query",
57
+ "mldr-reranking-corpus",
58
+ ]
59
+ ]
60
+
61
+ def _info(self):
62
+ builder = datasets.load_dataset_builder(
63
+ "sbintuitions/JMTEB",
64
+ self.config.name,
65
+ trust_remote_code=True,
66
+ )
67
+ return datasets.DatasetInfo(
68
+ description=f"{self.config.name} in JMTEB-lite:" + builder.info.description,
69
+ citation=builder.info.citation,
70
+ homepage=builder.info.homepage,
71
+ license=builder.info.license,
72
+ features=builder.info.features,
73
+ )
74
+
75
+ def _split_generators(self, dl_manager):
76
+ if self.config.name in [
77
+ "jacwir-retrieval-corpus",
78
+ "jaqket-corpus",
79
+ "miracl-retrieval-corpus",
80
+ "mrtydi-corpus",
81
+ ]:
82
+ filename = self.config.name.replace("corpus", "lite-corpus")
83
+ data_file = dl_manager.download(f"Retrieval-lite-data/{filename}.jsonl")
84
+ return [
85
+ datasets.SplitGenerator(
86
+ name="corpus", gen_kwargs={"filepath": data_file, "split": "corpus"}
87
+ )
88
+ ]
89
+
90
+ if self.config.name in ["jacwir-reranking-corpus", "jqara-corpus"]:
91
+ filename = self.config.name.replace("corpus", "lite-corpus")
92
+ data_file = dl_manager.download(f"Reranking-lite-data/{filename}.jsonl")
93
+ return [
94
+ datasets.SplitGenerator(
95
+ name="corpus", gen_kwargs={"filepath": data_file, "split": "corpus"}
96
+ )
97
+ ]
98
+
99
+ if self.config.name in ["jacwir-reranking-query", "jqara-query"]:
100
+ filename = self.config.name.replace("query", "lite-query-{split}.jsonl")
101
+ return [
102
+ datasets.SplitGenerator(
103
+ name=split,
104
+ gen_kwargs={
105
+ "filepath": dl_manager.download(
106
+ f"Reranking-lite-data/{filename.format(split=split)}"
107
+ ),
108
+ "split": split,
109
+ },
110
+ )
111
+ for split in ["validation", "test"]
112
+ ]
113
+
114
+ original = datasets.load_dataset(
115
+ "sbintuitions/JMTEB", self.config.name, trust_remote_code=True
116
+ )
117
+ return [
118
+ datasets.SplitGenerator(name=split, gen_kwargs={"split": split})
119
+ for split in original.keys()
120
+ ]
121
+
122
+ def _generate_examples(self, split, filepath=None):
123
+ if filepath:
124
+ with open(filepath, "r", encoding="utf-8") as f:
125
+ for i, line in enumerate(f):
126
+ example = json.loads(line.strip())
127
+ yield i, example
128
+ else:
129
+ original_split = datasets.load_dataset(
130
+ "sbintuitions/JMTEB",
131
+ self.config.name,
132
+ split=split,
133
+ trust_remote_code=True,
134
+ )
135
+ for i, example in enumerate(original_split):
136
+ yield i, example
README.md ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ task_categories:
4
+ - text-classification
5
+ - question-answering
6
+ - zero-shot-classification
7
+ - sentence-similarity
8
+ language:
9
+ - ja
10
+ pretty_name: The Lightweight Version of JMTEB
11
+ size_categories:
12
+ - 100M<n<1B
13
+ ---
14
+ # JMTEB-lite: The Lightweight Version of JMTEB
15
+
16
+ JMTEB-lite is a lightweight version of [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB).
17
+ It makes agile evaluation possible by reaching an average of **5x** faster evaluation comparing with JMTEB.
18
+ The result of JMTEB-lite is proved to be highly relevant with that of JMTEB, making it a faithful preview of JMTEB.
19
+
20
+ ## TL;DR
21
+
22
+ ```python
23
+ from datasets import load_dataset
24
+
25
+ dataset = load_dataset("sbintuitions/JMTEB-lite", name="<dataset_name>", split="<split>")
26
+
27
+ SPLITS = ("train", "validation", "test", "corpus")
28
+ JMTEB_LITE_DATASET_NAMES = (
29
+ 'livedoor_news',
30
+ 'mewsc16_ja',
31
+ 'sib200_japanese_clustering',
32
+ 'amazon_review_classification',
33
+ 'amazon_counterfactual_classification',
34
+ 'massive_intent_classification',
35
+ 'massive_scenario_classification',
36
+ 'japanese_sentiment_classification',
37
+ 'sib200_japanese_classification',
38
+ 'wrime_classification',
39
+ 'jsts',
40
+ 'jsick',
41
+ 'jaqket-query',
42
+ 'jaqket-corpus', # lightweight
43
+ 'mrtydi-query',
44
+ 'mrtydi-corpus', # lightweight
45
+ 'jagovfaqs_22k-query',
46
+ 'jagovfaqs_22k-corpus',
47
+ 'nlp_journal_title_abs-query',
48
+ 'nlp_journal_title_abs-corpus',
49
+ 'nlp_journal_title_intro-query',
50
+ 'nlp_journal_title_intro-corpus',
51
+ 'nlp_journal_abs_intro-query',
52
+ 'nlp_journal_abs_intro-corpus',
53
+ 'nlp_journal_abs_article-query',
54
+ 'nlp_journal_abs_article-corpus',
55
+ 'jacwir-retrieval-query',
56
+ 'jacwir-retrieval-corpus', # lightweight
57
+ 'miracl-retrieval-query',
58
+ 'miracl-retrieval-corpus', # lightweight
59
+ 'mldr-retrieval-query',
60
+ 'mldr-retrieval-corpus',
61
+ 'mintaka-retrieval-query',
62
+ 'mintaka-retrieval-corpus',
63
+ 'esci-query',
64
+ 'esci-corpus',
65
+ 'jqara-query',
66
+ 'jqara-corpus',
67
+ 'jacwir-reranking-query', # lightweight
68
+ 'jacwir-reranking-corpus', # lightweight
69
+ 'miracl-reranking-query', # lightweight
70
+ 'miracl-reranking-corpus', # lightweight
71
+ 'mldr-reranking-query',
72
+ 'mldr-reranking-corpus',
73
+ )
74
+ ```
75
+
76
+ ## Introduction
77
+
78
+ We introduced [JMTEB](https://huggingface.co/datasets/sbintuitions/JMTEB) (Japanese Massive Text Embedding Benchmark), a comprehensive evaluation benchmark of Japanese text embedding models.
79
+ However, the massive size of JMTEB makes evaluation slow and resource demanding.
80
+ To address this, we now introduce **JMTEB-lite**, a lightweight version of JMTEB constructed by substaintially reducing corpus size in retrieval and reranking tasks.
81
+ We have also verified that JMTEB-lite significantly accelerates evaluation while maintaining high fidelity to the full JMTEB.
82
+
83
+ We recommand to use JMTEB-lite to obtain the preview evaluation results in agile development, and use JMTEB for full and final evaluation.
84
+
85
+ JMTEB-lite is compatible with the evaluation script of JMTEB: <https://github.com/sbintuitions/JMTEB>.
86
+
87
+ ## Tasks and Datasets
88
+
89
+ Here is an overview of the tasks and datasets currently included in JMTEB-lite.
90
+
91
+ Note that only datasets in **bold** are lightweight, and the rest are exactly the same with the counterparts in JMTEB.
92
+
93
+ |Task|Dataset|Train|Dev|Test|Document (Retrieval)|
94
+ |----|-------|----:|--:|---:|--:|
95
+ |Clustering|Livedoor-News|5,163|1,106|1,107|-|
96
+ ||MewsC-16-ja|-|992|992|-|
97
+ ||SIB200 Japanese Clustering|701|99|204|-|
98
+ |Classification|AmazonCounterfactualClassification|5,600|466|934|-|
99
+ ||AmazonReviewClassification|200,000|5,000|5,000|-|
100
+ ||MassiveIntentClassification|11,514|2,033|2,974|-|
101
+ ||MassiveScenarioClassification|11,514|2,033|2,974|-|
102
+ ||Japanese Sentiment Classification|9,831|1,677|2,552|-|
103
+ ||SIB200 Japanese Classification|701|99|204|-|
104
+ ||WRIME Classification|30,000|2,500|2,500|-|
105
+ |STS|JSTS|12,451|-|1,457|-|
106
+ ||JSICK|5,956|1,985|1,986|-|
107
+ |Retrieval|**JAQKET**|13,061|995|997|**65,802**|
108
+ ||**Mr.TyDi-ja**|3,697|928|720|**93,382**|
109
+ ||NLP Journal title-abs|-|127|510|637|
110
+ ||NLP Journal title-intro|-|127|510|637|
111
+ ||NLP Journal abs-intro|-|127|510|637|
112
+ ||NLP Journal abs-abstract|-|127|510|637|
113
+ ||JaGovFaqs-22k|15,955|3,419|3,420|22,794|
114
+ ||**JaCWIR-Retrieval**|-|1,000|4,000|**302,638**|
115
+ ||**MIRACL-Retrieval**|2,433|1,044|860|**105,064**|
116
+ ||MLDR-Retrieval|2,262|200|200|10,000|
117
+ ||Mintaka-Retrieval|-|2,313[^1]|2,313|2,313|
118
+ |Reranking|Esci|10,141|1,790|4,206|149,999|
119
+ ||**JaCWIR-Reranking**|-|1,000|4,000|**188,033**|
120
+ ||**JQaRA**|498|1,737|1,667|**172,897**|
121
+ ||MIRACL-Reranking|2,433|1,044|860|37,124|
122
+ ||MLDR-Reranking|2,262|200|200|5,339|
123
+
124
+ [^1]: To keep consistent with [MTEB](https://github.com/embeddings-benchmark/mteb/blob/5a8ccec9017742f6c3246519d2a92bd03f218a6d/mteb/tasks/Retrieval/multilingual/MintakaRetrieval.py) where Mintaka-Retrieval doesn't have a validation set, we set our validation set the same as the test set.
125
+
126
+ ## Construction Process
127
+
128
+ For the 4 retrieval datasets (JAQKET, Mr.TyDi, JaCWIR-Retrieval, MIRACL-Retrieval), we use 5 highly performant models to predict hard negative documents for each query (the query's most 50 semantically similar documents in the corpus), and merge these hard negatives along with golden documents.
129
+
130
+ For the 2 reranking datasets (JQaRA, JaCWIR-Reranking), we use 5 highly performant models to rerank the documents for each query, and retain top-50 hard negative documents for each query. Then we merge these hard negatives with golden documents.
131
+
132
+ For the rest, they are kept exactly the same with their counterparts in JMTEB.
133
+
134
+ ## Reference
135
+
136
+ ```
137
+ @misc{jmteb_lite,
138
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
139
+ title = {{J}{M}{T}{E}{B}-lite: {T}he {L}ightweight {V}ersion of {JMTEB}},
140
+ howpublished = {\url{https://huggingface.co/datasets/sbintuitions/JMTEB-lite}},
141
+ year = {2025},
142
+ }
143
+
144
+ @techreport{jmteb_lite,
145
+ author = {Li, Shengzhe and Ohagi, Masaya and Ri, Ryokan and Fukuchi, Akihiko and Shibata, Tomohide and Kawahara, Daisuke},
146
+ title = {{JMTEB} and {JMTEB}-lite: {J}apanese {M}assive {T}ext {E}mbedding {B}enchmark and {I}ts {L}ightweight {V}ersion},
147
+ institution = {SB Intuitions / Waseda University},
148
+ number = {IPSJ SIG Technical Reports Vol.2025-NL-265 No.3},
149
+ year = {2025},
150
+ month = {07},
151
+ }
152
+ ```
153
+
154
+ ## License
155
+
156
+ Our code is licensed under the [Creative Commons Attribution-ShareAlike 4.0 International License](http://creativecommons.org/licenses/by-sa/4.0/).
157
+
158
+ <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br />
159
+
160
+ Regarding the license information of datasets, please refer to the individual datasets.
Reranking-lite-data/jacwir-reranking-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76a95adf09ce189e77b29ff3898de45eb2e47fa0b9821187f04d3b20b476b36
3
+ size 101975724
Reranking-lite-data/jacwir-reranking-lite-query-test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dcc41aa7800b5b5425f280d5078b0940d5c145c739b7f5a34828c2c24af47bf9
3
+ size 5932722
Reranking-lite-data/jacwir-reranking-lite-query-validation.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ebc345297a84724f5ddb39a1c09a8a90ac94f991f97aca29976a01bbbff17540
3
+ size 1482372
Reranking-lite-data/jqara-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca2de17e72fc4a4f7dd34e85a732dd6ab57903b40075db7da353874b04668595
3
+ size 123140443
Reranking-lite-data/jqara-lite-query-test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f80d4fd8e6e6792fd49fc63f135b1b49963f575bf6d46dbdf1cdf0310e563c8b
3
+ size 1688522
Reranking-lite-data/jqara-lite-query-validation.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b7915509d19085c196c7004bb7b699af18b343a6a266e18ae207aceabf7953
3
+ size 1543233
Retrieval-lite-data/jacwir-retrieval-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33da290501c3856eb6ea3a2f953d6892109f5b7f80933bd4d20858b25cd4efcf
3
+ size 163604080
Retrieval-lite-data/jaqket-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea225e582110eef337fca3095b7bfa87e2a4321a9fd8efce9ed81fa44d19eb78
3
+ size 715476104
Retrieval-lite-data/miracl-retrieval-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea31fc858a3ce416d7e81d527361e096b4c5a27d9c66f93bee540df1090b8a69
3
+ size 61463379
Retrieval-lite-data/mrtydi-lite-corpus.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8287175a3ff03dd0cf77d712dc2c240dbe9f35a4913b78932f62743f97cd3b82
3
+ size 53845509