File size: 6,206 Bytes
a225d5d ed8e096 44456d3 ed8e096 855fe8d 84c337c 8da6ea3 28bf988 0d0b99d 28bf988 8da6ea3 ee2dd35 bb699cc 76513cc aa87ce3 c0c8236 456b7b7 f58b808 646c9b5 de94f07 3117ebf fd4704a 504070b 6ea472a 28bf988 456b7b7 28bf988 c455c86 28bf988 5097250 4dbfe4e c3e5d90 497b2cd d5f5708 c3e5d90 d5f5708 c3e5d90 4dbfe4e 28bf988 b6519b6 4dbfe4e 39211e7 4dbfe4e ee2dd35 4dbfe4e ee2dd35 4dbfe4e c455c86 399a94f a369e25 f60b4a8 a369e25 f60b4a8 a369e25 71dca28 28bf988 1fc0cf7 c3e5d90 1fc0cf7 c3e5d90 1fc0cf7 c3e5d90 1fc0cf7 28bf988 c0c8236 4dbfe4e c0c8236 4dbfe4e 28bf988 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
license: cc-by-sa-4.0
task_categories:
- question-answering
- multiple-choice
language:
- ja
configs:
- config_name: v1.0
data_files:
- split: test
path: v1.0/test-*
- split: dev
path: v1.0/dev-*
dataset_info:
config_name: v1.0
features:
- name: qid
dtype: string
- name: category
dtype: string
- name: question
dtype: string
- name: choice0
dtype: string
- name: choice1
dtype: string
- name: choice2
dtype: string
- name: choice3
dtype: string
- name: answer_index
dtype: int64
splits:
- name: dev
num_bytes: 7089
num_examples: 32
- name: test
num_bytes: 515785
num_examples: 2309
download_size: 886472
dataset_size: 522874
---
# Dataset Card for JamC-QA
English/[Japanese](README_ja.md)
## Dataset Summary
This benchmark evaluates knowledge specific to Japan through multiple-choice questions.
It covers eight categories: culture, custom, regional identity, geography, history, government, law, and healthcare.
Achieving high performance requires broad and detailed understanding of Japan across these categories.
## Leaderboard
### Evaluation Metric: Accuracy
In this multiple-choice question answering task, the LLM outputs the option string rather than the option label,
and accuracy is calculated as the proportion of questions whose output exactly matches the gold correct option string.
| Model | Micro-average | culture | custom | regional identity | geography | history | government | law | healthcare |
|:---|---:|---:|---:|---:|---:|---:|---:|---:|---:|
| [sarashina2-8x70b](https://huggingface.co/sbintuitions/sarashina2-8x70b) | **0.7254** | 0.7141 | **0.7750** | **0.7607** | 0.6544 | **0.7843** | 0.7364 | 0.6321 | **0.9167** |
| [sarashina2-70b](https://huggingface.co/sbintuitions/sarashina2-70b) | 0.7246 | **0.7188** | 0.7450 | 0.7355 | **0.6728** | 0.7638 | 0.7636 | 0.6656 | **0.9167** |
| [Llama-3.3-Swallow-70B-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-v0.4) | 0.6973 | 0.6891 | **0.7750** | 0.5894 | 0.5662 | 0.7755 | **0.7727** | **0.7826** | 0.8542 |
| [RakutenAI-2.0-8x7B](https://huggingface.co/Rakuten/RakutenAI-2.0-8x7B) | 0.6327 | 0.6219 | 0.7250 | 0.6171 | 0.5110 | 0.7143 | 0.7091 | 0.5753 | 0.8125 |
| [plamo-100b](https://huggingface.co/pfnet/plamo-100b) | 0.6033 | 0.6016 | 0.6500 | 0.6373 | 0.5037 | 0.6822 | 0.6091 | 0.5151 | 0.6875 |
| [Mixtral-8x7B-v0.1-japanese](https://huggingface.co/abeja/Mixtral-8x7B-v0.1-japanese) | 0.5929 | 0.6016 | 0.6700 | 0.5793 | 0.4926 | 0.6122 | 0.7364 | 0.5452 | 0.6667 |
| [Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Llama-3.1-405B) | 0.5712 | 0.5578 | 0.5450 | 0.4836 | 0.5000 | 0.6793 | 0.6455 | 0.6288 | 0.6875 |
| [llm-jp-3.1-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b) | 0.5682 | 0.5953 | 0.6350 | 0.5819 | 0.4485 | 0.5889 | 0.6273 | 0.5017 | 0.6250 |
| [Nemotron-4-340B-Base](https://huggingface.co/mgoin/Nemotron-4-340B-Base-hf) | 0.5673 | 0.5734 | 0.6150 | 0.5113 | 0.4669 | 0.5948 | 0.7273 | 0.5819 | 0.6667 |
| [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | 0.5271 | 0.5219 | 0.5950 | 0.4257 | 0.4375 | 0.6064 | 0.6091 | 0.5619 | 0.6875 |
## Languages
Japanese
## Dataset Structure
### Data Instances
An example from culture category looks as follows:
```
{
"qid": "jamcqa-test-culture-00001",
"category": "culture",
"question": "「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?",
"choice0": "影武者",
"choice1": "羅生門",
"choice2": "隠し砦の三悪人",
"choice3": "乱",
"answer_index": 3,
}
```
## Data Fields
- `qid (str)`: A unique identifier for each question.
- `category (str)`: The category of the question.
- culture, custom, regional identity, geography, history, government, law, and healthcare
- `question (str)`: The question text.
- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (`\n`).
- Leading and trailing whitespace is removed.
- `choice{0..3} (str)`: Four answer options (choice0 to choice3).
- Converted from full-width to half-width characters, excluding katakana characters.
- Does not contain any line breaks (`\n`).
- Leading and trailing whitespace is removed.
- `answer_index (int)`: The index of the correct answer among `choice0` to `choice3` (0–3).
## Data Splits
- `dev`: 4 examples per category, intended for few-shot evaluation
- `test`: 2,309 examples in total
Number of Examples:
| Category | dev | test |
| --- | ---: | ---: |
| culture | 4 | 640 |
| custom | 4 | 200 |
| regional identity | 4 | 397 |
| geography | 4 | 272 |
| history | 4 | 343 |
| government | 4 | 110 |
| law | 4 | 299 |
| healthcare | 4 | 48 |
| total | 32 | 2,309 |
# Licensing Information
- [CC-BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)
# How to use
```python
$ python
>>> import datasets
>>> jamcqa = datasets.load_dataset('sbintuitions/JamC-QA', 'v1.0')
>>> print(jamcqa)
DatasetDict({
test: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
dev: Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 32
})
})
>>> jamcqa_test = jamcqa['test']
>>> print(jamcqa_test)
Dataset({
features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
num_rows: 2309
})
>>> print(jamcqa_test[0])
{'qid': 'jamcqa-test-culture-00001', 'category': 'culture', 'question': '「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?', 'choice0': '影武者', 'choice1': '羅生門', 'choice2': '隠し砦の三悪人', 'choice3': '乱', 'answer_index': 3}
>>>
```
# Citation Information
```
@inproceedings{Oka2025,
author={岡 照晃, 柴田 知秀, 吉田 奈央},
title={JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築},
year={2025},
month={March},
booktitle={言語処理学会第31回年次大会(NLP2025)},
pages={839--844},
}
```
|