File size: 6,206 Bytes
a225d5d
 
 
 
 
 
 
ed8e096
 
 
 
 
44456d3
 
ed8e096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
855fe8d
 
 
84c337c
 
 
 
 
8da6ea3
 
28bf988
 
0d0b99d
 
28bf988
8da6ea3
ee2dd35
bb699cc
76513cc
aa87ce3
c0c8236
456b7b7
f58b808
 
 
 
646c9b5
de94f07
3117ebf
fd4704a
 
 
504070b
 
 
 
 
 
 
6ea472a
28bf988
456b7b7
28bf988
c455c86
28bf988
 
 
5097250
4dbfe4e
 
c3e5d90
497b2cd
d5f5708
c3e5d90
d5f5708
 
c3e5d90
 
4dbfe4e
 
28bf988
 
b6519b6
4dbfe4e
 
39211e7
4dbfe4e
ee2dd35
 
 
4dbfe4e
ee2dd35
 
 
 
4dbfe4e
 
c455c86
399a94f
 
a369e25
f60b4a8
a369e25
f60b4a8
a369e25
 
 
 
 
 
 
 
 
 
71dca28
28bf988
 
 
 
1fc0cf7
 
 
 
 
c3e5d90
 
 
 
 
 
 
 
 
 
 
 
 
1fc0cf7
 
 
c3e5d90
1fc0cf7
 
c3e5d90
1fc0cf7
 
 
 
28bf988
 
c0c8236
4dbfe4e
 
c0c8236
 
 
 
4dbfe4e
28bf988
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
---
license: cc-by-sa-4.0
task_categories:
- question-answering
- multiple-choice
language:
- ja
configs:
- config_name: v1.0
  data_files:
  - split: test
    path: v1.0/test-*
  - split: dev
    path: v1.0/dev-*
dataset_info:
  config_name: v1.0
  features:
  - name: qid
    dtype: string
  - name: category
    dtype: string
  - name: question
    dtype: string
  - name: choice0
    dtype: string
  - name: choice1
    dtype: string
  - name: choice2
    dtype: string
  - name: choice3
    dtype: string
  - name: answer_index
    dtype: int64
  splits:
  - name: dev
    num_bytes: 7089
    num_examples: 32
  - name: test
    num_bytes: 515785
    num_examples: 2309
  download_size: 886472
  dataset_size: 522874
---

# Dataset Card for JamC-QA

English/[Japanese](README_ja.md)

## Dataset Summary

This benchmark evaluates knowledge specific to Japan through multiple-choice questions.
It covers eight categories: culture, custom, regional identity, geography, history, government, law, and healthcare.
Achieving high performance requires broad and detailed understanding of Japan across these categories.

## Leaderboard

### Evaluation Metric: Accuracy

In this multiple-choice question answering task, the LLM outputs the option string rather than the option label,
and accuracy is calculated as the proportion of questions whose output exactly matches the gold correct option string.

| Model | Micro-average | culture | custom | regional identity | geography | history | government | law | healthcare | 
|:---|---:|---:|---:|---:|---:|---:|---:|---:|---:|
| [sarashina2-8x70b](https://huggingface.co/sbintuitions/sarashina2-8x70b) | **0.7254** | 0.7141 | **0.7750** | **0.7607** | 0.6544 | **0.7843** | 0.7364 | 0.6321 | **0.9167** |
| [sarashina2-70b](https://huggingface.co/sbintuitions/sarashina2-70b) | 0.7246 | **0.7188** | 0.7450 | 0.7355 | **0.6728** | 0.7638 | 0.7636 | 0.6656 | **0.9167** |
| [Llama-3.3-Swallow-70B-v0.4](https://huggingface.co/tokyotech-llm/Llama-3.3-Swallow-70B-v0.4) | 0.6973 | 0.6891 | **0.7750** | 0.5894 | 0.5662 | 0.7755 | **0.7727** | **0.7826** | 0.8542 |
| [RakutenAI-2.0-8x7B](https://huggingface.co/Rakuten/RakutenAI-2.0-8x7B) | 0.6327 | 0.6219 | 0.7250 | 0.6171 | 0.5110 | 0.7143 | 0.7091 | 0.5753 | 0.8125 |
| [plamo-100b](https://huggingface.co/pfnet/plamo-100b) | 0.6033 | 0.6016 | 0.6500 | 0.6373 | 0.5037 | 0.6822 | 0.6091 | 0.5151 | 0.6875 |
| [Mixtral-8x7B-v0.1-japanese](https://huggingface.co/abeja/Mixtral-8x7B-v0.1-japanese) | 0.5929 | 0.6016 | 0.6700 | 0.5793 | 0.4926 | 0.6122 | 0.7364 | 0.5452 | 0.6667 |
| [Meta-Llama-3.1-405B](https://huggingface.co/meta-llama/Llama-3.1-405B) | 0.5712 | 0.5578 | 0.5450 | 0.4836 | 0.5000 | 0.6793 | 0.6455 | 0.6288 | 0.6875 |
| [llm-jp-3.1-8x13b](https://huggingface.co/llm-jp/llm-jp-3-8x13b) | 0.5682 | 0.5953 | 0.6350 | 0.5819 | 0.4485 | 0.5889 | 0.6273 | 0.5017 | 0.6250 |
| [Nemotron-4-340B-Base](https://huggingface.co/mgoin/Nemotron-4-340B-Base-hf) | 0.5673 | 0.5734 | 0.6150 | 0.5113 | 0.4669 | 0.5948 | 0.7273 | 0.5819 | 0.6667 |
| [Qwen2.5-72B](https://huggingface.co/Qwen/Qwen2.5-72B) | 0.5271 | 0.5219 | 0.5950 | 0.4257 | 0.4375 | 0.6064 | 0.6091 | 0.5619 | 0.6875 |

## Languages

Japanese

## Dataset Structure
### Data Instances

An example from culture category looks as follows:
```
{
  "qid": "jamcqa-test-culture-00001",
  "category": "culture",
  "question": "「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?",
  "choice0": "影武者",
  "choice1": "羅生門",
  "choice2": "隠し砦の三悪人",
  "choice3": "乱",
  "answer_index": 3,
}
```

## Data Fields

- `qid (str)`: A unique identifier for each question.
- `category (str)`: The category of the question.
  - culture, custom, regional identity, geography, history, government, law, and healthcare
- `question (str)`: The question text.
  - Converted from full-width to half-width characters, excluding katakana characters.
  - Does not contain any line breaks (`\n`).
  - Leading and trailing whitespace is removed.
- `choice{0..3} (str)`: Four answer options (choice0 to choice3).
  - Converted from full-width to half-width characters, excluding katakana characters.
  - Does not contain any line breaks (`\n`).
  - Leading and trailing whitespace is removed.
- `answer_index (int)`: The index of the correct answer among `choice0` to `choice3` (0–3).

## Data Splits

- `dev`: 4 examples per category, intended for few-shot evaluation
- `test`: 2,309 examples in total

Number of Examples:

| Category | dev | test | 
| --- | ---: | ---: |
| culture | 4 | 640 | 
| custom | 4 | 200 |
| regional identity | 4 | 397 |
| geography | 4 | 272 |
| history | 4 | 343 |
| government | 4 | 110 |
| law | 4 | 299 |
| healthcare | 4 | 48 |
| total | 32 | 2,309 |

# Licensing Information

- [CC-BY-SA-4.0](https://creativecommons.org/licenses/by-sa/4.0/)

# How to use

```python
$ python
>>> import datasets
>>> jamcqa = datasets.load_dataset('sbintuitions/JamC-QA', 'v1.0')
>>> print(jamcqa)
DatasetDict({
    test: Dataset({
        features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
        num_rows: 2309
    })
    dev: Dataset({
        features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
        num_rows: 32
    })
})
>>> jamcqa_test = jamcqa['test']
>>> print(jamcqa_test)
Dataset({
    features: ['qid', 'category', 'question', 'choice0', 'choice1', 'choice2', 'choice3', 'answer_index'],
    num_rows: 2309
})
>>> print(jamcqa_test[0])
{'qid': 'jamcqa-test-culture-00001', 'category': 'culture', 'question': '「狂った世で気が狂うなら気は確かだ」の名言を残した映画はどれ?', 'choice0': '影武者', 'choice1': '羅生門', 'choice2': '隠し砦の三悪人', 'choice3': '乱', 'answer_index': 3}
>>> 
```


# Citation Information
```
@inproceedings{Oka2025,
  author={岡 照晃, 柴田 知秀, 吉田 奈央},
  title={JamC-QA: 日本固有の知識を問う多肢選択式質問応答ベンチマークの構築},
  year={2025},
  month={March},
  booktitle={言語処理学会第31回年次大会(NLP2025)},
  pages={839--844},
}
```