|
--- |
|
dataset_info: |
|
features: |
|
- name: id |
|
dtype: string |
|
- name: category |
|
dtype: string |
|
- name: text |
|
dtype: string |
|
splits: |
|
- name: all |
|
num_bytes: 91813 |
|
num_examples: 290 |
|
- name: easy |
|
num_bytes: 9124 |
|
num_examples: 50 |
|
- name: medium |
|
num_bytes: 20234 |
|
num_examples: 50 |
|
- name: hard |
|
num_bytes: 27971 |
|
num_examples: 50 |
|
- name: scbx |
|
num_bytes: 17314 |
|
num_examples: 50 |
|
- name: name |
|
num_bytes: 10118 |
|
num_examples: 50 |
|
- name: other |
|
num_bytes: 7052 |
|
num_examples: 40 |
|
download_size: 103240 |
|
dataset_size: 183626 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: all |
|
path: data/all-* |
|
- split: easy |
|
path: data/easy-* |
|
- split: medium |
|
path: data/medium-* |
|
- split: hard |
|
path: data/hard-* |
|
- split: scbx |
|
path: data/scbx-* |
|
- split: name |
|
path: data/name-* |
|
- split: other |
|
path: data/other-* |
|
--- |
|
|
|
# Thai-TTS-Intelligibility-Eval |
|
|
|
**Thai-TTS-Intelligibility-Eval** is a curated evaluation set for measuring **intelligibility** of Thai Text-to-Speech (TTS) systems. |
|
All 290 items are short, challenging phrases that commonly trip up phoneme-to-grapheme converters, prosody models, or pronunciation lexicons. |
|
It is **not** intended for training; use it purely for benchmarking and regression tests. |
|
|
|
## Dataset Summary |
|
|
|
| Split | #Utterances | Description | |
|
|---------|-------------|-------------------------------------------------------------| |
|
| `easy` | 50 | Everyday phrases that most TTS systems should read correctly| |
|
| `medium`| 50 | More challening than easy | |
|
| `hard` | 50 | Hard phrases, e.g., mixed Thai and English and unique names | |
|
| `scbx` | 50 | SCBX-specific terminology, products, and names | |
|
| `name` | 50 | Synthetic Thai personal names (mixed Thai & foreign roots) | |
|
| `other` | 40 | Miscellaneous edge-cases not covered above | |
|
| **Total** | **290** | | |
|
|
|
Each record contains: |
|
- **`id`** `string` Unique identifier |
|
- **`text`** `string` sentence/phrase |
|
- **`category`** `string` One of *easy, medium, hard, scbx, name, other* |
|
|
|
## Loading With 🤗 `datasets` |
|
|
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset( |
|
"scb10x/thai-tts-intelligiblity-eval", |
|
) |
|
ds_scbx = ds["scbx"] |
|
print(ds[0]) |
|
# {'id': '53ef39464d9c1e6f', 'text': '...', 'category': 'scbx'} |
|
``` |
|
|
|
## Intended Use |
|
|
|
1. **Objective evaluation** |
|
- *Compute WER/CER* between automatic transcripts of your TTS output and the gold reference text. |
|
- Code: https://github.com/scb-10x/thai-tts-eval/tree/main/intelligibility |
|
2. **Subjective evaluation** |
|
- Conduct human listening tests (MOS, ABX, etc.)—the dataset is small enough for quick rounds. |
|
- Future work |
|
4. **Regression testing** |
|
- Track intelligibility across model versions with a fixed set of hard sentences. |
|
- Future work |
|
|
|
|
|
## CER Evaluation Results |
|
- CER: lower is better |
|
|
|
| System | All | Easy | Medium | Hard | SCBX | Name | Other | |
|
|-----------------------------------|------|-------|--------|------|------|-------|-------| |
|
| Azure Premwadee | 9.39 | 2.87 | 2.92 | 13.80| 10.44| 13.07 | 7.57 | |
|
| `facebook-mms-tts-tha` | 28.47| 10.31 | 12.40 | 38.83| 36.04| 26.33 | 30.83 | |
|
| `VIZINTZOR-MMS-TTS-THAI-FEMALEV1` | 27.42| 13.30 | 13.13 | 30.92| 34.76| 25.53 | 54.60 | |
|
|
|
|