Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
t
float64
1
54.1
P
float64
1
101
dP_dt
float64
-0.07
26.6
30.907181
101.350029
0.014807
10.323865
101.064964
0.306723
20.839767
101.274414
0.092396
54.028008
101.398209
-0.03469
38.366272
101.416855
-0.053855
17.322664
101.358025
0.006597
40.337269
101.273148
0.093697
47.85537
101.395142
-0.031539
29.880377
101.330627
0.034725
10.359272
101.076759
0.294676
38.767555
101.420876
-0.057993
13.958992
101.346436
0.018493
9.308862
100.505058
0.875399
18.302261
101.423561
-0.060756
35.014404
101.413116
-0.050012
26.540308
101.343178
0.02184
46.828568
101.329285
0.036102
6.570714
88.564133
11.526158
1.507501
2.321638
3.424992
34.601318
101.382057
-0.018089
47.831768
101.394669
-0.03105
48.280254
101.391449
-0.027739
2.546109
8.599655
9.430529
9.521304
100.666801
0.711757
13.545909
101.344521
0.020464
24.817163
101.359337
0.005245
50.357471
101.362999
0.001488
38.130226
101.399414
-0.035927
24.828966
101.359856
0.004718
3.384077
19.755344
17.583445
32.181835
101.401329
-0.037901
3.679136
25.419212
20.693991
51.207241
101.414017
-0.050937
20.863373
101.273956
0.092864
50.94759
101.407784
-0.044529
11.468694
101.258354
0.108858
46.427284
101.310204
0.055682
42.815762
101.332054
0.033261
47.937988
101.396248
-0.032671
9.167233
100.373749
1.007869
20.686337
101.280449
0.086206
13.4987
101.34494
0.020032
4.139428
35.942024
24.719545
30.564913
101.325417
0.040077
45.15263
101.388382
-0.024591
49.802761
101.315956
0.049782
49.330666
101.320404
0.045218
5.296059
65.800224
24.001348
26.858973
101.339157
0.025972
11.822764
101.290565
0.075835
44.692337
101.3881
-0.024304
20.662733
101.281799
0.08482
44.680534
101.387688
-0.023878
19.329065
101.411316
-0.048165
49.023804
101.342087
0.022963
48.126827
101.395439
-0.031843
11.964393
101.302971
0.063108
43.512104
101.293701
0.072618
43.594719
101.299271
0.0669
15.729346
101.370705
-0.006427
52.658932
101.304962
0.06106
3.5021
21.909836
18.84565
52.894978
101.292297
0.074052
28.617523
101.396477
-0.032911
44.786758
101.390694
-0.026967
41.10442
101.356125
0.00855
4.788558
52.877426
26.500267
37.410282
101.310509
0.055369
20.768953
101.276573
0.090183
42.44989
101.372002
-0.007762
44.055012
101.342331
0.02271
46.710541
101.320808
0.044804
47.064613
101.348488
0.016392
35.75795
101.399918
-0.036442
13.309862
101.34684
0.018078
14.643529
101.365334
-0.000912
6.464493
87.288506
12.497036
51.077415
101.41217
-0.049045
50.4991
101.37635
-0.012227
5.744549
75.690453
19.844521
12.601721
101.341316
0.023755
43.453091
101.291451
0.074924
34.672134
101.388824
-0.025049
21.842968
101.348343
0.016535
13.876375
101.344864
0.020113
6.25205
84.416718
14.564745
20.391277
101.303429
0.062637
34.624924
101.384361
-0.020461
24.380476
101.336586
0.028612
53.060211
101.292305
0.074047
31.733347
101.403
-0.039613
51.05381
101.41156
-0.048415
50.912182
101.406158
-0.042865
10.890378
101.200241
0.168393
14.112423
101.350204
0.014626
33.303062
101.317513
0.048182
35.321262
101.419289
-0.056356
51.407883
101.411652
-0.04851
22.338667
101.378677
-0.014618
18.137028
101.414757
-0.051701
End of preview. Expand in Data Studio

SIM-Datasets: A Unified Symbolic Regression Benchmark

A standardized benchmark collection designed for the Scientific Intelligent Modelling (SIM) toolkit, providing comprehensive datasets for symbolic regression research and applications.

Overview

SIM-Datasets serves as a unified benchmark for symbolic regression tasks, offering standardized datasets with consistent formatting and evaluation protocols. This collection is specifically curated to support the Scientific Intelligent Modelling ecosystem, enabling researchers and practitioners to develop, test, and compare symbolic regression algorithms effectively.

Installation

Method 1: Git Clone

Clone the repository from Hugging Face:

git lfs install
git clone https://huggingface.co/datasets/scientific-intelligent-modelling/sim-datasets

Or from ModelScope (for users in China):

git lfs install
git clone https://www.modelscope.cn/datasets/scientific-intelligent-modelling/sim-datasets.git

Method 2: Python Package

Install via pip for seamless integration:

pip install sim-datasets

License

This project is licensed under the GPL-3.0 License. See the LICENSE file for details.

Contributing

We welcome contributions! Please feel free to submit issues or pull requests to help improve this benchmark collection.

Downloads last month
444