|
--- |
|
license: cc-by-4.0 |
|
dataset_info: |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: time |
|
dtype: timestamp[s, tz=US/Pacific] |
|
- name: pv |
|
dtype: float32 |
|
splits: |
|
- name: train |
|
num_bytes: 2228797291.64 |
|
num_examples: 349372 |
|
- name: test |
|
num_bytes: 90181707.0 |
|
num_examples: 14003 |
|
download_size: 2322875565 |
|
dataset_size: 2318978998.64 |
|
configs: |
|
- config_name: default |
|
data_files: |
|
- split: train |
|
path: data/train-* |
|
- split: test |
|
path: data/test-* |
|
--- |
|
|
|
## Citation |
|
If you find SKIPP'D useful to your research, please cite: |
|
``` |
|
Nie, Y., Li, X., Scott, A., Sun, Y., Venugopal, V., & Brandt, A. (2023). SKIPP’D: A SKy Images and Photovoltaic Power Generation Dataset for short-term solar forecasting. Solar Energy, 255, 171-179. |
|
``` |
|
or |
|
``` |
|
@article{nie2023skipp, |
|
title={SKIPP’D: A SKy Images and Photovoltaic Power Generation Dataset for short-term solar forecasting}, |
|
author={Nie, Yuhao and Li, Xiatong and Scott, Andea and Sun, Yuchi and Venugopal, Vignesh and Brandt, Adam}, |
|
journal={Solar Energy}, |
|
volume={255}, |
|
pages={171--179}, |
|
year={2023}, |
|
publisher={Elsevier} |
|
} |
|
``` |