Datasets:
image
imagewidth (px) 160
2.2k
| label
class label 2
classes |
---|---|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
|
0ADE
|
Dataset Card for ROPE
The dataset used in this study is designed to evaluate and analyze multi-object hallucination by leveraging existing panoptic segmentation datasets. Specifically, it includes data from MSCOCO-Panoptic and ADE20K, ensuring access to diverse objects and their instance-level semantic annotations. For more information, please visit Multi-Object Hallucination.
Dataset Construction
The dataset is divided into several subsets based on the distribution of object classes within each image at test time. This division allows for a more granular analysis of how different distributions affect the hallucination behavior of large vision-language models (LVLMs).
- Homogeneous: All tested objects in an image belong to the same class (e.g., AAAAA).
- Heterogeneous: All tested objects in an image belong to different classes (e.g., ABCDE).
- In-the-Wild: A mixed distribution where the tested objects are randomly chosen and ordered within each image.
- Adversarial: A subset designed to challenge the models with difficult object distributionsοΌAAAAB,BAAAA).
Dataset Statistics
Training Data Statistics
Dataset | Total | COCO | ADE |
---|---|---|---|
Wild | 1539 | 732 | 807 |
Hom. | 312 | 168 | 144 |
Het. | 400 | 200 | 200 |
Adv. | 168 | 54 | 114 |
Validation Data Statistics
Dataset | Total | COCO | ADE |
---|---|---|---|
Wild | 1172 | 547 | 625 |
Het. | 246 | 76 | 170 |
Hom. | 490 | 289 | 201 |
Adv. | 334 | 170 | 164 |
Dataset File Structure
The ROPE
dataset is structured into training and validation directories, each containing images divided by their object class distributions. Each image directory includes visualizations of bounding boxes (bbox
) and raw images (raw
), further categorized into ADE
and COCO
sources. The raw
directory contains the original images, while the bbox
directory contains the same images with bounding boxes visualized on them.
ROPE/
β
βββ train/
β βββ image/
β β βββ AAAAB-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ BAAAA-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ heterogenous-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ homogenous-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β β βββ mixed-images/
β β β βββ bbox/
β β β β βββ ADE/
β β β β βββ COCO/
β β β βββ raw/
β β β β βββ ADE/
β β β β βββ COCO/
β βββ AAAAB_data.json
β βββ BAAAA_data.json
β βββ merged_heterogenous_data.json
β βββ merged_homogenous_data.json
β βββ merged_mixed_data.json
β
βββ validation/ #similar to train part
β βββ image/
β β βββ AAAAB-images/
β β βββ BAAAA-images/
β β βββ heterogenous-images/
β β βββ homogenous-images/
β β βββ mixed-images/
β βββ AAAAB_data.json
β βββ BAAAA_data.json
β βββ merged_heterogenous_data.json
β βββ merged_homogenous_data.json
β βββ merged_mixed_data.json
β
βββ .gitattributes
βββ README.md
βββ train.zip
βββ validation.zip
Json file Structure
{
"features": [
{
"name": "folder",
"dtype": "string"
},
{
"name": "filename",
"dtype": "string"
},
{
"name": "source",
"dtype": "struct",
"fields": [
{
"name": "database",
"dtype": "string"
},
{
"name": "image_id",
"dtype": "string"
},
{
"name": "coco_id",
"dtype": "string"
},
{
"name": "flickr_id",
"dtype": "string"
}
]
},
{
"name": "size",
"dtype": "struct",
"fields": [
{
"name": "width",
"dtype": "int32"
},
{
"name": "height",
"dtype": "int32"
},
{
"name": "depth",
"dtype": "int32"
}
]
},
{
"name": "segmented",
"dtype": "int32"
},
{
"name": "objects",
"dtype": "list",
"item": {
"dtype": "struct",
"fields": [
{
"name": "name",
"dtype": "string"
},
{
"name": "object_id",
"dtype": "string"
},
{
"name": "difficult",
"dtype": "int32"
},
{
"name": "bndbox",
"dtype": "struct",
"fields": [
{
"name": "xmin",
"dtype": "int32"
},
{
"name": "ymin",
"dtype": "int32"
},
{
"name": "xmax",
"dtype": "int32"
},
{
"name": "ymax",
"dtype": "int32"
}
]
},
{
"name": "area",
"dtype": "int32"
},
{
"name": "bbox_number",
"dtype": "int32"
}
]
}
},
{
"name": "relations",
"dtype": "list",
"item": {
"dtype": "string"
}
},
{
"name": "object_set",
"dtype": "list",
"item": {
"dtype": "string"
}
},
{
"name": "data_source",
"dtype": "string"
}
]
}
Dataset Construction
The dataset used in this study is constructed following the guidelines and protocols outlined by the SLED group. Detailed information and code about the data annotation process can be found in the official repository.
For more information, please visit the dataset construction guidelines.
Citation
BibTeX:
@inproceedings{chen2024multiobject,
title={Multi-Object Hallucination in Vision Language Models},
author={Chen, Xuweiyi and Ma, Ziqiao and Zhang, Xuejun and Xu, Sihan and Qian, Shengyi and Yang, Jianing and Fouhey, David and Chai, Joyce},
booktitle={3rd Workshop on Advances in Language and Vision Research (ALVR)},
year={2024}
}
- Downloads last month
- 201