metadata
dataset_info:
- config_name: metadata
features:
- name: asin
dtype: string
- name: title
dtype: string
- name: description
dtype: string
- name: brand
dtype: string
- name: main_cat
dtype: string
- name: category
sequence: 'null'
- name: also_buy
sequence: string
- name: also_view
sequence: string
- name: imageURL
sequence: string
- name: imageURLHighRes
sequence: string
splits:
- name: train
num_bytes: 24898313
num_examples: 12299
download_size: 9490355
dataset_size: 24898313
- config_name: reviews
features:
- name: reviewerID
dtype: string
- name: reviewerName
dtype: string
- name: overall
sequence: int64
- name: reviewTime
sequence: timestamp[us]
- name: asin
sequence: string
- name: reviewText
sequence: string
- name: summary
sequence: string
splits:
- name: train
num_bytes: 24663121
num_examples: 6107
download_size: 11955594
dataset_size: 24663121
configs:
- config_name: metadata
data_files:
- split: train
path: metadata/train-*
- config_name: reviews
data_files:
- split: train
path: reviews/train-*
Amazon Luxury Beauty Dataset
Directory Structure
- metadata: Contains product information.
- reviews: Contains user reviews about the products.
- filtered:
- e5-base-v2_embeddings.jsonl: Contains "asin" and "embeddings" created with e5-base-v2.
- metadata.jsonl: Contains "asin" and "text", where text is created from the title, description, brand, main category, and category.
- reviews.jsonl: Contains "reviewerID", "reviewTime", and "asin". Reviews are filtered to include only perfect 5-star ratings with a minimum of 5 ratings.
Usage
Download metadata
metadata = load_dataset(path="smartcat/Amazon_Luxury_Beauty_2018", name="metadata", split="train")
Download reviews
metadata = load_dataset(path="smartcat/Amazon_Luxury_Beauty_2018", name="reviews", split="train")
Download filtered files
filtered_reviews = load_dataset(
path="smartcat/Amazon_Luxury_Beauty_2018",
data_files="filtered/reviews.jsonl",
split="train",
)
📎 Note: You can set any file or list of files from the "filtered" directory as the "data_files" argument.