Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
640
640
label
imagewidth (px)
640
640
image_id
int64
0
33
file_name
stringlengths
46
48
9
302_jpg.rf.0b9356299f7bb873599431d3248dfcf7.jpg
12
706_jpg.rf.725e4c7bb258e0ac1c8d1a1d8ec97160.jpg
5
637_jpg.rf.303053e258f905fa858a01379c74db3f.jpg
20
841_jpg.rf.a0ce11a577c858e330ed8a37f49a2d16.jpg
31
438_jpg.rf.e3647557a3968d411943038e56bb9e4f.jpg
22
357_jpg.rf.b38ff5c37420d94a7bdad515d1c3acce.jpg
29
884_jpg.rf.bf6beeb673e3ef69bdd30de1731296fb.jpg
16
168_jpg.rf.31334ecf2d4ed4d3bd30dfc9c808103c.jpg
26
1006_jpg.rf.bb6383f23d337088d5909439d1aaee8e.jpg
24
699_jpg.rf.96021d5492d0343de5c03c57fd964fe9.jpg
14
1018_jpg.rf.71abc210859a1124aa68620941ee540a.jpg
10
399_jpg.rf.2d1ea417cdf47ce3cc05dbaf2adc44d5.jpg
11
310_jpg.rf.87b395d93cc0b797d298b29e0702e3c3.jpg
27
53_jpg.rf.b351faffdc08e1949bdc940b917b25a9.jpg
8
705_jpg.rf.0d6042fa875db5a59549315704305f51.jpg
19
118_jpg.rf.989339fca7c4f246b10a6fbfbebc10b5.jpg
30
720_jpg.rf.b61df00567e25464bd733d739c71a0ee.jpg
6
716_jpg.rf.3576ed67f401b9a834a5acc17a8caccf.jpg
25
736_jpg.rf.d7dfc78b17c42c9f8d50f99cebf1faf9.jpg
0
656_jpg.rf.03617a29fb897d19a4496c70806429ed.jpg
33
195_jpg.rf.cec58f7bf1eea8ba564cc58126768c1a.jpg
13
383_jpg.rf.889f9e5bbc93e4e1dc3ecfc458ff44d9.jpg
18
177_jpg.rf.97d39a03d3b1aa05f47806295644ad65.jpg
2
254_jpg.rf.3d4f4aab06878148dbbee7ef3ed69390.jpg
32
277_jpg.rf.ee9a5897e9a57c94ce9f192279557676.jpg
28
262_jpg.rf.df927ee578b427f35edabec42e7dff18.jpg
21
980_jpg.rf.bd791175598d1e7744381bfdcd50962e.jpg
3
865_jpg.rf.26b9b6577710c9df93aef1ddd1ecbce0.jpg

COCO → SegFormer-ready Dataset

This dataset was generated from COCO-style annotations and includes:

  • image: RGB image
  • label: single-channel PNG mask with class ids (255 = ignore index)

Labels

  • 0: Hair
  • 1: Hair

Notes

  • Built for fine-tuning SegFormer.
  • See blog post: Fine-Tune a Semantic Segmentation Model with a Custom Dataset.

Summary: COCO → semantic masks for SegFormer (image+label)

Downloads last month
38