imdb / README.md
albertvillanova's picture
Convert dataset to Parquet (#5)
e628166
metadata
annotations_creators:
  - expert-generated
language_creators:
  - expert-generated
language:
  - en
license:
  - other
multilinguality:
  - monolingual
size_categories:
  - 10K<n<100K
source_datasets:
  - original
task_categories:
  - text-classification
task_ids:
  - sentiment-classification
paperswithcode_id: imdb-movie-reviews
pretty_name: IMDB
dataset_info:
  config_name: plain_text
  features:
    - name: text
      dtype: string
    - name: label
      dtype:
        class_label:
          names:
            '0': neg
            '1': pos
  splits:
    - name: train
      num_bytes: 33432823
      num_examples: 25000
    - name: test
      num_bytes: 32650685
      num_examples: 25000
    - name: unsupervised
      num_bytes: 67106794
      num_examples: 50000
  download_size: 83446840
  dataset_size: 133190302
configs:
  - config_name: plain_text
    data_files:
      - split: train
        path: plain_text/train-*
      - split: test
        path: plain_text/test-*
      - split: unsupervised
        path: plain_text/unsupervised-*
    default: true
train-eval-index:
  - config: plain_text
    task: text-classification
    task_id: binary_classification
    splits:
      train_split: train
      eval_split: test
    col_mapping:
      text: text
      label: target
    metrics:
      - type: accuracy
      - name: Accuracy
      - type: f1
        name: F1 macro
        args:
          average: macro
      - type: f1
        name: F1 micro
        args:
          average: micro
      - type: f1
        name: F1 weighted
        args:
          average: weighted
      - type: precision
        name: Precision macro
        args:
          average: macro
      - type: precision
        name: Precision micro
        args:
          average: micro
      - type: precision
        name: Precision weighted
        args:
          average: weighted
      - type: recall
        name: Recall macro
        args:
          average: macro
      - type: recall
        name: Recall micro
        args:
          average: micro
      - type: recall
        name: Recall weighted
        args:
          average: weighted

Dataset Card for "imdb"

Table of Contents

Dataset Description

Dataset Summary

Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well.

Supported Tasks and Leaderboards

More Information Needed

Languages

More Information Needed

Dataset Structure

Data Instances

plain_text

  • Size of downloaded dataset files: 84.13 MB
  • Size of the generated dataset: 133.23 MB
  • Total amount of disk used: 217.35 MB

An example of 'train' looks as follows.

{
    "label": 0,
    "text": "Goodbye world2\n"
}

Data Fields

The data fields are the same among all splits.

plain_text

  • text: a string feature.
  • label: a classification label, with possible values including neg (0), pos (1).

Data Splits

name train unsupervised test
plain_text 25000 50000 25000

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

@InProceedings{maas-EtAl:2011:ACL-HLT2011,
  author    = {Maas, Andrew L.  and  Daly, Raymond E.  and  Pham, Peter T.  and  Huang, Dan  and  Ng, Andrew Y.  and  Potts, Christopher},
  title     = {Learning Word Vectors for Sentiment Analysis},
  booktitle = {Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies},
  month     = {June},
  year      = {2011},
  address   = {Portland, Oregon, USA},
  publisher = {Association for Computational Linguistics},
  pages     = {142--150},
  url       = {http://www.aclweb.org/anthology/P11-1015}
}

Contributions

Thanks to @ghazi-f, @patrickvonplaten, @lhoestq, @thomwolf for adding this dataset.