Dataset Viewer
Auto-converted to Parquet
task
stringclasses
14 values
smiles
stringclasses
929 values
cid
int64
4.09k
1.99M
answer
stringlengths
5
24.8k
molecular_weight
float64
102
600
logp
float64
-6.97
13.1
messages
listlengths
2
2
Stereochemistry_Analysis
COc1cc(C=NNC(=O)c2cc(C3CC3)nc3ccccc23)ccc1OCC(N)=O
1,388,519
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
418.453
2.7488
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'COc1cc(C=NNC(=O)c2cc(C3CC3)nc3ccccc23)ccc1OCC(N)=O'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Hydrogen_Bond_Properties
Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1
1,662,486
{"donors": 1, "acceptors": 5}
380.4
2.55312
[ { "content": "Calculate the hydrogen bonding capacity (donors and acceptors) of the molecule 'Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1'.", "role": "user" }, { "content": "{\"donors\": 1, \"acceptors\": 5}", "role": "assistant" } ]
Synthetic_Accessibility
O=c1ccc2ccncc2[nH]1
589,676
{'sa_score': 8.85, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
146.149
0.9231
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'O=c1ccc2ccncc2[nH]1'.", "role": "user" }, { "content": "{'sa_score': 8.85, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
IUPAC_Name_Generation
CCNC1=NCCS1
202,955
N-ethyl-4,5-dihydro-1,3-thiazol-2-amine
130.216
0.6987
[ { "content": "Convert this SMILES representation 'CCNC1=NCCS1' to its proper IUPAC name.", "role": "user" }, { "content": "N-ethyl-4,5-dihydro-1,3-thiazol-2-amine", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1ccc(NC(=O)c2cc3cc(Br)cc(OC)c3oc2=O)c(OC)c1
1,264,882
434.24
434.242
3.8336
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'COc1ccc(NC(=O)c2cc3cc(Br)cc(OC)c3oc2=O)c(OC)c1'.", "role": "user" }, { "content": "434.24", "role": "assistant" } ]
Bioactivity_Prediction
CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1
1,700,034
{"predicted_classes": ["enzyme_inhibitor"], "class_scores": {"kinase_inhibitor": 0, "gpcr_ligand": 2, "enzyme_inhibitor": 4, "ion_channel_modulator": 0}, "bioactivity_likelihood": "High", "drug_like_properties": {"molecular_weight": 456.88, "logp": 3.87, "hbd": 1, "hba": 7}, "structural_complexity": "Medium"}
456.882
3.8658
[ { "content": "Provide information about Bioactivity_Prediction for the molecule with SMILES 'CCCOC(=O)c1cccc(N2C(=O)C(Cl)=C(Nc3ccc(C(=O)OCC)cc3)C2=O)c1'.", "role": "user" }, { "content": "{\"predicted_classes\": [\"enzyme_inhibitor\"], \"class_scores\": {\"kinase_inhibitor\": 0, \"gpcr_ligand\": 2, \"enzyme_inhibitor\": 4, \"ion_channel_modulator\": 0}, \"bioactivity_likelihood\": \"High\", \"drug_like_properties\": {\"molecular_weight\": 456.88, \"logp\": 3.87, \"hbd\": 1, \"hba\": 7}, \"structural_complexity\": \"Medium\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1onc(-c2c(F)cccc2Cl)c1C(=O)N1CCN(c2ccccn2)CC1
1,203,224
400.84
400.841
3.79992
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'Cc1onc(-c2c(F)cccc2Cl)c1C(=O)N1CCN(c2ccccn2)CC1'.", "role": "user" }, { "content": "400.84", "role": "assistant" } ]
Stereochemistry_Analysis
Cn1c2c(c(=O)[nH]c1=O)C(c1ccc(OCc3ccccc3)cc1)C1=C(N2)c2ccccc2C1=O
1,371,734
{"chiral_centers": 1, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 1, "chiral_center_details": [{"atom_index": 9, "configuration": "?"}], "stereogenic_double_bonds": 1, "max_stereoisomers": 2, "potentially_meso": false, "stereochemistry_complexity": "Medium"}
463.493
3.8176
[ { "content": "Determine the stereochemistry analysis of the chemical structure 'Cn1c2c(c(=O)[nH]c1=O)C(c1ccc(OCc3ccccc3)cc1)C1=C(N2)c2ccccc2C1=O'.", "role": "user" }, { "content": "{\"chiral_centers\": 1, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 1, \"chiral_center_details\": [{\"atom_index\": 9, \"configuration\": \"?\"}], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 2, \"potentially_meso\": false, \"stereochemistry_complexity\": \"Medium\"}", "role": "assistant" } ]
Solubility_Prediction
O=C(O)c1ccc(NC(=O)c2ccc(CNC3=C(Cl)C(=O)N(Cc4ccccc4Cl)C3=O)cc2)cc1
1,408,298
{"log_s": -4.24, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 524.3600000000002, "logp": 4.4, "oh_groups": 1, "nh_groups": 2, "cooh_groups": 1, "aromatic_rings": 3}}
524.36
4.3995
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'O=C(O)c1ccc(NC(=O)c2ccc(CNC3=C(Cl)C(=O)N(Cc4ccccc4Cl)C3=O)cc2)cc1'.", "role": "user" }, { "content": "{\"log_s\": -4.24, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 524.3600000000002, \"logp\": 4.4, \"oh_groups\": 1, \"nh_groups\": 2, \"cooh_groups\": 1, \"aromatic_rings\": 3}}", "role": "assistant" } ]
Functional_Group_Identification
CN(C)CCCc1c2ccccc2nc2ccc(Cl)cc12
287,683
{"amine": 1, "halogen": 1, "phenyl": 2}
298.817
4.5356
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CN(C)CCCc1c2ccccc2nc2ccc(Cl)cc12'.", "role": "user" }, { "content": "{\"amine\": 1, \"halogen\": 1, \"phenyl\": 2}", "role": "assistant" } ]
Functional_Group_Identification
Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1
1,547,476
{"alcohol": 1, "ketone": 1, "amide": 1, "sulfide": 2, "halogen": 1, "phenyl": 2}
422.481
4.83376
[ { "content": "Determine the functional group identification of the chemical structure 'Cc1ccc(C(O)=C2C(=O)C(=O)N(c3nc(C)c(C)s3)C2c2ccc(F)cc2)cc1'.", "role": "user" }, { "content": "{\"alcohol\": 1, \"ketone\": 1, \"amide\": 1, \"sulfide\": 2, \"halogen\": 1, \"phenyl\": 2}", "role": "assistant" } ]
Reactivity_Prediction
CC(=O)OO[N+](=O)[O-]
16,782
{"charges": {"C": [{"atom_idx": 1, "charge": 0.34}], "O": [{"atom_idx": 2, "charge": -0.249}, {"atom_idx": 3, "charge": -0.261}, {"atom_idx": 4, "charge": -0.089}, {"atom_idx": 6, "charge": -0.107}, {"atom_idx": 7, "charge": -0.107}], "N": [{"atom_idx": 5, "charge": 0.331}]}, "dipole": 1.21, "steric_hindrance": 2.5}
121.048
-0.3272
[ { "content": "Determine the reactivity prediction of the chemical structure 'CC(=O)OO[N+](=O)[O-]'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 1, \"charge\": 0.34}], \"O\": [{\"atom_idx\": 2, \"charge\": -0.249}, {\"atom_idx\": 3, \"charge\": -0.261}, {\"atom_idx\": 4, \"charge\": -0.089}, {\"atom_idx\": 6, \"charge\": -0.107}, {\"atom_idx\": 7, \"charge\": -0.107}], \"N\": [{\"atom_idx\": 5, \"charge\": 0.331}]}, \"dipole\": 1.21, \"steric_hindrance\": 2.5}", "role": "assistant" } ]
Stereochemistry_Analysis
C1CCc2c(sc3c2c2nnnn2c2nnnn32)C1
911,851
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 0, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
272.297
0.6555
[ { "content": "What is the stereochemistry analysis for the compound represented by 'C1CCc2c(sc3c2c2nnnn2c2nnnn32)C1'?", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 0, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Stereochemistry_Analysis
COc1cc(C=CC(=O)O)cc(Br)c1O
244,669
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
273.082
2.2611
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'COc1cc(C=CC(=O)O)cc(Br)c1O'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1cc(C=CC(=O)O)cc(Br)c1O
244,669
273.08
273.082
2.2611
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'COc1cc(C=CC(=O)O)cc(Br)c1O'.", "role": "user" }, { "content": "273.08", "role": "assistant" } ]
Solubility_Prediction
c1ccc(-c2ccccc2N=P(c2ccccc2)(c2ccccc2)c2ccccc2)cc1
277,682
{"log_s": -6.88, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 429.50300000000004, "logp": 7.16, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 5}}
429.503
7.1628
[ { "content": "Provide information about Solubility_Prediction for the molecule with SMILES 'c1ccc(-c2ccccc2N=P(c2ccccc2)(c2ccccc2)c2ccccc2)cc1'.", "role": "user" }, { "content": "{\"log_s\": -6.88, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 429.50300000000004, \"logp\": 7.16, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 5}}", "role": "assistant" } ]
Molecule_Visualization
Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1
1,662,486
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAd1klEQVR4nO3deVSV5b4H8N9mdhYwFOdU1GAtUHFI0YMkOQ+hcjKTrJNS6A3tppFpcDTXupzqFOWQmFpYimKkcG45kKGpOaaBCCIiImA4IorCFti/+8fD3bH0SLD3u/mB5/v5ay8X+3kfYX/3+8yvjpkJAORYSVcA4D8dQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCNKuXaMLF8hgkK6HGBvpCsB/tnnzqLyc2rSh48dp82ZydJSukACEEOT8+iuVlVF0NBFRfDytWkVLlohUJCUlZfv27b6+vj4+PnZ2dvV8dYTwMXXpEqWlkZsbublJV+XRzp4lL6+q13370vbtIrXIyckZOHDg/fv3icjGxqZnz54eHh7u7u7e3t4eHh7dunWzdAUQQkpJoV69yMGBKiooJYW8vaUrZL74eIqPp4kT6YMPqE8fmjtXukKP0LYtZWRUvS4ooHbt6r8KJSUlkydPvn//vp2dXefOnXNyctLT09PT06vVsa2np6eXl5enp6enp6e7u7utra3GleD/eDNm8KVLzMy3bvHEidK10cTQoVxWxsxsMPCAAWwwSFfoEcrL2d+fd+zgo0d55EjOyGBmPn+eKyvr5/qVlZWTJk0iou7du1+7do2Z9Xp9WlpaTExMaGiov7//E0888UBebGxs3N3dAwMDIyIiEhMT8/LyzK9GQw/h/fv3ly1btmTJkrt371roEo9hCIcM+eP16NF865ZcVf5MSQl/9RWvWsU5OczMW7dys2a8dGn9XPzNN98kIicnp/T09JCQkPT09Id/JicnJyEh4f333586daqbm5uV1YMTCs2bN09MTDSnGg03hGlpaWFhYW3btlX/VeN3leZmzODAQJ45k6dPf1xCOGwYl5YyMxsMPGiQdG1qp6yMt23jvXvZ2pqtrHjnTktfcN26dURka2v7008/zZ8/n4h69OhRXl5e87seuFWqpmnfvn3NqUmDC2FmZmZ4eHiPHj2M3zSurq729vZE1KtXr6ysLM2v+BjeCb/9lqdP5/h4Dg7m1aula1MLlZXs48NEvGULL1vGROzkVHVvtIzk5GQ1Crp27drqaaxrOceOHdPpdM2aNSspKTG5Mg0lhDdu3IiOjvbx8dHpdCp77du3Dw0NPXDgADMXFBR4e3urlkNycrK2l37cQvjLL5yUxKdPc2IiZ2ZK16bWVq1iIm7enNPSeNIkJuKBA6t6tlrLyMho3bo1Eb377ru7d++2sbHR6XQbN26sUyHXrl1buXLlyZMnn376aSKKjY01uT7CIbx3715cXNz48eONI06tWrUKCgpKTEw0NgyysrImT56cl5en+tB2dnZfffWVhnXYt48vX1aV4T17NCxYiPoEx8byyy/zqFGcmipdoVqbOZOJuFcvzs3lbt2YiOfO1fwi169fV+2sKVOmpKWlqTQuWbKkruW88847RPT666+vWLGCiMaPH29ylWRCWFFRceDAgeDg4BYtWqjsWVtb+/v7x8TEPHxb9/PzI6KePXtmZmZGRESonw8NDa3UaAwtNJRHjmSDgfPy+OWXNSlS1JNPMhGfOcMdOjARW6ABbyn37nGfPkzEzz/Pv/3GTZowEcfEaHgFvV4/fPhwIvL29s7NzVVpnDp1qgmfpTNnzqimWX5+vq2trY2NzZUrV0yrVX2H8PDhw2FhYe2qzQh5e3tHRUXV8B+o3hb96aefvvjiC3XbnDJliiZDpqGhPGcOf/31YxHC4mLW6djenq9cYSJu1qzehvu1ce4ct2rFRPzZZ7xmTYWr67wBA9LS0jQp22AwBAUFEVGHDh2ys7OHDBlCRP379zf5U+Tl5UVEO3bsGDduHBGtXLnStHLqL4TFxcWurq7G7Lm7uy9fvjyndp3vkpKS5557Ts3SfP7550lJSaoVMXDgwN9//93kKl29yqmpHBrKaWn8zDOcmtr4Q3jgABOxtzf/9BMT8eDB0hWqu23bWKdjO7t7R468FRysBuRu375tfsFLly4lohYtWpw6dWrGjBlE1KVLl8LCQpML/OCDD4goMDBw8+bNRDTY1N92/YVw06ZNRKTT6ebNm3fy5Mm6vt1gMFRvi549e7Znz57qW62upZWWcmIiBwayrS0PGcKhoZyZyfv389SpjT+EK1cyEf/tb/zJJ0zEr70mXSGTvPXWoREjOnfocPHixX79+hHRpEmTDOYtOYiLi9PpdFZWVgkJCeHh4SqNKSkp5pRZUFBgbW3t4OBw+fJl1bE6d+6cCeXUXwjXrFmj2t/mFLJu3TrVFlVDNX/5y19qP1taUcG7dnFQEDdvzkRMxLa2PHEiz51bNYg4cya//DJHR/P69ebUUVRwMBNxVBS/8goTNY75iYeUl5erv6yfn9/Zs2dbtWpFRB9//LHJBR4/frxp06ZE9Omnn27dulWn01lbW5s5w64888wzRLRhw4aXXnqJiJYtW2ZCIfUXwjlz5hDRRx99tHDhQn9//59//tm0cn788UfVFu3Tp092drZq5VtbW0dGRj7qLceOHVu6dEe7dlXZ0+l4yBBetYqvX2dmPnWKVWPn+nWOj2cbGybit99uZJ2pKk8/zUScnMz9+jERHzwoXSETFRYWqs7LkiVLEhMTdTqdjY2NaZ+ZnJwcteRj1qxZhw4dcnBwIKIVK1ZoUs/169cT0YgRI3bv3k1Ebm5uJhRSfyEcOnQoESUlJQ0YMICI9u/fb3JR586dM7ZFT5w4ERkZqRYTBQcH379/3/hjubm5kZGRvXr1IiIHh9atWhl69+aICK65ybB+PdvaMhEHBLDFlspZRGVlZbka2S8sZAcH1um4uFi6UqZLTk5WM3jbt29/++23iahdu3YFBQVFRUU3b97My8vLzs7OyMg4ceLEsWPHkpKSkpKS4uPj4+LiYmJioqOjV61aFRkZuXz58s6dOxPRqFGjsrKyXFxciOiNN97QqpLFxcVNmjSxsrLKzc3t0KEDER0/fryuhdRTCA0Gg2pUXL58WTUMbt68aU6B169f9/X1VW3RhISEuLi4Jk2aENHIkSOzs7NXrlw5ZMgQ47x/u3bt5s+ff/Lk9VoWfuAAt2nDROzlVTWPb74bN258+umnZnZCapaVlUVEf/HwyElPT/D1Pd/4Vx5ERkYSkaOjY58+fchUXbt2feKJJ4qKiubOnUtEY8aMqaio0LCSU6dOJaIPP/xQrX2bP39+XUuopxBeuHBBheHs2bNE1LlzZ/PLLCsrUw1x1RY9dOiQ+p6zsanan9WiRYuXXnpp9+7dJvzSs7K4Vy8m4vbt+cQJ0ytZWVmpZkTVV4+Tk9P3339venE12rZtGxGNGzdODdY999xzFrpQvTEYDJMnT34gVK1atXJ0dOzQoUO3bt169+7t7e3dv39/f39/f3//gICAwMDAoKCg4ODgkJCQsLCwkJAQnU7XpEmTW7dulZeXL1++vFjr1sH27dtV5+j48eNE5OLi8qcLUB9QTyFUFR01atTWrVuJaMKECZoUazAYli5dqu5433zzTXZ2toODQ8uWLf38/GJiYu7cuWNO4deu8bBhTMSDBh00oRP/66+/vvnmm9VnZdQKWBsbm+joaHMq9ijvvfceEb377rtqMUdERIQlrlLPioqK1H6i4cOHm1aCajHFaDrpX51er3d2diai06dPe3h4ENGuXbvqVEI9hVBN0bz99tuLFy8mk1YJ1SA2NnbMmDH379/PyclRX0ValVxWxnPn/u7k1Mba2rqWo3OXLl2Kioqq3nzq0qVLWFjYuXPnHphl0bZRxMwTJ04koi1btowZM4aI4uPjtS1fyrPPPktEJn9zrV27VvVTtK1Vda+99hoRLVq06P333yeioKCgOr29nkI4ZcoUdbMaP348EcXFxVniKjt27LDErzsqKkoN/MyaNav6wE91N2/ejImJ8ff3N3ZEnZycgoODDxw48MAEV2xsrBqgGz16tLZNo65duxJRenp6+/btiej8+fMaFi5Fr9erKbjc3FzTSrh586a9vb2VlVV+fr62dTP6+eefVSfrwoULalNFnVph9RRCtUgvNTVVDVWdPXvWEldZtmwZES1YsEDzkrdt26Y6df7+/kVFRcZ/Ly0tTUxMDAwMNJ4O1KRJk8DAwMTExEfFlZn37dunGjB9+vS5odEn49atW6rzU1hYSETNmzfXam2trD179hCRl5eXOYWojqU5M401MxgMTz75JBHt379frYbbtGlT7d9eHyEsKSmxsrKys7O7cuWK+qBo3hJT1DjV119/bYnCjxw5opa8urm5nTlzRg23tGzZUmXP2trax8cnOjq6lguszp8/37t37/f69+eOHbnug9oPU1/GvXr1+uSTT4hoSPXN9Y3ZvHnzVEfXnELi4+OJyNvbW6taPezdd991cXGJjY1Vv/8ePXrU/r31EcJffvlFfevv27ePiAYOHGihC7m5uRGR5aYBsrOzVbvU2tra2OUbNGjQZ599ZsIK+hs3bpSPGVO1zPq778ypWF5envoCsrKyUu3h119/3ZwCGw71Nz106JA5hej1eicnJyLSai34w27fvq0GRf/+97+r4bfarwuvjxCqBWszZ8787LPPiGj27NmWuIrxfqvX6y1RPjNnZGQYBzmJyNHRMdPMXbPl5RwSUrWKp+6DmWon9LBhw4wdUWPd/P39LdTcqE9ZWWVDh67v2XOY+f+XWbNmaT4i+LCjR4+q+erJkyfX/l31EUK1YO2f//znq6++StqtGHrA4cOHze881Mw4v6K+7aZMmaJNuVFRbGVVtfD60T3JP5SW8rZtoa+8Yoxc06ZNp0+f/v3335eXl8fGxqrPwahRo2415COeauHjj5mIX3xRg6KSk5PVSLWZC8FrkJ+frxbNvPrqq3V6Y308iyIlJYWIPD09U1NT1QtLXMWihSvqP+Ll5XX37l0trzVvHsXFUdOmtGEDjRlD5eX//scMBjp4kObNo06dKDCwdU5OeXm56ogWFhZu2rRp7NixNjY206ZN27t3r4uLy+7du4cNG5abm6tNJSV8/z0R0bhxGhTl6+vbtWvX3Nxc1TnS3J07d8aOHVtQUODr67t69eq6vdlC3wpGBoNBjV6oBWs6nc7MBWuPohYlffTRR5YoXDHOr4wcOZKIduzYoWXpp05xp078zjvMzD/+yOHhvHZt1SErKSm8cCF37Fi1Ap2IBwy4unp1DXsps7Ozn3rqKSJq167d0aNHtaxnfblzh+3t2dq6ap29+cLCwogoJCREm+KqqaiomDBhAhH17t3bhI+3xUOYnZ1NRK6urqpD1aVLFwtdSC0Q32PJU2I6depERJmZmWqYtJY7kuugsJArK3njRv6v/+KcHI6P50mTePv2P7LXrRu/9x7XboLn9u3bY8eOJSIHB4c6jZjXLCcnJykpSavSahAfz0Q8dKhmBRoPpNB81OCNN94gImdnZ9NOA7R4CNWCtdGjR6uVjVotWHuAwWBQ+5vM2Shds6KiIjUPqybiWrZsaanehZ8f37tX9XryZM7M5E6dOCiIk5LqepZ2eXm5aiDodDozV7GVlZUlJiYGBQWp8eHBgwfXMBGqib/9jYn4f/5HyzJVD0KTnYRGakWOnZ2dyecAWjaEubm5/v7+RDRr1ixmzsnJyVBHnWvNuEDcEoUrqmc/aNAgNX08VMOv6AdUn+KbPZtPnzbzHHvjip9p06aVqkOBa62ysnLfvn2zZs1S33FUbRZk1KhRmi+GNjIYuH17JtL4sLh//OMfRPT8889rVeCuXbtMOzGxOouEsKioKCYmZvz48Wo+zcXFpWXLlnv37rXEtRQLLVirrnjt2vNDh+5fvPh/P/+8p5PTnDlzLHWloCBW01kGAw8b9sdd0Qw//PCD6pn7+PhcvXq1Nm85c+ZMRERE9WcSubu7R0ZGXr58+eDBg2qbrIeHh/ZtcmZmPnGCibhTJ42fo5Gfn68OpFDjxps3b160aNHWrVszMjJMmAU5c+aM+m4ys5WhZQjLysri4+MDAgKMQ+dqDdewYcOIyNbWdt26dRperjq1QHzhwoUWKp+Z+dVXmYhXruSXXmKi8rVrLXWhCxd47Fh+6y2eOJE3b9aq1JSUFLVmsHv37jW0R/Lz86Oionx8fIzZ69SpU2ho6KlTp6r/WF5enlqk7uzsbPIhCTW4dYu/+cYi54yoIw+//PJLZlYn2Sq2trbu7u5BQUGRkZGJiYl/uvri2rVr3bt3J6LAwEAzOyYahFBtmQsNDW3Tpo2xxaKGzlVz5YHdA5ZY06gWiFtowVqV/v2ZiH/+mb28mIiPHLHgtZj52jXWera9oKCgf//+ROTo6PjAke+3bt1SjRfjbkxHR8egoKCkpKRHfcJu376tjvqzt7fX8DcfHs6qtXjnDgcEaFXqH7744gsi8vPzY+Zdu3YtWbJk4sSJau37A7p06TJhwoTFixfHxcWdPXu2+q2ytLR08ODBZN6JiUZmhTAtLe1RLZaHf3j9+vVqlfPYsWPNP8Hu7t27mzZteu3/TxMzLhA3s9hHqqjgpk1Zp+OrV9nOjq2s2LzNilKqHx65atUq43BLs2bN1F/QwcFh/PjxcXFxtRlCrKioUAODauBHk5Gq8HAeM4Z37rRUCI8cOWJtbd2yZUtHR0cfH5/Q0NDo6OgDBw4UFhbu379/xYoVs2fPHjhwoFqvX13Tpk1/+OEHZjYYDNOnTyeirl27ajIQaEoIa9liedjBgwfV3dLLy+uSSedGGDeqG4/uPnnyZD0sWOP0dCbirl05JYWJ2KTzfBqIysrKBQsWqN+e8b5nZWU1YsSIL7/80oSxlujoaFXO888/f8+8HuydOxwezsnJ7OfHV69qH8LY2NjmzZsTkfHzY2RnZ+fl5RUUFPThhx/u2bPnypUrBQUFiYmJERERgYGB7u7uOp1OLT1Ve2JbtGih1Zd+HUJ4+/btdevWDR8+3PiINmdn55CQkIMHD9b+KzArK0udvNS+ffsTdTk34tixY/PmzTMe3a3T6YYMGbJq1arCwsJXXnmFiDp27Fj70upsyxYm4kmTeONGJmLzDm5sCMLDw9UgZ+/evSMiIswcX9m1a5ca+Bk8eLAJa9kLCjgqin18ePhwDg/no0f5u+944UIOCGC9XpuxmfLycjVZT0QvvvhiSUlJQUFBUlJSVFRUUFCQu7t79UX5xgZ59Vvl77//XllZuWXLFnVi4r/+9S8NqsXMdQrhxYsX1Z+tTi2Wh924cUN1jps1a/ani06qn5imqA9NVlbWiRMnQkNDjc9SNfn4g1pZtIiJ+L33eMECJmKTjpdsaH755Rdzzrx7QGpqapcuXYioW7du//Zpmw8rLuYNG3jEiKqVs0Ts7MxhYaxW+AQEcEAAz5vHPj5s5v7k/Px8tc3P3t4+Kirq3/5MSUnJkSNHoqOj58yZM3ToUOMmteq3yvbt26sIrNb0QNe6NUfnz59vWovlAXq9fubMmfToSeSHN6o7OzurjeppaWmLFi1Sf2/Fy8srICDAnPPw/9y4cUzE27bxs88yESckWPBajdbly5fVeZYtWrSo4TwrvV7/ww+pf/1r1RNfiNjBgadO5e3bWa/nPXuqTri7cIHXrGFXVybili1NHylNTk5WDahOnTodPny49m9UzdHIyEh1qzQ2ADXfqyn5aLR/e2zEb7/9Nm7cOOOT0ownpqmzW6p3RDt27BgaGmrCifqmiIjgoUM5K4vbtmUivnixPi7aCJWWlr7wwguqt/nwA1JU48XFxaVp0zbNmhmsrNjHh6OiuIZHMBcV8YwZVVkdPZoLCupQGYPBEBkZqdqZfn5+Jj81Sblz587GjRtXr16t+R4x4ecTfvvttw8cG6GWmBqflFZQUPDA0Hnr1q1rHjq3iOvXOS6OExI4PZ0TEjSeQn68PDwjlZ6evnjx4urTAJ6enqtXX8rLq22ZcXHs7MxE3Lo113I2pLi4OCAgQLW2wsLCGvJhH/JP6j169Kjx2Ai1R3bTpk2FhYVJSUnVh87t7e3N6YiapaCA/fw4IYE3bmR/f67/CjRCGzZsUDNSanOj0rlz57CwsNOnT5tQYEEBjx5ddUtcsGDHjRs3avjhkydPqpkzZ2fnnTt3mvqfqCfyIWTm/Pz8vn37EpGTk9PcuXNVi0X92dS8f1RU1HWtNrSYYNkyNi75Xb6ct28Xq0mjsnfvXhsbm9atW6vGS2JiovkNuZgY7tv3Nzs7u7Zt2yY8omceExOjmlf9+vW7cOGCmVesBw0ihFxt342Ru7t7REREg/glhoTwb79Vvd64sZE+6khERkbGunXryjR99Hx29gX1zCadThccHFx94Udpaens2bPV5ycoKMjMSct601BCyMx6vd7X17d169bTpk0zrcViKR9//McazrAwrpfddFADg8EQHR2tbnddunRRS/AuXryoxmYdHBzWN6qn2+mYmRoSZjZOSzQUxcX017/S2LF06xZlZtKmTdTQavgfKSMjY+bMmcePH9fpdJ6enufPn79792737t2/++47i55yorkGF8IGqrycUlPJwYHc3ZHAhqOiosLNze3ixYvW1taVlZVEdOTIkUGDBknXq27q46Cnx4GtLXl7k4cHEtig2NjYqP1Erq6u6mRR4wxzI4IQQuOmHuyxZs0atbZRr9dL16jOEEJo3NQO8rKyMuML6RrVGUIIjZu6E+r1euML6RrVGUIIjRvuhADC1A2wrKwMd0IAGcbsNd47oY10BQDM8kbbtv89eLDO1nZ6hw6f9OvXGGeQEEJo3J4sLaXDh2nkSCopoZMnqbhYukZ1huYoNHIODkREev0fLxobhBAaOXXSdFnZHy8aG4QQGjnjDVCFEHdCgPpmzB6aowAyVPbQHAUQgzshgLAWLcjRkZo3pzZtyMODXF2lK1Rn2NQLjV95OcXHU2EhDR9OffpI16bOcCeExu+FF6iignx9KTKSdu6Urk2dIYTQyGVnk709zZhBffvSp5/S6tXSFaozhBAauevX6f9PqaUnnqCiItHamAIhhEauRw9KT696nZJCTz0lWhtTYAE3NHLOzjR2LL34IvXqRYcOUXS0dIXqDKOj8Fi4fZuuXaOuXemhZ302fAghgDD0CQGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYT9HylxMVYLqDE7AAACAnpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJABYjkgbmBkY0gA0ozMbA4aQJqZhc0hA0QzMyIxIDLsDGABJqAWiAAHhGaCGMHEhOBjl0en2SHyzBjq8TgFl+MwzUBXyc3AyMDIlMHExJzAzJLBxMKqwMqmwMauwcTGwcDBycDJpcDFrcHExcPAw8vAy8fAx8/AL6AgIKjBJCCkICScwSQskiAimsEkKpYgJp7BJC6hICGpwcQilSAlncEkzZggwa8gLpTgxAy0jI1RWoqFmYlVgF9CXIhNWERUTFxIPIoRGMoMsOCf0Wh0UH5f0n4QJ+OF9MEp9w/tA7HbZ4sfXKbTYw9ihzMxHrx4+QyYzZdz98ADHUUwe53lhgOzbCeC2fwLuw+cZNSwA7EvWE05EPRkOdjMmLs2B477aYPV2EQ83/8tfBbY/JdWp/aldwaA1c+3Zdy34+s1sJqW5fb2mREuYL2L/Lgc1EXawOof1Ac7ZB+aCxYP/DTNodHMCsw+OG2fg33sSTB72r/9DmJLXA6A2IZTnjgcZtEAi696xul44VIOmB2WJ+m48EQ82N7CSEHHaYcugO3dV/nZYY7mZzA7LeuKg2OfI5i9On+Jw1x/MzD7i0S7Q7csRM0F1mcHzOdEgM2UmMN50O3rGjBbDAC+TIo3u98XSAAAAop6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtu3DAM/N9T6AIr8E3xM8kGRVFkF2jT3qH/vT9KykitAELtiLCNCSVyZriXVtf327fff9q/i26XS2vwn7+IaL8YAC5vrR7a8+uXr/f28v70/PHl5fHz/v6j0Wj5Mu/P2Kf3x9vHF2wv7YrYUc042hX6GOooDTrM6/xnKmh0F6EDyQMMaYPkAymu4rlFh1BE3gClgKODMTgm0ABou7cW0HpgiOTnbhQauAFau7erdgUHqYzIYrE7o1dG6WwsWBnRBCw2wNEeBTQm9CwbOyOa6gYZlZJ6FgtYZzML9N0hc8NHZRrg2cPZSkDR3TFxEpSAkBiVi4BNdudMJh6FRDLK52ymB/uumVj8QBI5TOfunifdI4sgyt4gyKScDIfvmMRiiLMOsaoIOzFJ2A5ZFEl3dPCZ08mzuh2yONLspwZw5VRn1LFDFkmJjBjk7codnBR3HGGR5B2FIWbtpsnsriJKI7XRs+CRbUhkkMJWSlQcRdcRwl4U4VDeUUQ0gTCE2YqhPATv6iGepzQYhqXiEZHd2gGLIMtEHqMSuRr4Fqizl8jDuGTkSLgVHFm2UjqV2u3YmvfFTAdlK8cgOCaHWNptBx2Hz9PeBoeHFIl3/Lzeb5/m0zGxnh/32zmx6qZzKkkuPkeP1DoHTN16jhHMZeewwFx+jgTKNU7jY77G6W6stZoYZ8DFq1QBafEkzi+8eA9nkMVjOIMuXsIZbPEMzuCLN6gCjsUDOL/EonWpQKumpQLhol2pQLSIVCoQL2qUCiSL7LAC6aIvmsEWIWXnUyaLYKQCjUUXUuHcu5pMa+WTw9ouVoWseqj3j1+/fL78BTVEW9aSH6RKAAABUXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nC2Ru43DQAxEW7nQBlYE/x8IFym3i1AbLv7I9SnR6onkDGevm+77fryux+/7eb2/r+t68T7dcs8jF8/HTT+fx0EEZO7rQMi0IF3nURCqrMMk0Yk30zCNRYBlRE0S0AWHOCIPcSgq1YXgXFaDDAwDtYtI1KuJgrgodRG54j9yYcp1EAhRmzkPhlbBqXIvihlFkBiS2xWS2rjqY2nl1DGKa21G7Nym21iUxDqx90m36YweF70jtzrhRuyUIeuUHqu+XbCwrVMhKHALBkcLrdPaltWUWAj5BlUp6xDAYGufAaSCNV1uvVdPTmiJNtmo2LDaeYHlN6pe3KSGYKpMUp3qaEXnmk4NsmoS8P4TVd0T5hgx6iTpMoSYJhEFniR3j8xdtp1M3tqpTpvl3FhPnryN+qKfnz+kh3RHZEAxJQAAAABJRU5ErkJggg==</base64_image>
380.4
2.55312
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'Cc1ccc(NC(=O)COC(=O)CCCN2C(=O)c3ccccc3C2=O)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAd1klEQVR4nO3deVSV5b4H8N9mdhYwFOdU1GAtUHFI0YMkOQ+hcjKTrJNS6A3tppFpcDTXupzqFOWQmFpYimKkcG45kKGpOaaBCCIiImA4IorCFti/+8fD3bH0SLD3u/mB5/v5ay8X+3kfYX/3+8yvjpkJAORYSVcA4D8dQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCNKuXaMLF8hgkK6HGBvpCsB/tnnzqLyc2rSh48dp82ZydJSukACEEOT8+iuVlVF0NBFRfDytWkVLlohUJCUlZfv27b6+vj4+PnZ2dvV8dYTwMXXpEqWlkZsbublJV+XRzp4lL6+q13370vbtIrXIyckZOHDg/fv3icjGxqZnz54eHh7u7u7e3t4eHh7dunWzdAUQQkpJoV69yMGBKiooJYW8vaUrZL74eIqPp4kT6YMPqE8fmjtXukKP0LYtZWRUvS4ooHbt6r8KJSUlkydPvn//vp2dXefOnXNyctLT09PT06vVsa2np6eXl5enp6enp6e7u7utra3GleD/eDNm8KVLzMy3bvHEidK10cTQoVxWxsxsMPCAAWwwSFfoEcrL2d+fd+zgo0d55EjOyGBmPn+eKyvr5/qVlZWTJk0iou7du1+7do2Z9Xp9WlpaTExMaGiov7//E0888UBebGxs3N3dAwMDIyIiEhMT8/LyzK9GQw/h/fv3ly1btmTJkrt371roEo9hCIcM+eP16NF865ZcVf5MSQl/9RWvWsU5OczMW7dys2a8dGn9XPzNN98kIicnp/T09JCQkPT09Id/JicnJyEh4f333586daqbm5uV1YMTCs2bN09MTDSnGg03hGlpaWFhYW3btlX/VeN3leZmzODAQJ45k6dPf1xCOGwYl5YyMxsMPGiQdG1qp6yMt23jvXvZ2pqtrHjnTktfcN26dURka2v7008/zZ8/n4h69OhRXl5e87seuFWqpmnfvn3NqUmDC2FmZmZ4eHiPHj2M3zSurq729vZE1KtXr6ysLM2v+BjeCb/9lqdP5/h4Dg7m1aula1MLlZXs48NEvGULL1vGROzkVHVvtIzk5GQ1Crp27drqaaxrOceOHdPpdM2aNSspKTG5Mg0lhDdu3IiOjvbx8dHpdCp77du3Dw0NPXDgADMXFBR4e3urlkNycrK2l37cQvjLL5yUxKdPc2IiZ2ZK16bWVq1iIm7enNPSeNIkJuKBA6t6tlrLyMho3bo1Eb377ru7d++2sbHR6XQbN26sUyHXrl1buXLlyZMnn376aSKKjY01uT7CIbx3715cXNz48eONI06tWrUKCgpKTEw0NgyysrImT56cl5en+tB2dnZfffWVhnXYt48vX1aV4T17NCxYiPoEx8byyy/zqFGcmipdoVqbOZOJuFcvzs3lbt2YiOfO1fwi169fV+2sKVOmpKWlqTQuWbKkruW88847RPT666+vWLGCiMaPH29ylWRCWFFRceDAgeDg4BYtWqjsWVtb+/v7x8TEPHxb9/PzI6KePXtmZmZGRESonw8NDa3UaAwtNJRHjmSDgfPy+OWXNSlS1JNPMhGfOcMdOjARW6ABbyn37nGfPkzEzz/Pv/3GTZowEcfEaHgFvV4/fPhwIvL29s7NzVVpnDp1qgmfpTNnzqimWX5+vq2trY2NzZUrV0yrVX2H8PDhw2FhYe2qzQh5e3tHRUXV8B+o3hb96aefvvjiC3XbnDJliiZDpqGhPGcOf/31YxHC4mLW6djenq9cYSJu1qzehvu1ce4ct2rFRPzZZ7xmTYWr67wBA9LS0jQp22AwBAUFEVGHDh2ys7OHDBlCRP379zf5U+Tl5UVEO3bsGDduHBGtXLnStHLqL4TFxcWurq7G7Lm7uy9fvjyndp3vkpKS5557Ts3SfP7550lJSaoVMXDgwN9//93kKl29yqmpHBrKaWn8zDOcmtr4Q3jgABOxtzf/9BMT8eDB0hWqu23bWKdjO7t7R468FRysBuRu375tfsFLly4lohYtWpw6dWrGjBlE1KVLl8LCQpML/OCDD4goMDBw8+bNRDTY1N92/YVw06ZNRKTT6ebNm3fy5Mm6vt1gMFRvi549e7Znz57qW62upZWWcmIiBwayrS0PGcKhoZyZyfv389SpjT+EK1cyEf/tb/zJJ0zEr70mXSGTvPXWoREjOnfocPHixX79+hHRpEmTDOYtOYiLi9PpdFZWVgkJCeHh4SqNKSkp5pRZUFBgbW3t4OBw+fJl1bE6d+6cCeXUXwjXrFmj2t/mFLJu3TrVFlVDNX/5y19qP1taUcG7dnFQEDdvzkRMxLa2PHEiz51bNYg4cya//DJHR/P69ebUUVRwMBNxVBS/8goTNY75iYeUl5erv6yfn9/Zs2dbtWpFRB9//LHJBR4/frxp06ZE9Omnn27dulWn01lbW5s5w64888wzRLRhw4aXXnqJiJYtW2ZCIfUXwjlz5hDRRx99tHDhQn9//59//tm0cn788UfVFu3Tp092drZq5VtbW0dGRj7qLceOHVu6dEe7dlXZ0+l4yBBetYqvX2dmPnWKVWPn+nWOj2cbGybit99uZJ2pKk8/zUScnMz9+jERHzwoXSETFRYWqs7LkiVLEhMTdTqdjY2NaZ+ZnJwcteRj1qxZhw4dcnBwIKIVK1ZoUs/169cT0YgRI3bv3k1Ebm5uJhRSfyEcOnQoESUlJQ0YMICI9u/fb3JR586dM7ZFT5w4ERkZqRYTBQcH379/3/hjubm5kZGRvXr1IiIHh9atWhl69+aICK65ybB+PdvaMhEHBLDFlspZRGVlZbka2S8sZAcH1um4uFi6UqZLTk5WM3jbt29/++23iahdu3YFBQVFRUU3b97My8vLzs7OyMg4ceLEsWPHkpKSkpKS4uPj4+LiYmJioqOjV61aFRkZuXz58s6dOxPRqFGjsrKyXFxciOiNN97QqpLFxcVNmjSxsrLKzc3t0KEDER0/fryuhdRTCA0Gg2pUXL58WTUMbt68aU6B169f9/X1VW3RhISEuLi4Jk2aENHIkSOzs7NXrlw5ZMgQ47x/u3bt5s+ff/Lk9VoWfuAAt2nDROzlVTWPb74bN258+umnZnZCapaVlUVEf/HwyElPT/D1Pd/4Vx5ERkYSkaOjY58+fchUXbt2feKJJ4qKiubOnUtEY8aMqaio0LCSU6dOJaIPP/xQrX2bP39+XUuopxBeuHBBheHs2bNE1LlzZ/PLLCsrUw1x1RY9dOiQ+p6zsanan9WiRYuXXnpp9+7dJvzSs7K4Vy8m4vbt+cQJ0ytZWVmpZkTVV4+Tk9P3339venE12rZtGxGNGzdODdY999xzFrpQvTEYDJMnT34gVK1atXJ0dOzQoUO3bt169+7t7e3dv39/f39/f3//gICAwMDAoKCg4ODgkJCQsLCwkJAQnU7XpEmTW7dulZeXL1++vFjr1sH27dtV5+j48eNE5OLi8qcLUB9QTyFUFR01atTWrVuJaMKECZoUazAYli5dqu5433zzTXZ2toODQ8uWLf38/GJiYu7cuWNO4deu8bBhTMSDBh00oRP/66+/vvnmm9VnZdQKWBsbm+joaHMq9ijvvfceEb377rtqMUdERIQlrlLPioqK1H6i4cOHm1aCajHFaDrpX51er3d2diai06dPe3h4ENGuXbvqVEI9hVBN0bz99tuLFy8mk1YJ1SA2NnbMmDH379/PyclRX0ValVxWxnPn/u7k1Mba2rqWo3OXLl2Kioqq3nzq0qVLWFjYuXPnHphl0bZRxMwTJ04koi1btowZM4aI4uPjtS1fyrPPPktEJn9zrV27VvVTtK1Vda+99hoRLVq06P333yeioKCgOr29nkI4ZcoUdbMaP348EcXFxVniKjt27LDErzsqKkoN/MyaNav6wE91N2/ejImJ8ff3N3ZEnZycgoODDxw48MAEV2xsrBqgGz16tLZNo65duxJRenp6+/btiej8+fMaFi5Fr9erKbjc3FzTSrh586a9vb2VlVV+fr62dTP6+eefVSfrwoULalNFnVph9RRCtUgvNTVVDVWdPXvWEldZtmwZES1YsEDzkrdt26Y6df7+/kVFRcZ/Ly0tTUxMDAwMNJ4O1KRJk8DAwMTExEfFlZn37dunGjB9+vS5odEn49atW6rzU1hYSETNmzfXam2trD179hCRl5eXOYWojqU5M401MxgMTz75JBHt379frYbbtGlT7d9eHyEsKSmxsrKys7O7cuWK+qBo3hJT1DjV119/bYnCjxw5opa8urm5nTlzRg23tGzZUmXP2trax8cnOjq6lguszp8/37t37/f69+eOHbnug9oPU1/GvXr1+uSTT4hoSPXN9Y3ZvHnzVEfXnELi4+OJyNvbW6taPezdd991cXGJjY1Vv/8ePXrU/r31EcJffvlFfevv27ePiAYOHGihC7m5uRGR5aYBsrOzVbvU2tra2OUbNGjQZ599ZsIK+hs3bpSPGVO1zPq778ypWF5envoCsrKyUu3h119/3ZwCGw71Nz106JA5hej1eicnJyLSai34w27fvq0GRf/+97+r4bfarwuvjxCqBWszZ8787LPPiGj27NmWuIrxfqvX6y1RPjNnZGQYBzmJyNHRMdPMXbPl5RwSUrWKp+6DmWon9LBhw4wdUWPd/P39LdTcqE9ZWWVDh67v2XOY+f+XWbNmaT4i+LCjR4+q+erJkyfX/l31EUK1YO2f//znq6++StqtGHrA4cOHze881Mw4v6K+7aZMmaJNuVFRbGVVtfD60T3JP5SW8rZtoa+8Yoxc06ZNp0+f/v3335eXl8fGxqrPwahRo2415COeauHjj5mIX3xRg6KSk5PVSLWZC8FrkJ+frxbNvPrqq3V6Y308iyIlJYWIPD09U1NT1QtLXMWihSvqP+Ll5XX37l0trzVvHsXFUdOmtGEDjRlD5eX//scMBjp4kObNo06dKDCwdU5OeXm56ogWFhZu2rRp7NixNjY206ZN27t3r4uLy+7du4cNG5abm6tNJSV8/z0R0bhxGhTl6+vbtWvX3Nxc1TnS3J07d8aOHVtQUODr67t69eq6vdlC3wpGBoNBjV6oBWs6nc7MBWuPohYlffTRR5YoXDHOr4wcOZKIduzYoWXpp05xp078zjvMzD/+yOHhvHZt1SErKSm8cCF37Fi1Ap2IBwy4unp1DXsps7Ozn3rqKSJq167d0aNHtaxnfblzh+3t2dq6ap29+cLCwogoJCREm+KqqaiomDBhAhH17t3bhI+3xUOYnZ1NRK6urqpD1aVLFwtdSC0Q32PJU2I6depERJmZmWqYtJY7kuugsJArK3njRv6v/+KcHI6P50mTePv2P7LXrRu/9x7XboLn9u3bY8eOJSIHB4c6jZjXLCcnJykpSavSahAfz0Q8dKhmBRoPpNB81OCNN94gImdnZ9NOA7R4CNWCtdGjR6uVjVotWHuAwWBQ+5vM2Shds6KiIjUPqybiWrZsaanehZ8f37tX9XryZM7M5E6dOCiIk5LqepZ2eXm5aiDodDozV7GVlZUlJiYGBQWp8eHBgwfXMBGqib/9jYn4f/5HyzJVD0KTnYRGakWOnZ2dyecAWjaEubm5/v7+RDRr1ixmzsnJyVBHnWvNuEDcEoUrqmc/aNAgNX08VMOv6AdUn+KbPZtPnzbzHHvjip9p06aVqkOBa62ysnLfvn2zZs1S33FUbRZk1KhRmi+GNjIYuH17JtL4sLh//OMfRPT8889rVeCuXbtMOzGxOouEsKioKCYmZvz48Wo+zcXFpWXLlnv37rXEtRQLLVirrnjt2vNDh+5fvPh/P/+8p5PTnDlzLHWloCBW01kGAw8b9sdd0Qw//PCD6pn7+PhcvXq1Nm85c+ZMRERE9WcSubu7R0ZGXr58+eDBg2qbrIeHh/ZtcmZmPnGCibhTJ42fo5Gfn68OpFDjxps3b160aNHWrVszMjJMmAU5c+aM+m4ys5WhZQjLysri4+MDAgKMQ+dqDdewYcOIyNbWdt26dRperjq1QHzhwoUWKp+Z+dVXmYhXruSXXmKi8rVrLXWhCxd47Fh+6y2eOJE3b9aq1JSUFLVmsHv37jW0R/Lz86Oionx8fIzZ69SpU2ho6KlTp6r/WF5enlqk7uzsbPIhCTW4dYu/+cYi54yoIw+//PJLZlYn2Sq2trbu7u5BQUGRkZGJiYl/uvri2rVr3bt3J6LAwEAzOyYahFBtmQsNDW3Tpo2xxaKGzlVz5YHdA5ZY06gWiFtowVqV/v2ZiH/+mb28mIiPHLHgtZj52jXWera9oKCgf//+ROTo6PjAke+3bt1SjRfjbkxHR8egoKCkpKRHfcJu376tjvqzt7fX8DcfHs6qtXjnDgcEaFXqH7744gsi8vPzY+Zdu3YtWbJk4sSJau37A7p06TJhwoTFixfHxcWdPXu2+q2ytLR08ODBZN6JiUZmhTAtLe1RLZaHf3j9+vVqlfPYsWPNP8Hu7t27mzZteu3/TxMzLhA3s9hHqqjgpk1Zp+OrV9nOjq2s2LzNilKqHx65atUq43BLs2bN1F/QwcFh/PjxcXFxtRlCrKioUAODauBHk5Gq8HAeM4Z37rRUCI8cOWJtbd2yZUtHR0cfH5/Q0NDo6OgDBw4UFhbu379/xYoVs2fPHjhwoFqvX13Tpk1/+OEHZjYYDNOnTyeirl27ajIQaEoIa9liedjBgwfV3dLLy+uSSedGGDeqG4/uPnnyZD0sWOP0dCbirl05JYWJ2KTzfBqIysrKBQsWqN+e8b5nZWU1YsSIL7/80oSxlujoaFXO888/f8+8HuydOxwezsnJ7OfHV69qH8LY2NjmzZsTkfHzY2RnZ+fl5RUUFPThhx/u2bPnypUrBQUFiYmJERERgYGB7u7uOp1OLT1Ve2JbtGih1Zd+HUJ4+/btdevWDR8+3PiINmdn55CQkIMHD9b+KzArK0udvNS+ffsTdTk34tixY/PmzTMe3a3T6YYMGbJq1arCwsJXXnmFiDp27Fj70upsyxYm4kmTeONGJmLzDm5sCMLDw9UgZ+/evSMiIswcX9m1a5ca+Bk8eLAJa9kLCjgqin18ePhwDg/no0f5u+944UIOCGC9XpuxmfLycjVZT0QvvvhiSUlJQUFBUlJSVFRUUFCQu7t79UX5xgZ59Vvl77//XllZuWXLFnVi4r/+9S8NqsXMdQrhxYsX1Z+tTi2Wh924cUN1jps1a/ani06qn5imqA9NVlbWiRMnQkNDjc9SNfn4g1pZtIiJ+L33eMECJmKTjpdsaH755Rdzzrx7QGpqapcuXYioW7du//Zpmw8rLuYNG3jEiKqVs0Ts7MxhYaxW+AQEcEAAz5vHPj5s5v7k/Px8tc3P3t4+Kirq3/5MSUnJkSNHoqOj58yZM3ToUOMmteq3yvbt26sIrNb0QNe6NUfnz59vWovlAXq9fubMmfToSeSHN6o7OzurjeppaWmLFi1Sf2/Fy8srICDAnPPw/9y4cUzE27bxs88yESckWPBajdbly5fVeZYtWrSo4TwrvV7/ww+pf/1r1RNfiNjBgadO5e3bWa/nPXuqTri7cIHXrGFXVybili1NHylNTk5WDahOnTodPny49m9UzdHIyEh1qzQ2ADXfqyn5aLR/e2zEb7/9Nm7cOOOT0ownpqmzW6p3RDt27BgaGmrCifqmiIjgoUM5K4vbtmUivnixPi7aCJWWlr7wwguqt/nwA1JU48XFxaVp0zbNmhmsrNjHh6OiuIZHMBcV8YwZVVkdPZoLCupQGYPBEBkZqdqZfn5+Jj81Sblz587GjRtXr16t+R4x4ecTfvvttw8cG6GWmBqflFZQUPDA0Hnr1q1rHjq3iOvXOS6OExI4PZ0TEjSeQn68PDwjlZ6evnjx4urTAJ6enqtXX8rLq22ZcXHs7MxE3Lo113I2pLi4OCAgQLW2wsLCGvJhH/JP6j169Kjx2Ai1R3bTpk2FhYVJSUnVh87t7e3N6YiapaCA/fw4IYE3bmR/f67/CjRCGzZsUDNSanOj0rlz57CwsNOnT5tQYEEBjx5ddUtcsGDHjRs3avjhkydPqpkzZ2fnnTt3mvqfqCfyIWTm/Pz8vn37EpGTk9PcuXNVi0X92dS8f1RU1HWtNrSYYNkyNi75Xb6ct28Xq0mjsnfvXhsbm9atW6vGS2JiovkNuZgY7tv3Nzs7u7Zt2yY8omceExOjmlf9+vW7cOGCmVesBw0ihFxt342Ru7t7REREg/glhoTwb79Vvd64sZE+6khERkbGunXryjR99Hx29gX1zCadThccHFx94Udpaens2bPV5ycoKMjMSct601BCyMx6vd7X17d169bTpk0zrcViKR9//McazrAwrpfddFADg8EQHR2tbnddunRRS/AuXryoxmYdHBzWN6qn2+mYmRoSZjZOSzQUxcX017/S2LF06xZlZtKmTdTQavgfKSMjY+bMmcePH9fpdJ6enufPn79792737t2/++47i55yorkGF8IGqrycUlPJwYHc3ZHAhqOiosLNze3ixYvW1taVlZVEdOTIkUGDBknXq27q46Cnx4GtLXl7k4cHEtig2NjYqP1Erq6u6mRR4wxzI4IQQuOmHuyxZs0atbZRr9dL16jOEEJo3NQO8rKyMuML6RrVGUIIjZu6E+r1euML6RrVGUIIjRvuhADC1A2wrKwMd0IAGcbsNd47oY10BQDM8kbbtv89eLDO1nZ6hw6f9OvXGGeQEEJo3J4sLaXDh2nkSCopoZMnqbhYukZ1huYoNHIODkREev0fLxobhBAaOXXSdFnZHy8aG4QQGjnjDVCFEHdCgPpmzB6aowAyVPbQHAUQgzshgLAWLcjRkZo3pzZtyMODXF2lK1Rn2NQLjV95OcXHU2EhDR9OffpI16bOcCeExu+FF6iignx9KTKSdu6Urk2dIYTQyGVnk709zZhBffvSp5/S6tXSFaozhBAauevX6f9PqaUnnqCiItHamAIhhEauRw9KT696nZJCTz0lWhtTYAE3NHLOzjR2LL34IvXqRYcOUXS0dIXqDKOj8Fi4fZuuXaOuXemhZ302fAghgDD0CQGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYQhhADCEEIAYQghgDCEEEAYQgggDCEEEIYQAghDCAGEIYQAwhBCAGEIIYAwhBBAGEIIIAwhBBCGEAIIQwgBhCGEAMIQQgBhCCGAMIQQQBhCCCAMIQQQhhACCEMIAYT9HylxMVYLqDE7AAACAnpUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJABYjkgbmBkY0gA0ozMbA4aQJqZhc0hA0QzMyIxIDLsDGABJqAWiAAHhGaCGMHEhOBjl0en2SHyzBjq8TgFl+MwzUBXyc3AyMDIlMHExJzAzJLBxMKqwMqmwMauwcTGwcDBycDJpcDFrcHExcPAw8vAy8fAx8/AL6AgIKjBJCCkICScwSQskiAimsEkKpYgJp7BJC6hICGpwcQilSAlncEkzZggwa8gLpTgxAy0jI1RWoqFmYlVgF9CXIhNWERUTFxIPIoRGMoMsOCf0Wh0UH5f0n4QJ+OF9MEp9w/tA7HbZ4sfXKbTYw9ihzMxHrx4+QyYzZdz98ADHUUwe53lhgOzbCeC2fwLuw+cZNSwA7EvWE05EPRkOdjMmLs2B477aYPV2EQ83/8tfBbY/JdWp/aldwaA1c+3Zdy34+s1sJqW5fb2mREuYL2L/Lgc1EXawOof1Ac7ZB+aCxYP/DTNodHMCsw+OG2fg33sSTB72r/9DmJLXA6A2IZTnjgcZtEAi696xul44VIOmB2WJ+m48EQ82N7CSEHHaYcugO3dV/nZYY7mZzA7LeuKg2OfI5i9On+Jw1x/MzD7i0S7Q7csRM0F1mcHzOdEgM2UmMN50O3rGjBbDAC+TIo3u98XSAAAAop6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VVtu3DAM/N9T6AIr8E3xM8kGRVFkF2jT3qH/vT9KykitAELtiLCNCSVyZriXVtf327fff9q/i26XS2vwn7+IaL8YAC5vrR7a8+uXr/f28v70/PHl5fHz/v6j0Wj5Mu/P2Kf3x9vHF2wv7YrYUc042hX6GOooDTrM6/xnKmh0F6EDyQMMaYPkAymu4rlFh1BE3gClgKODMTgm0ABou7cW0HpgiOTnbhQauAFau7erdgUHqYzIYrE7o1dG6WwsWBnRBCw2wNEeBTQm9CwbOyOa6gYZlZJ6FgtYZzML9N0hc8NHZRrg2cPZSkDR3TFxEpSAkBiVi4BNdudMJh6FRDLK52ymB/uumVj8QBI5TOfunifdI4sgyt4gyKScDIfvmMRiiLMOsaoIOzFJ2A5ZFEl3dPCZ08mzuh2yONLspwZw5VRn1LFDFkmJjBjk7codnBR3HGGR5B2FIWbtpsnsriJKI7XRs+CRbUhkkMJWSlQcRdcRwl4U4VDeUUQ0gTCE2YqhPATv6iGepzQYhqXiEZHd2gGLIMtEHqMSuRr4Fqizl8jDuGTkSLgVHFm2UjqV2u3YmvfFTAdlK8cgOCaHWNptBx2Hz9PeBoeHFIl3/Lzeb5/m0zGxnh/32zmx6qZzKkkuPkeP1DoHTN16jhHMZeewwFx+jgTKNU7jY77G6W6stZoYZ8DFq1QBafEkzi+8eA9nkMVjOIMuXsIZbPEMzuCLN6gCjsUDOL/EonWpQKumpQLhol2pQLSIVCoQL2qUCiSL7LAC6aIvmsEWIWXnUyaLYKQCjUUXUuHcu5pMa+WTw9ouVoWseqj3j1+/fL78BTVEW9aSH6RKAAABUXpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nC2Ru43DQAxEW7nQBlYE/x8IFym3i1AbLv7I9SnR6onkDGevm+77fryux+/7eb2/r+t68T7dcs8jF8/HTT+fx0EEZO7rQMi0IF3nURCqrMMk0Yk30zCNRYBlRE0S0AWHOCIPcSgq1YXgXFaDDAwDtYtI1KuJgrgodRG54j9yYcp1EAhRmzkPhlbBqXIvihlFkBiS2xWS2rjqY2nl1DGKa21G7Nym21iUxDqx90m36YweF70jtzrhRuyUIeuUHqu+XbCwrVMhKHALBkcLrdPaltWUWAj5BlUp6xDAYGufAaSCNV1uvVdPTmiJNtmo2LDaeYHlN6pe3KSGYKpMUp3qaEXnmk4NsmoS8P4TVd0T5hgx6iTpMoSYJhEFniR3j8xdtp1M3tqpTpvl3FhPnryN+qKfnz+kh3RHZEAxJQAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1c(C(=O)O)nnn1-c1ccc([N+](=O)[O-])cc1
1,990,461
248.20
248.198
1.18212
[ { "content": "What is the molar mass of the substance with SMILES 'Cc1c(C(=O)O)nnn1-c1ccc([N+](=O)[O-])cc1'?", "role": "user" }, { "content": "248.20", "role": "assistant" } ]
Solubility_Prediction
COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1
1,196,382
{"log_s": -4.67, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 414.28900000000004, "logp": 4.85, "oh_groups": 0, "nh_groups": 1, "cooh_groups": 0, "aromatic_rings": 2}}
414.289
4.8482
[ { "content": "Determine the solubility prediction of the chemical structure 'COC(=O)c1coc(CN(CCC(C)C)C(=O)Nc2cccc(Cl)c2Cl)n1'.", "role": "user" }, { "content": "{\"log_s\": -4.67, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 414.28900000000004, \"logp\": 4.85, \"oh_groups\": 0, \"nh_groups\": 1, \"cooh_groups\": 0, \"aromatic_rings\": 2}}", "role": "assistant" } ]
Drug_Likeness_Assessment
C1=C(c2ccccc2)C(c2ccc(OCCN3CCCC3)cc2)Oc2ccccc21
131,205
{"molecular_weight": 397.52, "logp": 5.84, "hydrogen_bond_donors": 0, "hydrogen_bond_acceptors": 3, "rotatable_bonds": 6, "topological_polar_surface_area": 21.7, "lipinski_violations": ["LogP>5"], "violation_count": 1, "drug_like": true, "assessment": "Drug-like"}
397.518
5.8355
[ { "content": "What is the drug likeness assessment for the compound represented by 'C1=C(c2ccccc2)C(c2ccc(OCCN3CCCC3)cc2)Oc2ccccc21'?", "role": "user" }, { "content": "{\"molecular_weight\": 397.52, \"logp\": 5.84, \"hydrogen_bond_donors\": 0, \"hydrogen_bond_acceptors\": 3, \"rotatable_bonds\": 6, \"topological_polar_surface_area\": 21.7, \"lipinski_violations\": [\"LogP>5\"], \"violation_count\": 1, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
IUPAC_Name_Generation
C1=C(c2ccccc2)C(c2ccc(OCCN3CCCC3)cc2)Oc2ccccc21
131,205
1-[2-[4-(3-phenyl-2H-chromen-2-yl)phenoxy]ethyl]pyrrolidine
397.518
5.8355
[ { "content": "Generate the IUPAC nomenclature for the chemical with structure 'C1=C(c2ccccc2)C(c2ccc(OCCN3CCCC3)cc2)Oc2ccccc21'.", "role": "user" }, { "content": "1-[2-[4-(3-phenyl-2H-chromen-2-yl)phenoxy]ethyl]pyrrolidine", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1c(C)c2cc(Cl)c(OC(=O)CCNC(=O)OCc3ccccc3)cc2oc1=O
1,978,414
429.86
429.856
4.28514
[ { "content": "What is the molar mass of the substance with SMILES 'Cc1c(C)c2cc(Cl)c(OC(=O)CCNC(=O)OCc3ccccc3)cc2oc1=O'?", "role": "user" }, { "content": "429.86", "role": "assistant" } ]
Molecule_Visualization
N#CC(C(N)=O)=C(S)S
23,762
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXxM5/4H8M8sWSaymIhsEruslVi7oNRSpa2L0kWVquIqt7I0Quxaaeyiqlwt9dLFvW3Rqqu0pfjRoCVp0ywTW8geWSeZTCaznN8fk8aSEyQm88zM+b5f/ojJ4/gUnz5nzjnzPCKO40AIYUfMOgAhQkclJIQxKiEhjFEJCWGMSkgIY1RCQhijEhLCGJWQEMaohIQwRiUkhDEqISGMUQkJYYxKSAhjVEJCGKMSEsIYlZAQxqiEhDBGJSSEMSohIYxRCQlhjEpICGNUQkIYoxISwhiVkBDGqISEMEYlJIQxKiEhjElZBxC02tqsior9ADw8Zkql7XjHqFTnqqp+AeDtHdv4f5o6XUlNze9abQEgtrf3c3AItLf3a+3YxLSohCzV1v6VlxcHoG3bfzRVwqqqk8YxXl7RIpF9w+tabUFOTkRFxQGO0902XOTk1NfbO1Yuf7FVkxMTohJaJa22KDNzQF1dNgCp1N3RMVgicdVorms0WTU1v+t0N1kHJM1AJbRK+fnLjA309X3PyytGLHY0vq7TlVZUfOvmNoplONJMVEJrxJWXfw3A1XWUj8+S278hlbbz8HiTUSrSQnR11Pro9VV6fTkAmSyUdRZiAlRC6yMWtxGJpABqai6wzkJMgEpofUQiiZNTXwBVVSdycqIMhhrWichDofeEFiEnJ1IsduH9lkaT1fhFX9+Vly8/x3H64uLE0tJP5fIX27V73dl5UCvHJK1CxHEc6wzCVVGx/8qVCQ84uE8fze33CSsqvrtxY65Wm9fwiqNjkIfHjPbt5zZcLCVWgUrIUkMJfX1X2tn58I5RKo+Wl+9DoxIC4Di9UvljWdnnFRXfNpyUymThgYG/SCTyVs5OTIZORy2CXD7R0TGE91s6XbmxhI2JRBI3t9FubqMNhuqKiu8KC9eo1alq9R83brzdpcvnrZmXmBJdmLEFYrGzu/vkoKBzbdr0B1Be/l+droR1KPKgqIS2QyyWtW8/FwDH6TSaK6zjkAdFJbQpIpHE+IXBUMs2CXlwVEKbUln5AwBA5OjYg3EU8sCohNaH47SZmY8VFMRrNJcaXjQYagoKVpaVfQnAxWWonZ0vu4CkeejqqPWpqjqmUp1Xqc7n5y+xs/O2s/PjuDqN5orBoAJgZ+fVqdN21hlJM1AJWRKLnR0cugG46wbg7aRSuXEMIDK+0qbNY5067Sgr+7Kq6pRWW6jVFhpfF4kc5PIX/fxW29l1aO3kxIToZr0V0+uVavWfOt1NgJNKvZ2cwsRiZ9ahSLNRCQlhjC7M2Ka6upzs7KmlpbtZByH3RyW0TdXVp0pLP8vLW6jXK1lnIfdBJbRN7u6vOjsP0mqLCgsTWGch90EltFUif//NgLioaOPttxOJBaIS2iwnpz7t2k3luLrc3FjWWci9UAltWYcOqyUS14qKb5XKH1lnIU2iEtoyOzsvb+84ADk5UXcu1E0sCJXQxnl5RTs49KitTS8p+TfrLIQfldDGiUT2fn5rAOTlLdXpSlnHITyohLavbdvxrq4j9frygoKVrLMQHvTYmiDU1qanp4cDXHBwskzWk3UccgeaCQXB0THEw2MWx+lzcqJYZyF3oxIKha/ve1Jpu6qqYxUVB1lnIXegEgqFVOru47MMQG5uNMdpWMcht1AJBaR9+zkyWU+N5kpR0WbWWcgtVEIBEYmk/v6bABQWrtJqC1jHIfWohMLi4jLczW2MXl+Vn7+UdRZSj0ooOP7+m0Qih5KST1Wq31hnIQCVUIAcHLp5es4DDDk5EQDdJWaPSihEPj5L7ex8VKqksrL/sM5CqISCJJG4+Pq+ByAvL9a4WilhiEooUB4eb7Rp07+uLrewcB3rLEJHJRQssZ/fRonEf/v24zdu3GAdRtCohMLl7Dxo06bB7733fwsWLGCdRdDoUxSClpubGxQUpFKpTp48OXjwYNZxBIpmQkHz8/OLiYkBEBkZaTAYWMcRKJoJhU6tVgcHB1+/fv2TTz558803WccRIiohwd69e1999VVPT8+srCw3NzfWcQSHTkcJJk2aNHjw4OLi4vj4eNZZhIhmQgIAycnJ/fr1k0qlqampAQEBrOMIC82EBAB69+79xhtv1NXVGa/TEHOimZDUKy4uDggIqKys/OGHH0aNGsU6joDQTEjqeXp6Llq0CEB0dLRWq2UdR0CohOSWyMjIgICAjIyMbdu2sc4iIHQ6Su5w8ODBsWPHyuXyrKwsDw8P1nEEQbJixQrWGYgFCQwMPHfu3F9//aVSqZ577jnWcUyA4zQ1NRdras7V1mbo9RVisUwsdmr4rsFQU1LycU3NbxKJi1TK/z8drTa/rOyzmprf7O39JBIXkyekmZDcLSMjIzw83GAwXLx4MSwsjHWcljMYVHl5S0pLd+r1Vbe9LHZ2fqJ9+7fc3ScD0Grz//yzA4BOnXZ6eEznPU5V1cmsrKcABAaecnZ+0uQ56T0huVtwcPDs2bP1en1UlBUv120w1GRlDSsuTtTrq0QiB5ks1Nl5kL19RwDV1WfU6jTWAW+Rsg5ALNHKlSv37t17/PjxAwcOjB8/nnWcligq2qRSnQfg4TGjQ4eEhlNNrbawomK/s7MFfWSEZkLCQy6XGy8WxMTE1NbWso7TEuXlewHIZGGdOv379jd7dnbe7dvPkckeYRftblRCwm/27NlhYWFXr17dtGkT6ywtodFcBSCThVn+P3JLz0dYkUgkxvq9//77+fn5rOM0m0TiCkCtTrX8ZR2phKRJw4YNGzduXHV19eLFi1lnaTYnpz4A1Oo/btx422BQs45zL3SLgtzL1atXQ0NDNRrNRx99FBQUZNqDh4dLpFK9aY/p4NDF3r4TgOrqM1lZQzlOC0AqdZfLX2nXbmqbNo/dNb7hFoWz80AHhx68x9Tpiiorf0Cr3aKgEgrdnj17PD097/HE9pQpU77//vvKykqT/9YXL/oZDLmmPaav73s+PkuMX1dW/u/69Zm3b30jk/X08Jjh4TFTLJYZX2ko4YNopRLSLQpBKy4unjdvXmVl5fnz5/v37994gF6vT01Nrays7NGjh6+vr2l/d0dHuUTSzbTHNE6DRm5uz/XseV2pPFJauqey8pDBUKtWp+bkRJSU7AgIOC6Vet7+C+Xyl9u04fkTAKDRXL158yPT5rwdlVDQFi1aVFlZOWbMGN4GAti5c+cff/zh7++fkpLi5OTEO8aSiUR2bm5j3NzG6PWVFRUHioo2qtWpanVadvb07t0P3T7S1XXkPZ6YadUS0oUZ4UpOTt69e7e9vf369et5ByiVyuXLlwPYsGGDNTbwdhKJW7t204KDfzPepq+sPKzRXGYdqh6VULgiIyP1ev28efOaWs9i5cqVhYWFAwcOnDhxopmztRKRyMHbOxYAwNXWZjBO8zcqoUD95z//OXXqlKen55IlS3gHXL58eevWrWKxODExUSQSmTle62m4JGMw1LBN0oBKKERqtXrhwoUA4uPjm1rjMCIiQqPRzJgxo1+/fuZN17qUyp+NXzg4dGebpAGVUIjWrl17/fp14+JOvAN+/vnnw4cPu7q6rly50szZTOXKlfFFRevq6q7f9pqhtPTToqJ1ABwdA5ycerPKdhe6Oio4ubm569atA5CYmCiRSBoP0Ol0kZGRAJYvX+7t7W3ufKagVqdVVHxbUfFtbu4CB4eudnYdRCJxba3CeM9QLHbq1GmX5cxAVELBiY2NValUL7/8clM7wGzZsiUtLa179+5z5841czZTsbf39fffUl6+t7o6SaO5otFc+fs7IheXof7+G2Wy8L9fkUil7XHbe8XGxGJ74xiRyL410tITM8KSlJQ0cOBAR0fH9PT0zp07Nx5QVlbWo0ePsrKyQ4cO2cDyFjpdcU3NRa32Jsdp7ew8nZx629k96PMxZkMzoYAYDIaIiAiO42JjY3kbCGDRokVlZWUjRoywgQYCkEo9XV0tfQ1VmgkFZNeuXW+++aafn19mZmabNm0aD0hLS+vVqxeAlJSU0NBQswcUKEt5b0paW1VVlfGW4Nq1a3kbCCAqKkqn0/3rX/+iBpoTlVAoVq1aVVBQ8MQTT7zyyiu8A7755puffvrJ3d29qdv3pJXQ6aggXLlyJTQ0VKvVJiUlPfroo40H1NbWhoSEXLt2bdu2bbNnzzZ/QiGjmVAQoqOjNRrNtGnTeBsIYP369deuXQsNDZ0xY4aZsxGaCW3f8ePHhw8f7uLiolAofHx8Gg/Iy8sLCgqqrq7+8ccfn376afMnFDiaCW2cXq83Pv6yZMkS3gYCiIuLq66unjBhAjWQCZoJbdyWLVvmzZvXtWvX9PR0BweHxgPOnj07YMAAe3v7v/76q3t3S3mmWVBoJrRl5eXlxiewN27cyNtAjuMiIyM5jouJiaEGskIltGVLly4tLS0dNmzY2LFjeQfs2bPn3Llz3t7esbGxZs5GGtDpqM1KT08PDw/nOC45Oblnz56NB1RXVwcGBubn5+/Zs2fKlCnmT0iMaCa0WdHR0Tqd7q233uJtIICEhIT8/Py+fftOnjzZzNnI7WgmtE3ffvvt+PHj77Hh7rVr10JCQjQaTVJS0mOP3b0kLjEnmgltUF1dnfE93rvvvtvUltfG7ZamTJlCDWSOZkIbtHr16ri4uJCQkJSUFDs7u8YDfvnll2HDhjk7OysUCpMv6Uuai2ZCW1NUVJSQkABg48aNvA1suH0fFxdHDbQEVEJbExcXp1Qqx44d+8wzz/AO2LFjx59//tmlS5fo6GgzZyO86HTUply8eLF///5SqTQ1NZV3Sd/y8vKAgICSkpJ9+/a98MIL5k9IGqOZ0HYYH38xGAxRUVH3WFS7pKRk6NCh1EDLQTOh7fjiiy9ee+01Ly8vhULBu6RvRkZGeHi4wWC4cOFCeHh44wGECZoJbYRarV60aBGAhISEphbVjo6O1mq1s2bNogZaFo7YhGXLlgHo3bu3Xq/nHfD9998DkMvlN2/eNHM2cm90OmoLcnJygoKC1Gr1yZMnn3ySZyvZurq6sLAwhUKRmJgYERFh/oTkHuh01BbExMTU1NRMmjSJt4EAPvjgA4VCERQUNGfOHDNnI/dFM6HVO3PmzJNPPuno6JiRkdGpU6fGA4qLiwMCAiorKw8fPjx69GjzJyT3RjOhdTMYDMZP5S5cuJC3gQAWL15cWVn5/PPPUwMtE82E1u3jjz+eNWuWn5+fQqHg3dE6JSWlX79+Eonkzz//DAwMNH9Ccl80E1qxqqoq40XR9evXN7WnvHFP7LfffpsaaLGohFbMuKf8gAEDXnrpJd4B//3vf0+ePHmPPbGJJaDTUWvVsKj2uXPneHe0VqvVISEh2dnZO3bsmDlzpvkTkgdEM6G1ioyM1Gg006dPb2pP+bVr12ZnZ/fq1Wv69OlmzkaahWZCq/Tzzz8//fTT915UOzAwUKVSnThxYsiQIeZPSB4czYTWR6fTRUVFAVi2bFlTi2ob98R+6aWXqIGWj2ZC65OYmBgVFdWtW7e0tDTeJX3vuyc2sSitu112t26oqTHlAX19s/PznzDlEYFnn312586dpj1m6+E47tNPPwWwadMm3gY23L6fP38+NdAqNK+EX38NAGIxxo2DRMIzIDUVmZlwdMSYMQBQUAC1+uFD3mJvryssLDTlEYHy8nLTHrBViUSipKSkr7/+eozxj7iR3bt3nz9/vkOHDrSotrVo3umoSFT/xQcf4O23eQbExWH1avj4ID8fAAoLYdqzXZFIz3HFpjwiIJPJ2rZta9pjslJVVRUYGFhQUPDFF1+8+uqrrOOQB9LC09HFi/HCC+jQ4T7DvL1bdvh7kAD8lyIIgPj4eOOe2JMmTWKdhTyollwdFYtRVYWoKJOHIQ/l6tWriYmJYrE4MTFR1HDSQixeS0po3Dvk669x6JCJ05CHYdwT+/XXX29qT2ximVpSwsGD8eyzABARYeKLn6TFjh8//t1337m4uMTHx7POQpqnhTfrN2+GgwOuXgX9jVuChkW1Fy9e3NTte2KxWljC7t0xdy4ArF+P9HRTBiItsG3bttTU1K5duxqrSKxLy2/WL1uGL79EYSHeegsnToD3QkBKCgyGlodrTCzWGAxpJjxgbm5uTU2NwWAAIJVKrXHLaKVSuXz5cgAbNmzgvX1PLF2z1mYDOIDbubP+p599Vv/Krl31ryxcyAGcj0/9T2Wy+gGm+tGx4yXWf2CWyN3d3bgpL7FGD/XY2uTJ2LkTJ04gNhZjx8Ld/e4BvXub+IkZDw/Hdu16m/CAubm5Op2utrYWVjsTVldXX7p0SSKRKJVKV1dX1nFIsz1UCUUibN2KXr1QUoKVK7F5890Dzpx5mMPz8gMumvyg1m7IkCGnTp1atWrV2rVrWWchzfawH2UKCYHxWsBHHyE11QSBSAsY79Fv3rw5KyuLdRbSbCb4POGyZfD3h06HhQsf/mCkJXr37j1t2rS6urr58+ezzkKazQQldHbGpk0AcPgwjh9/+OORljDuA3Pw4MEjR46wzkKaxzSfrJ8wAc89BwDnz5vkeKTZPD09jbsyGbdeYh2HNIPJlrfYvBmOjqY6GGmJyMjIgICAjIyM7du3s85CmsFkJezWDfQhUrbs7e3XrVsHYPny5SUlJazjkAfVkg/17twJ3kX0NBqEhSEr69aHetesgWnPjBwdy2trt5ryiEBQUNDEiRNNe0yGRo0adfTo0blz53744Yess5AH0roLPTk5mfhmfceOl2/c6GHKIwLjx4/fv3+/aY/JUMOe2BcvXgwLC2Mdh9xf6y70tHAh6upMeUCZzF2tXmzKIwKhoaGmPSBbwcHBs2fP3rJlS1RU1LFjx1jHIfdHSx7aoPLy8oCAgJKSkgMHDowbN451HHIftPivDZLL5cbPVbzzzjvGx2KJJaMS2qa33nqrZ8+exlVnWGch90Gnozbr+PHjw4cPd3Z2VigUvr6+rOOQJtFMaLOGDRs2bty46urqxYtNfCmLmBbNhLbs6tWrISEhWq02KSmJlmCzWDQT2jLjqjMNu1OwjkP40Uxo4xoWxv/8888nT57MOg7hQTOhjWtYiXTBggUqlYp1HMKDSmj7jGty5+XlrVmzhnUWwoNORwWBtg21ZDQTCoJxnya1Wr1gwQLWWcjdaCYUiry8vMDAQJVKdeLECdrI3qLQTCgUDXv3RkZG6vV61nHILTQTCoharQ4JCcnOzt6xY8fMmTNZxyH1qITC8tVXX7388suenp4KhcJmNgm3dnQ6KiwvvfTSkCFDiouLV61axToLqUczoeCkpKT069dPLBanpqYGBgayjkNoJhSeXr16TZ8+XavVvvPOO6yzEIBmQmEqLi4ODAysqKg4fPjw6NGjWccROpoJhcjT03PJkiWg5botA5VQoN5+++3AwMDMzMytW028jitpLjodFa5Dhw6NGTOmbdu2WVlZ7du3Zx1HuGgmFK7nn39+9OjRFRUVy5YtY51F0GgmFLTMzMywsDCDwXDhwoXw8HDWcQSKZkJBCwoKmjNnjl6vj4qKYp1FuGgmFLqG5bq/+eabCRMmsI4jRDQTCp1cLn/33XcBzJ8/n5brZoJKSDBr1qzw8PBr165t3LiRdRYhotNRAgC//PLLsGHDnJycMjMz/f39WccRFpoJCQAMHTr0hRdeqKmpMT5JQ8yJZkJS79q1ayEhIRqN5tSpU4MGDWIdR0BoJiT1unTpEh0dzXGccdFu1nEEhGZCckt1dXVgYGB+fv6ePXumTJnCOo5Q0ExIbnF2dk5ISAAQGxurVCpZxxEKyYoVK1hnIBYkLCzsyJEjCoVCIpEMGzaMdZyWUCjwyy9IT4fBAC8v/jHffIO0NNjZoV07ANDrcegQFArY2UEu5/8lSiWOHoVCgbZt4exs0sQcIXdKSkoSiUQODg6XLl1inaUl1q3jAA7gfHy4igr+MVIpB3Dr19f/tKqq/pds2tTkYS9erB/z/fcmDkyno+Rujz/++GuvvabRaBYuXMg6y0MpKIBVnOdRCQmPhIQEZ2fnffv2/fTTT6yztJBIBABbtiA5mXWU+6ESEh4dOnSIiYkBEBUVpdPpWMdpCbkcI0ZAr8esWbDwBcephISfRCIBkJaW9sknn7DO0kKrV0Msxu+/Y/t21lHuiUpIeBQVFa1bt8749cKFC69cucI2T8v07YupUwFg0SLk57NO0zQqIeGxYMECpVI5fvz44ODgysrKF198kXWiFlq9Gm5uUCoRE8M6StOkrAMQi3PhwoXPPvvM3t5+zZo1qampEyZMSE5OXr9+/ZgxY6RSk/2DEYvbGgztTHU0o/bt4ep6xyteXli6FDEx2LsX06Zh5Mj7HOGHH1Bayv+toiLThORh4lsexMoZDAbj09txcXHGV0JCQlrjH96TT35pvO1mwh8ffcRxf98ndHev/y/SarnwcA7gunfn1Or6F5u6T/ggP0x+n5BmQnKHzz///PTp015eXg03CQ8cODBy5Mj8/Hxvb287O7u6urq8vDyRSNSxY0exuOVvZzw87Lp2NVHov7m58bwoleKDD/DUU7h8GatX3+fO4ZAh6N2b/1s3b+KLLx4+Ix8Tl5pYM5VK1bFjRwC7d+9uaswzzzwDYO7cueYM1ix3zYRGU6ZwACeTcdeucRw9MUMsVkJCwo0bN/r06dPURyi+++67o0ePyuVyq3vkeN06yOVQq2GBTwFRCUm9nJycjRs3ikSizZs3855n1tXVGTfcXrlypYeHh9kDPhQvL7z3HgB89RV+/ZV1mjtRCUm96OjompqayZMnN/Wx+sTExKysrODg4NmzZ5s5m0nMno2+fcFxmD+fdZQ7UQkJAJw+fXrfvn1OTk7x8fG8A4qLi99//30AGzdutLOzM28605BIsH07xGL8+itM/ijewzwZRyUkMBgMkZGRHMfFxcUZL8w0FhcXV1lZ+Y9//GPUqFFmjmdC/fphxgxTHpDjsG0bQkPh6AgXFwwahGPHmn0QKiHBxx9/fOHCBX9//+joaN4BycnJu3fvtre3b3iWzXolJMCEO1BFR2POHISFYedOrFqF7GyMHo3ff2/eQaiEQqdUKo2XOjds2ODk5NR4AMdxERERxtkyICDA3PlMzd0dq1eb5lA6HQoKsHQp9u7F1KmIiMC+fdBq0ewn3k18y4NYG+NWMAMHDjQYDLwDvvzySwCenp4VTX1M3SbU1nK1tZxO1+QAg6F+jF5/rzFOTtyQIc37remJGUG7fPny1q1bxWLx5s2bRcaPwd5JrVbHxcUBSEhIcON9IMVWODjcZ4BIdP8xGg1qa+Hi0rzfmk5HBS0iIqKurm7GjBl9+/blHbBmzZrr16/37t172rRp5o1mlfbvh8GA5l66onVHheunn34aOXKkq6urQqHw9vZuPCA3NzcoKEilUp08eXLw4MHmT2hdSkvRpw+kUqSmgu/NdZPodFSgdDqd8d3g8uXLeRsIICYmRqVSTZo0iRp4X1VVGDcOlZU4dqx5DQTowoxQbdiwAUD37t1ra2t5B5w5c0YkEslksuzsbDNnszo5Odyjj3Jt2nCnT7fkl1MJhai4uLht27YA/ve///EO0Ov1/fv3B7BixQozZ7M6J09y3t6cvz/3228tPAJdmBGipUuXVlRUjBgx4tlnn+UdsGvXrt9++83Pzy/GkpeFYI3jsHYthg+HoyM+/hgiES5cqP/RLHRhRnD++OOPvn37ikSilJSU0NDQxgOqqqoCAwMLCgr27t37yiuvmD+htVAoEBTE/61mtYouzAhO4PLlHz/xxF/9+vE2EMC7775bUFAwYMCAl19+2czZrEunTs1+Qo0XzYQC8803ePFFeHhwWVkivq1Prly5EhoaqtVqz549a3xbSFobvScUktra+s/SrVrF20AAkZGRGo1m+vTp1ECzoZlQSFatwtKlCA1FSgr4Fi88duzYiBEjXFxcFAqFj4+P+QMKE82EgpGXhzVrAODDD3kbaNDpIiMiACxdupQaaE5UQsFYuBDV1Zg4EU89xft98bZtZySSmBEjIiIizJtM6Oh0VBjOnsWAAXBwQHo6unThGVBWhoAAlJbi4EGMGWP2fIJGM6EAcBwiIsBxiInhbyCAJUtQWorhw6mB5kczoQDs3o033kCHDsjM5N9tPT0d4eEAkJyMRx4xczpCM6Gtq67G4sUAsHo1fwMBREVBp8OcOdRAJqiEtu7995Gfj8cfx+TJ/AP278ePP8LdHcuWmTcZqUenozbt6lWEhkKjQVISHnuMZ0BdHR55BJcuYetWzJlj9nwEoJnQxsXEoLYWU6fyNxDAhg24dAkhIZg1y7zJyC00E9qu48cxfDicnaFQwNeXZ0BREQICoFTi6NH7b59JWg3NhDZKr0dUFAAsWsTfQAALFkCpxPjx1EC2aCa0UR99hLlz0bUr0tLg6Mgz4MIFPPoopFL89Rd69DB7PnILzYS2qLwcy5cDwPr1/A3kOERGwmDAO+9QA5mjEtqiFStQUoKhQzF+PP+AL77A6dPw8rLELTOFh05HbU5GBsLDYTDg4kWEhfEMqKlBcDBu3MDu3Xj9dbPnI3ejmdDmREdDq8U//8nfQAAJCbhxA336oIk9sYmZ0UxoWw4exNixkMuRlQXeHa1zchAUBLUap06hiR15iZnRTGhD6urqV69YsYK/gQCio1FTg8mTqYGWg2ZCG7JuHWJjERyMP/4A747WZ87gySchkyEjA03syEvMj2ZCW2EwYM8eANi0ib+BBkP9pwrj4qiBFoVmQhtSU4P9+/Haa/zf/fe/MXs2/P2Rmdn8LUtIK6ISCoNSicBAFBbiq6/w4ous05A70OmoMKxYgcJCDByIiRNZRyF3o5lQAC5fRmgodDqcP48mduQlDNFeFNbMYEB6OnJzUVUFd3d07oxu3XiG/forRCK8+SY10DLRTGidiosRH48vv0RJyR2vd+6Mf/4T8+bdfenl8mW4uaF9e3NmJOoHUEoAAAKNSURBVA+ISmiFkpIwZgxKSwFAJsMjj8DNDcXFSEuDXg8AwcH44Qd06sQ2JnlAVEJro1Cgb1+oVHBzw5o1mDoVMln9t0pKsHYtNmyAwYBu3ZCcDBcXplnJA6ESWpsnnsDZs3Bywv/9H/r04RnwySeYORMA5s7Fhx+aOR1pASqhVTlzpv6Zz1Wr6lcT5TVmDA4dgkyGnBy0a2e2dKRl6D6hVfn6awCQSuvnuqb8618AoFbj0CFzpCIPh0poVZKSACA4GJ6e9xo2eHD95mdnz5ojFXk4VEKrkp0NAEFB9xkmk9VfGr12rbUTkYdHJbQqFRUA0Lbt/Ucax5SXt24eYgpUQqsiEgHAg1xLM44R09+vFaC/JKtinN+M8+G9PficSVijElqVzp0BQKG4zzC1GtevA0DXrq2diDw8KqFVefxxAMjIwM2b9xp2+nT982vG8cSyUQmtivHTgDoddu2617Dt2wHAyQnPPWeOVOThUAmtyqBB6NcPAOLjkZnJP+bAAezfDwBvvAF3d/NlIy1FJbQ2u3bBwQFVVXjqKRw4cMeVUq0WiYl45RUA6NQJ8fGsMpJmoWdHrdCRI5g4ESoVAPj5oV8/yOUoLsaZM/UXRbt0wZEjCAhgG5M8ICqhdbp8GUuWYP9+aLV3vO7iglmzsHgx5HJGyUizUQmtWVUVTp9Gfj7Ky9G+PTp3xoAB/IuOEgtGJSSEMbowQwhjVEJCGKMSEsIYlZAQxqiEhDBGJSSEMSohIYxRCQlhjEpICGNUQkIYoxISwhiVkBDGqISEMEYlJIQxKiEhjFEJCWGMSkgIY1RCQhijEhLCGJWQEMaohIQwRiUkhDEqISGMUQkJYYxKSAhjVEJCGKMSEsLY/wPAlBjHx24szQAAALp6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBgjgBGIOIG5gZGfQAIkzs0FoFgjNDKfZGTJANCMTB0SACSYhwJAApBkZYTQ3A6MGUJkCE7MCM4sCM6sGExObBhMbOwMbB4MTyE7xMpA6BpgLVq/yOtCTuHwpiBMaenX/E4t5YPbqVVr7IteuWQIRF7V/6LZsP4TN6gBjg9Q8dFM7gKTGHkmNPZIaBxBbDAAgFyts0CPfHQAAAPJ6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJyNUu0KwjAM/N+nuBdYSVvXNT/dByJiBzp9B//7/pgqMxNkelsh6a659DKDglN/uN3xhu+NAWjlZWZcAxGZI0qAdtjtM7pp28473XjJ0xmMJCfk+WRup/E47zhkVMG6KGhQkaUnoMHM9OhQORt/M0Nh0j81N8IkW6cgKMU9M4X0hVhLm97Sb2LEuNT2tuZETfzCbJbaKxUTziq9wmPhqfKK8JD7jxG8htKOudehiBK8Oi8Jgtpbvm/UQyerVqe8pFH9kJNo9NJOVtK7lZSXnS37KPn8W0lsHnDtgYu1SEj2AAAAdnpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nPNTdnbWcNbw07T117R11gjWDFao0dA11jM0MzMz1zHQsdY11DODsw3A4hCOgZ6phTEQ6ABVGFlaGpjoWBvpGVigiiB06BrpmVpaGFggacTQh0UbTJdmDQCuOyKaM28AygAAAABJRU5ErkJggg==</base64_image>
160.223
0.06648
[ { "content": "What is the molecule visualization for the compound represented by 'N#CC(C(N)=O)=C(S)S'?", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deXxM5/4H8M8sWSaymIhsEruslVi7oNRSpa2L0kWVquIqt7I0Quxaaeyiqlwt9dLFvW3Rqqu0pfjRoCVp0ywTW8geWSeZTCaznN8fk8aSEyQm88zM+b5f/ojJ4/gUnz5nzjnzPCKO40AIYUfMOgAhQkclJIQxKiEhjFEJCWGMSkgIY1RCQhijEhLCGJWQEMaohIQwRiUkhDEqISGMUQkJYYxKSAhjVEJCGKMSEsIYlZAQxqiEhDBGJSSEMSohIYxRCQlhjEpICGNUQkIYoxISwhiVkBDGqISEMEYlJIQxKiEhjElZBxC02tqsior9ADw8Zkql7XjHqFTnqqp+AeDtHdv4f5o6XUlNze9abQEgtrf3c3AItLf3a+3YxLSohCzV1v6VlxcHoG3bfzRVwqqqk8YxXl7RIpF9w+tabUFOTkRFxQGO0902XOTk1NfbO1Yuf7FVkxMTohJaJa22KDNzQF1dNgCp1N3RMVgicdVorms0WTU1v+t0N1kHJM1AJbRK+fnLjA309X3PyytGLHY0vq7TlVZUfOvmNoplONJMVEJrxJWXfw3A1XWUj8+S278hlbbz8HiTUSrSQnR11Pro9VV6fTkAmSyUdRZiAlRC6yMWtxGJpABqai6wzkJMgEpofUQiiZNTXwBVVSdycqIMhhrWichDofeEFiEnJ1IsduH9lkaT1fhFX9+Vly8/x3H64uLE0tJP5fIX27V73dl5UCvHJK1CxHEc6wzCVVGx/8qVCQ84uE8fze33CSsqvrtxY65Wm9fwiqNjkIfHjPbt5zZcLCVWgUrIUkMJfX1X2tn58I5RKo+Wl+9DoxIC4Di9UvljWdnnFRXfNpyUymThgYG/SCTyVs5OTIZORy2CXD7R0TGE91s6XbmxhI2JRBI3t9FubqMNhuqKiu8KC9eo1alq9R83brzdpcvnrZmXmBJdmLEFYrGzu/vkoKBzbdr0B1Be/l+droR1KPKgqIS2QyyWtW8/FwDH6TSaK6zjkAdFJbQpIpHE+IXBUMs2CXlwVEKbUln5AwBA5OjYg3EU8sCohNaH47SZmY8VFMRrNJcaXjQYagoKVpaVfQnAxWWonZ0vu4CkeejqqPWpqjqmUp1Xqc7n5y+xs/O2s/PjuDqN5orBoAJgZ+fVqdN21hlJM1AJWRKLnR0cugG46wbg7aRSuXEMIDK+0qbNY5067Sgr+7Kq6pRWW6jVFhpfF4kc5PIX/fxW29l1aO3kxIToZr0V0+uVavWfOt1NgJNKvZ2cwsRiZ9ahSLNRCQlhjC7M2Ka6upzs7KmlpbtZByH3RyW0TdXVp0pLP8vLW6jXK1lnIfdBJbRN7u6vOjsP0mqLCgsTWGch90EltFUif//NgLioaOPttxOJBaIS2iwnpz7t2k3luLrc3FjWWci9UAltWYcOqyUS14qKb5XKH1lnIU2iEtoyOzsvb+84ADk5UXcu1E0sCJXQxnl5RTs49KitTS8p+TfrLIQfldDGiUT2fn5rAOTlLdXpSlnHITyohLavbdvxrq4j9frygoKVrLMQHvTYmiDU1qanp4cDXHBwskzWk3UccgeaCQXB0THEw2MWx+lzcqJYZyF3oxIKha/ve1Jpu6qqYxUVB1lnIXegEgqFVOru47MMQG5uNMdpWMcht1AJBaR9+zkyWU+N5kpR0WbWWcgtVEIBEYmk/v6bABQWrtJqC1jHIfWohMLi4jLczW2MXl+Vn7+UdRZSj0ooOP7+m0Qih5KST1Wq31hnIQCVUIAcHLp5es4DDDk5EQDdJWaPSihEPj5L7ex8VKqksrL/sM5CqISCJJG4+Pq+ByAvL9a4WilhiEooUB4eb7Rp07+uLrewcB3rLEJHJRQssZ/fRonEf/v24zdu3GAdRtCohMLl7Dxo06bB7733fwsWLGCdRdDoUxSClpubGxQUpFKpTp48OXjwYNZxBIpmQkHz8/OLiYkBEBkZaTAYWMcRKJoJhU6tVgcHB1+/fv2TTz558803WccRIiohwd69e1999VVPT8+srCw3NzfWcQSHTkcJJk2aNHjw4OLi4vj4eNZZhIhmQgIAycnJ/fr1k0qlqampAQEBrOMIC82EBAB69+79xhtv1NXVGa/TEHOimZDUKy4uDggIqKys/OGHH0aNGsU6joDQTEjqeXp6Llq0CEB0dLRWq2UdR0CohOSWyMjIgICAjIyMbdu2sc4iIHQ6Su5w8ODBsWPHyuXyrKwsDw8P1nEEQbJixQrWGYgFCQwMPHfu3F9//aVSqZ577jnWcUyA4zQ1NRdras7V1mbo9RVisUwsdmr4rsFQU1LycU3NbxKJi1TK/z8drTa/rOyzmprf7O39JBIXkyekmZDcLSMjIzw83GAwXLx4MSwsjHWcljMYVHl5S0pLd+r1Vbe9LHZ2fqJ9+7fc3ScD0Grz//yzA4BOnXZ6eEznPU5V1cmsrKcABAaecnZ+0uQ56T0huVtwcPDs2bP1en1UlBUv120w1GRlDSsuTtTrq0QiB5ks1Nl5kL19RwDV1WfU6jTWAW+Rsg5ALNHKlSv37t17/PjxAwcOjB8/nnWcligq2qRSnQfg4TGjQ4eEhlNNrbawomK/s7MFfWSEZkLCQy6XGy8WxMTE1NbWso7TEuXlewHIZGGdOv379jd7dnbe7dvPkckeYRftblRCwm/27NlhYWFXr17dtGkT6ywtodFcBSCThVn+P3JLz0dYkUgkxvq9//77+fn5rOM0m0TiCkCtTrX8ZR2phKRJw4YNGzduXHV19eLFi1lnaTYnpz4A1Oo/btx422BQs45zL3SLgtzL1atXQ0NDNRrNRx99FBQUZNqDh4dLpFK9aY/p4NDF3r4TgOrqM1lZQzlOC0AqdZfLX2nXbmqbNo/dNb7hFoWz80AHhx68x9Tpiiorf0Cr3aKgEgrdnj17PD097/HE9pQpU77//vvKykqT/9YXL/oZDLmmPaav73s+PkuMX1dW/u/69Zm3b30jk/X08Jjh4TFTLJYZX2ko4YNopRLSLQpBKy4unjdvXmVl5fnz5/v37994gF6vT01Nrays7NGjh6+vr2l/d0dHuUTSzbTHNE6DRm5uz/XseV2pPFJauqey8pDBUKtWp+bkRJSU7AgIOC6Vet7+C+Xyl9u04fkTAKDRXL158yPT5rwdlVDQFi1aVFlZOWbMGN4GAti5c+cff/zh7++fkpLi5OTEO8aSiUR2bm5j3NzG6PWVFRUHioo2qtWpanVadvb07t0P3T7S1XXkPZ6YadUS0oUZ4UpOTt69e7e9vf369et5ByiVyuXLlwPYsGGDNTbwdhKJW7t204KDfzPepq+sPKzRXGYdqh6VULgiIyP1ev28efOaWs9i5cqVhYWFAwcOnDhxopmztRKRyMHbOxYAwNXWZjBO8zcqoUD95z//OXXqlKen55IlS3gHXL58eevWrWKxODExUSQSmTle62m4JGMw1LBN0oBKKERqtXrhwoUA4uPjm1rjMCIiQqPRzJgxo1+/fuZN17qUyp+NXzg4dGebpAGVUIjWrl17/fp14+JOvAN+/vnnw4cPu7q6rly50szZTOXKlfFFRevq6q7f9pqhtPTToqJ1ABwdA5ycerPKdhe6Oio4ubm569atA5CYmCiRSBoP0Ol0kZGRAJYvX+7t7W3ufKagVqdVVHxbUfFtbu4CB4eudnYdRCJxba3CeM9QLHbq1GmX5cxAVELBiY2NValUL7/8clM7wGzZsiUtLa179+5z5841czZTsbf39fffUl6+t7o6SaO5otFc+fs7IheXof7+G2Wy8L9fkUil7XHbe8XGxGJ74xiRyL410tITM8KSlJQ0cOBAR0fH9PT0zp07Nx5QVlbWo0ePsrKyQ4cO2cDyFjpdcU3NRa32Jsdp7ew8nZx629k96PMxZkMzoYAYDIaIiAiO42JjY3kbCGDRokVlZWUjRoywgQYCkEo9XV0tfQ1VmgkFZNeuXW+++aafn19mZmabNm0aD0hLS+vVqxeAlJSU0NBQswcUKEt5b0paW1VVlfGW4Nq1a3kbCCAqKkqn0/3rX/+iBpoTlVAoVq1aVVBQ8MQTT7zyyiu8A7755puffvrJ3d29qdv3pJXQ6aggXLlyJTQ0VKvVJiUlPfroo40H1NbWhoSEXLt2bdu2bbNnzzZ/QiGjmVAQoqOjNRrNtGnTeBsIYP369deuXQsNDZ0xY4aZsxGaCW3f8ePHhw8f7uLiolAofHx8Gg/Iy8sLCgqqrq7+8ccfn376afMnFDiaCW2cXq83Pv6yZMkS3gYCiIuLq66unjBhAjWQCZoJbdyWLVvmzZvXtWvX9PR0BweHxgPOnj07YMAAe3v7v/76q3t3S3mmWVBoJrRl5eXlxiewN27cyNtAjuMiIyM5jouJiaEGskIltGVLly4tLS0dNmzY2LFjeQfs2bPn3Llz3t7esbGxZs5GGtDpqM1KT08PDw/nOC45Oblnz56NB1RXVwcGBubn5+/Zs2fKlCnmT0iMaCa0WdHR0Tqd7q233uJtIICEhIT8/Py+fftOnjzZzNnI7WgmtE3ffvvt+PHj77Hh7rVr10JCQjQaTVJS0mOP3b0kLjEnmgltUF1dnfE93rvvvtvUltfG7ZamTJlCDWSOZkIbtHr16ri4uJCQkJSUFDs7u8YDfvnll2HDhjk7OysUCpMv6Uuai2ZCW1NUVJSQkABg48aNvA1suH0fFxdHDbQEVEJbExcXp1Qqx44d+8wzz/AO2LFjx59//tmlS5fo6GgzZyO86HTUply8eLF///5SqTQ1NZV3Sd/y8vKAgICSkpJ9+/a98MIL5k9IGqOZ0HYYH38xGAxRUVH3WFS7pKRk6NCh1EDLQTOh7fjiiy9ee+01Ly8vhULBu6RvRkZGeHi4wWC4cOFCeHh44wGECZoJbYRarV60aBGAhISEphbVjo6O1mq1s2bNogZaFo7YhGXLlgHo3bu3Xq/nHfD9998DkMvlN2/eNHM2cm90OmoLcnJygoKC1Gr1yZMnn3ySZyvZurq6sLAwhUKRmJgYERFh/oTkHuh01BbExMTU1NRMmjSJt4EAPvjgA4VCERQUNGfOHDNnI/dFM6HVO3PmzJNPPuno6JiRkdGpU6fGA4qLiwMCAiorKw8fPjx69GjzJyT3RjOhdTMYDMZP5S5cuJC3gQAWL15cWVn5/PPPUwMtE82E1u3jjz+eNWuWn5+fQqHg3dE6JSWlX79+Eonkzz//DAwMNH9Ccl80E1qxqqoq40XR9evXN7WnvHFP7LfffpsaaLGohFbMuKf8gAEDXnrpJd4B//3vf0+ePHmPPbGJJaDTUWvVsKj2uXPneHe0VqvVISEh2dnZO3bsmDlzpvkTkgdEM6G1ioyM1Gg006dPb2pP+bVr12ZnZ/fq1Wv69OlmzkaahWZCq/Tzzz8//fTT915UOzAwUKVSnThxYsiQIeZPSB4czYTWR6fTRUVFAVi2bFlTi2ob98R+6aWXqIGWj2ZC65OYmBgVFdWtW7e0tDTeJX3vuyc2sSitu112t26oqTHlAX19s/PznzDlEYFnn312586dpj1m6+E47tNPPwWwadMm3gY23L6fP38+NdAqNK+EX38NAGIxxo2DRMIzIDUVmZlwdMSYMQBQUAC1+uFD3mJvryssLDTlEYHy8nLTHrBViUSipKSkr7/+eozxj7iR3bt3nz9/vkOHDrSotrVo3umoSFT/xQcf4O23eQbExWH1avj4ID8fAAoLYdqzXZFIz3HFpjwiIJPJ2rZta9pjslJVVRUYGFhQUPDFF1+8+uqrrOOQB9LC09HFi/HCC+jQ4T7DvL1bdvh7kAD8lyIIgPj4eOOe2JMmTWKdhTyollwdFYtRVYWoKJOHIQ/l6tWriYmJYrE4MTFR1HDSQixeS0po3Dvk669x6JCJ05CHYdwT+/XXX29qT2ximVpSwsGD8eyzABARYeKLn6TFjh8//t1337m4uMTHx7POQpqnhTfrN2+GgwOuXgX9jVuChkW1Fy9e3NTte2KxWljC7t0xdy4ArF+P9HRTBiItsG3bttTU1K5duxqrSKxLy2/WL1uGL79EYSHeegsnToD3QkBKCgyGlodrTCzWGAxpJjxgbm5uTU2NwWAAIJVKrXHLaKVSuXz5cgAbNmzgvX1PLF2z1mYDOIDbubP+p599Vv/Krl31ryxcyAGcj0/9T2Wy+gGm+tGx4yXWf2CWyN3d3bgpL7FGD/XY2uTJ2LkTJ04gNhZjx8Ld/e4BvXub+IkZDw/Hdu16m/CAubm5Op2utrYWVjsTVldXX7p0SSKRKJVKV1dX1nFIsz1UCUUibN2KXr1QUoKVK7F5890Dzpx5mMPz8gMumvyg1m7IkCGnTp1atWrV2rVrWWchzfawH2UKCYHxWsBHHyE11QSBSAsY79Fv3rw5KyuLdRbSbCb4POGyZfD3h06HhQsf/mCkJXr37j1t2rS6urr58+ezzkKazQQldHbGpk0AcPgwjh9/+OORljDuA3Pw4MEjR46wzkKaxzSfrJ8wAc89BwDnz5vkeKTZPD09jbsyGbdeYh2HNIPJlrfYvBmOjqY6GGmJyMjIgICAjIyM7du3s85CmsFkJezWDfQhUrbs7e3XrVsHYPny5SUlJazjkAfVkg/17twJ3kX0NBqEhSEr69aHetesgWnPjBwdy2trt5ryiEBQUNDEiRNNe0yGRo0adfTo0blz53744Yess5AH0roLPTk5mfhmfceOl2/c6GHKIwLjx4/fv3+/aY/JUMOe2BcvXgwLC2Mdh9xf6y70tHAh6upMeUCZzF2tXmzKIwKhoaGmPSBbwcHBs2fP3rJlS1RU1LFjx1jHIfdHSx7aoPLy8oCAgJKSkgMHDowbN451HHIftPivDZLL5cbPVbzzzjvGx2KJJaMS2qa33nqrZ8+exlVnWGch90Gnozbr+PHjw4cPd3Z2VigUvr6+rOOQJtFMaLOGDRs2bty46urqxYtNfCmLmBbNhLbs6tWrISEhWq02KSmJlmCzWDQT2jLjqjMNu1OwjkP40Uxo4xoWxv/8888nT57MOg7hQTOhjWtYiXTBggUqlYp1HMKDSmj7jGty5+XlrVmzhnUWwoNORwWBtg21ZDQTCoJxnya1Wr1gwQLWWcjdaCYUiry8vMDAQJVKdeLECdrI3qLQTCgUDXv3RkZG6vV61nHILTQTCoharQ4JCcnOzt6xY8fMmTNZxyH1qITC8tVXX7388suenp4KhcJmNgm3dnQ6KiwvvfTSkCFDiouLV61axToLqUczoeCkpKT069dPLBanpqYGBgayjkNoJhSeXr16TZ8+XavVvvPOO6yzEIBmQmEqLi4ODAysqKg4fPjw6NGjWccROpoJhcjT03PJkiWg5botA5VQoN5+++3AwMDMzMytW028jitpLjodFa5Dhw6NGTOmbdu2WVlZ7du3Zx1HuGgmFK7nn39+9OjRFRUVy5YtY51F0GgmFLTMzMywsDCDwXDhwoXw8HDWcQSKZkJBCwoKmjNnjl6vj4qKYp1FuGgmFLqG5bq/+eabCRMmsI4jRDQTCp1cLn/33XcBzJ8/n5brZoJKSDBr1qzw8PBr165t3LiRdRYhotNRAgC//PLLsGHDnJycMjMz/f39WccRFpoJCQAMHTr0hRdeqKmpMT5JQ8yJZkJS79q1ayEhIRqN5tSpU4MGDWIdR0BoJiT1unTpEh0dzXGccdFu1nEEhGZCckt1dXVgYGB+fv6ePXumTJnCOo5Q0ExIbnF2dk5ISAAQGxurVCpZxxEKyYoVK1hnIBYkLCzsyJEjCoVCIpEMGzaMdZyWUCjwyy9IT4fBAC8v/jHffIO0NNjZoV07ANDrcegQFArY2UEu5/8lSiWOHoVCgbZt4exs0sQcIXdKSkoSiUQODg6XLl1inaUl1q3jAA7gfHy4igr+MVIpB3Dr19f/tKqq/pds2tTkYS9erB/z/fcmDkyno+Rujz/++GuvvabRaBYuXMg6y0MpKIBVnOdRCQmPhIQEZ2fnffv2/fTTT6yztJBIBABbtiA5mXWU+6ESEh4dOnSIiYkBEBUVpdPpWMdpCbkcI0ZAr8esWbDwBcephISfRCIBkJaW9sknn7DO0kKrV0Msxu+/Y/t21lHuiUpIeBQVFa1bt8749cKFC69cucI2T8v07YupUwFg0SLk57NO0zQqIeGxYMECpVI5fvz44ODgysrKF198kXWiFlq9Gm5uUCoRE8M6StOkrAMQi3PhwoXPPvvM3t5+zZo1qampEyZMSE5OXr9+/ZgxY6RSk/2DEYvbGgztTHU0o/bt4ep6xyteXli6FDEx2LsX06Zh5Mj7HOGHH1Bayv+toiLThORh4lsexMoZDAbj09txcXHGV0JCQlrjH96TT35pvO1mwh8ffcRxf98ndHev/y/SarnwcA7gunfn1Or6F5u6T/ggP0x+n5BmQnKHzz///PTp015eXg03CQ8cODBy5Mj8/Hxvb287O7u6urq8vDyRSNSxY0exuOVvZzw87Lp2NVHov7m58bwoleKDD/DUU7h8GatX3+fO4ZAh6N2b/1s3b+KLLx4+Ix8Tl5pYM5VK1bFjRwC7d+9uaswzzzwDYO7cueYM1ix3zYRGU6ZwACeTcdeucRw9MUMsVkJCwo0bN/r06dPURyi+++67o0ePyuVyq3vkeN06yOVQq2GBTwFRCUm9nJycjRs3ikSizZs3855n1tXVGTfcXrlypYeHh9kDPhQvL7z3HgB89RV+/ZV1mjtRCUm96OjompqayZMnN/Wx+sTExKysrODg4NmzZ5s5m0nMno2+fcFxmD+fdZQ7UQkJAJw+fXrfvn1OTk7x8fG8A4qLi99//30AGzdutLOzM28605BIsH07xGL8+itM/ijewzwZRyUkMBgMkZGRHMfFxcUZL8w0FhcXV1lZ+Y9//GPUqFFmjmdC/fphxgxTHpDjsG0bQkPh6AgXFwwahGPHmn0QKiHBxx9/fOHCBX9//+joaN4BycnJu3fvtre3b3iWzXolJMCEO1BFR2POHISFYedOrFqF7GyMHo3ff2/eQaiEQqdUKo2XOjds2ODk5NR4AMdxERERxtkyICDA3PlMzd0dq1eb5lA6HQoKsHQp9u7F1KmIiMC+fdBq0ewn3k18y4NYG+NWMAMHDjQYDLwDvvzySwCenp4VTX1M3SbU1nK1tZxO1+QAg6F+jF5/rzFOTtyQIc37remJGUG7fPny1q1bxWLx5s2bRcaPwd5JrVbHxcUBSEhIcON9IMVWODjcZ4BIdP8xGg1qa+Hi0rzfmk5HBS0iIqKurm7GjBl9+/blHbBmzZrr16/37t172rRp5o1mlfbvh8GA5l66onVHheunn34aOXKkq6urQqHw9vZuPCA3NzcoKEilUp08eXLw4MHmT2hdSkvRpw+kUqSmgu/NdZPodFSgdDqd8d3g8uXLeRsIICYmRqVSTZo0iRp4X1VVGDcOlZU4dqx5DQTowoxQbdiwAUD37t1ra2t5B5w5c0YkEslksuzsbDNnszo5Odyjj3Jt2nCnT7fkl1MJhai4uLht27YA/ve///EO0Ov1/fv3B7BixQozZ7M6J09y3t6cvz/3228tPAJdmBGipUuXVlRUjBgx4tlnn+UdsGvXrt9++83Pzy/GkpeFYI3jsHYthg+HoyM+/hgiES5cqP/RLHRhRnD++OOPvn37ikSilJSU0NDQxgOqqqoCAwMLCgr27t37yiuvmD+htVAoEBTE/61mtYouzAhO4PLlHz/xxF/9+vE2EMC7775bUFAwYMCAl19+2czZrEunTs1+Qo0XzYQC8803ePFFeHhwWVkivq1Prly5EhoaqtVqz549a3xbSFobvScUktra+s/SrVrF20AAkZGRGo1m+vTp1ECzoZlQSFatwtKlCA1FSgr4Fi88duzYiBEjXFxcFAqFj4+P+QMKE82EgpGXhzVrAODDD3kbaNDpIiMiACxdupQaaE5UQsFYuBDV1Zg4EU89xft98bZtZySSmBEjIiIizJtM6Oh0VBjOnsWAAXBwQHo6unThGVBWhoAAlJbi4EGMGWP2fIJGM6EAcBwiIsBxiInhbyCAJUtQWorhw6mB5kczoQDs3o033kCHDsjM5N9tPT0d4eEAkJyMRx4xczpCM6Gtq67G4sUAsHo1fwMBREVBp8OcOdRAJqiEtu7995Gfj8cfx+TJ/AP278ePP8LdHcuWmTcZqUenozbt6lWEhkKjQVISHnuMZ0BdHR55BJcuYetWzJlj9nwEoJnQxsXEoLYWU6fyNxDAhg24dAkhIZg1y7zJyC00E9qu48cxfDicnaFQwNeXZ0BREQICoFTi6NH7b59JWg3NhDZKr0dUFAAsWsTfQAALFkCpxPjx1EC2aCa0UR99hLlz0bUr0tLg6Mgz4MIFPPoopFL89Rd69DB7PnILzYS2qLwcy5cDwPr1/A3kOERGwmDAO+9QA5mjEtqiFStQUoKhQzF+PP+AL77A6dPw8rLELTOFh05HbU5GBsLDYTDg4kWEhfEMqKlBcDBu3MDu3Xj9dbPnI3ejmdDmREdDq8U//8nfQAAJCbhxA336oIk9sYmZ0UxoWw4exNixkMuRlQXeHa1zchAUBLUap06hiR15iZnRTGhD6urqV69YsYK/gQCio1FTg8mTqYGWg2ZCG7JuHWJjERyMP/4A747WZ87gySchkyEjA03syEvMj2ZCW2EwYM8eANi0ib+BBkP9pwrj4qiBFoVmQhtSU4P9+/Haa/zf/fe/MXs2/P2Rmdn8LUtIK6ISCoNSicBAFBbiq6/w4ous05A70OmoMKxYgcJCDByIiRNZRyF3o5lQAC5fRmgodDqcP48mduQlDNFeFNbMYEB6OnJzUVUFd3d07oxu3XiG/forRCK8+SY10DLRTGidiosRH48vv0RJyR2vd+6Mf/4T8+bdfenl8mW4uaF9e3NmJOoHUEoAAAKNSURBVA+ISmiFkpIwZgxKSwFAJsMjj8DNDcXFSEuDXg8AwcH44Qd06sQ2JnlAVEJro1Cgb1+oVHBzw5o1mDoVMln9t0pKsHYtNmyAwYBu3ZCcDBcXplnJA6ESWpsnnsDZs3Bywv/9H/r04RnwySeYORMA5s7Fhx+aOR1pASqhVTlzpv6Zz1Wr6lcT5TVmDA4dgkyGnBy0a2e2dKRl6D6hVfn6awCQSuvnuqb8618AoFbj0CFzpCIPh0poVZKSACA4GJ6e9xo2eHD95mdnz5ojFXk4VEKrkp0NAEFB9xkmk9VfGr12rbUTkYdHJbQqFRUA0Lbt/Ucax5SXt24eYgpUQqsiEgHAg1xLM44R09+vFaC/JKtinN+M8+G9PficSVijElqVzp0BQKG4zzC1GtevA0DXrq2diDw8KqFVefxxAMjIwM2b9xp2+nT982vG8cSyUQmtivHTgDoddu2617Dt2wHAyQnPPWeOVOThUAmtyqBB6NcPAOLjkZnJP+bAAezfDwBvvAF3d/NlIy1FJbQ2u3bBwQFVVXjqKRw4cMeVUq0WiYl45RUA6NQJ8fGsMpJmoWdHrdCRI5g4ESoVAPj5oV8/yOUoLsaZM/UXRbt0wZEjCAhgG5M8ICqhdbp8GUuWYP9+aLV3vO7iglmzsHgx5HJGyUizUQmtWVUVTp9Gfj7Ky9G+PTp3xoAB/IuOEgtGJSSEMbowQwhjVEJCGKMSEsIYlZAQxqiEhDBGJSSEMSohIYxRCQlhjEpICGNUQkIYoxISwhiVkBDGqISEMEYlJIQxKiEhjFEJCWGMSkgIY1RCQhijEhLCGJWQEMaohIQwRiUkhDEqISGMUQkJYYxKSAhjVEJCGKMSEsLY/wPAlBjHx24szQAAALp6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBgjgBGIOIG5gZGfQAIkzs0FoFgjNDKfZGTJANCMTB0SACSYhwJAApBkZYTQ3A6MGUJkCE7MCM4sCM6sGExObBhMbOwMbB4MTyE7xMpA6BpgLVq/yOtCTuHwpiBMaenX/E4t5YPbqVVr7IteuWQIRF7V/6LZsP4TN6gBjg9Q8dFM7gKTGHkmNPZIaBxBbDAAgFyts0CPfHQAAAPJ6VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJyNUu0KwjAM/N+nuBdYSVvXNT/dByJiBzp9B//7/pgqMxNkelsh6a659DKDglN/uN3xhu+NAWjlZWZcAxGZI0qAdtjtM7pp28473XjJ0xmMJCfk+WRup/E47zhkVMG6KGhQkaUnoMHM9OhQORt/M0Nh0j81N8IkW6cgKMU9M4X0hVhLm97Sb2LEuNT2tuZETfzCbJbaKxUTziq9wmPhqfKK8JD7jxG8htKOudehiBK8Oi8Jgtpbvm/UQyerVqe8pFH9kJNo9NJOVtK7lZSXnS37KPn8W0lsHnDtgYu1SEj2AAAAdnpUWHRTTUlMRVMgcmRraXQgMjAyNS4wMy4zAAB4nPNTdnbWcNbw07T117R11gjWDFao0dA11jM0MzMz1zHQsdY11DODsw3A4hCOgZ6phTEQ6ABVGFlaGpjoWBvpGVigiiB06BrpmVpaGFggacTQh0UbTJdmDQCuOyKaM28AygAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Drug_Likeness_Assessment
FC(F)(F)S(F)(F)F
550,050
{"molecular_weight": 158.07, "logp": 2.96, "hydrogen_bond_donors": 0, "hydrogen_bond_acceptors": 0, "rotatable_bonds": 0, "topological_polar_surface_area": 0.0, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
158.066
2.9643
[ { "content": "Determine the drug likeness assessment of the chemical structure 'FC(F)(F)S(F)(F)F'.", "role": "user" }, { "content": "{\"molecular_weight\": 158.07, \"logp\": 2.96, \"hydrogen_bond_donors\": 0, \"hydrogen_bond_acceptors\": 0, \"rotatable_bonds\": 0, \"topological_polar_surface_area\": 0.0, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
NNC(=O)C=C(CC(=O)NN)C(=O)NN
243,024
216.20
216.201
-3.7274
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'NNC(=O)C=C(CC(=O)NN)C(=O)NN'.", "role": "user" }, { "content": "216.20", "role": "assistant" } ]
Synthetic_Accessibility
CC(C)c1ccc(NC2=C(Sc3ccccc3)C(=O)N(c3ccccc3Cl)C2=O)cc1
1,676,636
{'sa_score': 7.7, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
448.975
6.4526
[ { "content": "Determine the synthetic accessibility of the chemical structure 'CC(C)c1ccc(NC2=C(Sc3ccccc3)C(=O)N(c3ccccc3Cl)C2=O)cc1'.", "role": "user" }, { "content": "{'sa_score': 7.7, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Molecule_Visualization
CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1
1,214,803
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAelElEQVR4nO3de1xUdd4H8M8ADiB44ZIlihmKKJqJlGlqtS5pXsq0h2wrX13F8mWzabWoTy3PdjGyTOzyFKVtZOrKk25Lruaybam56gpY3EqFMtRQQS4Dyn2+zx8/HHG8BMPM/Eb5vP/qHOGcL7t8OGd+53t+P4OIgIj08dBdAFFHxxASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQErVXRVPFsYZjAgFQ3FB870/3tunbGUIi+20xbxmcPzg4O/jq3Kv75/XfbN5sbjKvK1/XpoMwhER2+rbm2zsK75gRMKPyusqqYVUv9Hxh18lddhzHICIOL46oI5hVNGt/7f6tA7a23Lmvdt/A/IEyvA2x4pWQyE75NfkxXWLafxyGkMhOJY0lgV6B7T8OQ0hkp97G3r80/NL+4zCERHaK8o36rOIzCyztPA5DSGSnp3o8dbTx6O9++t23Nd8eazi22bz575V/t+M4DCGRnUKNof8e8G+BTCqYNOyHYYuPLq6VWm8P7wifiDYdh48oiOyx8+TOIT5Dunh2af+hGEKiNjM3mfvl9QOQOTCzj7FPO4/G21GiNnvj+BuljaUDfQa2P4HglZCorUobS/vl9TM3mb8e8PUt/re0/4C8EhK1zeKji81N5sndJjskgeCVkKhNjjQcCc8Lr7XUZg7MjOoc5ZBj8kpIrtPY2PjSSy9FR0dPnz69trZWdzn2+J/i/6mx1MwImOGoBIJXQnKNvLy8VatWpaSkHD16VO255pprMjMzAwIC9BbWJgfqDkTmRwokd1DuQJ+Bjjqsl6MORHSu4uLiNWvWfPzxx9nZ2WpP3759g4KCsrOzf/rppxEjRqSlpQ0aNEhvka333C/PNUpjXHCcAxMIAELkaDU1NWlpabGxsZ06dVK/ZgEBAXFxcdu3b1dfcPjw4ejoaLU/PT1db7Wt9N2p7zwyPXz2+hTVFTn2yAwhOVJGRobJZAoKClLZMxqNU6ZMSU1Nraurs/nK6urqadOmAfD09ExMTNRSbZvcfuB2ZOKZw884/MgMITlAUVFRYmJi//79rXdYkZGRiYmJx48fP/eLT506pf7DYrEkJCQYDAYAcXFx9fX1rq26Db7J+mZwxuCu33YtaShx+MEZQrJfRUVFSkpKTEyMChKAXr16mUymb7/99kLfcuLEiYiIiISEBIvFovb85S9/8fX1BTB27NjzhtYdjBkzxuBhWPrpUmccnCGkNmtsbExPT585c6afn5/Knq+vb2xsbFpaWmNj48W/d+3atR4eHgAeeOCBmpoatXPnzp1XXXUVgP79++fn5zv/J2ibjRs3AggODq6srHTG8RlCaoPc3Nz4+HgVGAAeHh6jR49OTk6uqqpq/UE2bdrUtWtXACNHjiwuLlY7Dx8+fP311wPo0qXLxo0bnVO+PSwWS1RUFIA33njDSadgCOnXnThxIjk5efjw4daPfAMHDkxISPjxxx/tO2B2dnbfvn3V7WtGRobaWV1dPX36dHcbqlmzZo2q0/pR1uEYQrqg8vLyJUuWXORJQ3uUlJTccsstAPz8/DZs2KB2WiyWxMRE9Qlz1qxZ2odqGhsbIyIiAKxYscJ5Z2EI6fw2btxoNBqtTxqmTZv22WefnfukoT1qa2sfeughAAaDoeVQzbp16zp37gxgzJgxeodqkpOTAQwYMKChocF5Z2EI6fxGjRql4vfcc8+VlpY670RJSUlqqGbGjBnWW76srKzQ0FAA/fr1y8vLc97ZL6KmpkbVkJqa6tQTMYR0fmqY5I9//KMLzrVp06Zu3brZDNUcOXLEOlTz+eefu6AMG6+99hqAoUOHNjU1OfVEbQthZmamU6/L5D6uueYaAN9//71rTpedna3O2KtXrz179qidNTU19913n5ahGrPZ3KNHDwCbN2929rnaEMKsrCw/P7/bbrutrKzMeQWRO6iqqjIYDN7e3upvblZW1vPPP//VV1859aSlpaW33nqrGqpZv3692tlyqOaxxx5z7IfSC6mrq/v973+vPpS64HRtCOHOnTuvvPJKABEREfv373deTaTdrl27AERFRanNJUuWADCZTM4+b11d3cMPP6yGauLj461DNampqU4aqmloaCgsLExPT09OTo6Pj4+NjY2MjPT09PTz8+vUqdO//vUvB57rQtp2O9qy+f2f//ynk2oi7VasWAFg5syZavPBBx8EkJyc7JqzJyUleXp6ArjnnntOnjypdu7du7edQzUNDQ0FBQVffPHFW2+9ZTKZJk6c2L9/fy+v87zN5+XlpTrp3nnnHYf+ZOfX5oGZqqoq1fzu5eW1fPlyZ9RE2j311FMArB/D1F/eHTt2uKyAzZs3q6GaqKiooqLmV4eOHDlyww03qKGatLS0ix+hrKxs+/bt1utbdHS0ytW5evbsGRMTExcXl5iYmJqampGRcerUqU8//RRAaGhobW2ts39Ye0ZHL6Hmd7JPTEwMANU+1tTU5OfnZzAYysvLXVlDTk6OGqoJCQlpOVRz//332wzVlJWVZWRkpKSkWPNmbWq1ERAQMHr06JZ5s15pbVgslqFDhwJ47733nP2T2v+Iwtr8HhMTo3mopqJCTCYJDZWuXWXAAHnpJeEQbvuo7tCDBw+KyP79+wH06dPH9WVYh2p8fHxWr16tdra8BoSGhl7o+tarV69bb7111qxZr7766oYNG3Jycqz94q20bt069YM7ezSoXc8J3aL5vaFBRo2S0aNl9245fly2bJGwMHn4YT3FXBZKSkrULZ8aF9mwYQOASZMmaSmmrq7ukUcesQ7VWB/ZrVixokuXLuopf0BAQHR0dGxsbHx8fEpKSkZGhtlstvuM//nPfwoKCkSkqalpyJAhcHLPmrT/Yb11qKZr1656mt//+lfx95eSFq9a7t4tBoNw/NZeX331FYBRo0apzRdeeAHAH/7wB40lvf7662qoZtOmTWqPKnLYsGHtydu53n77bQD33Xef2ly9ejWAsLAwpz4eb++Uh7169dq6deu0adPMZvPUqVNfffXVdh6wzbKyMGYMgoPP7BkxAiEh2LvX1ZVcLnJzcwGoiwCAvLw8AIMHD9ZY0tNPP52Wlvbss89OnDhR7VFFjhgxoksXByzJYnXnnXcajcZ169bt27cPwIwZMyIiIn788UeVRidxwLyj6tGqasBdsGDB7NmzGxoa2n/Y1jp8GD162O7s2ROHD7uuhsuLTepsMqnLpEmT1ONKRVXl8D8NoaGhDz30UFNT0+LFiwF4enouWrQIwIsvvtjY2OjYc53hwKuqS+cpqKqSjz6Skydl0SKZONH2X0NDZc0a5xZw+RozZgyAL7/8UkTq6+uNRqOnp6fz3qazz+jRo61FOtbPP/+sfuR9+/aJSGNj44ABAwCsWrXK4edSHNzAbR2q6devn1OGapqaZPt2iYsTf38B5JNPZO1aCQyUlm925+eLh4doar2/DHTv3h3AsWPHRETNFxoREaG7KFsti3S4Rx99FMAjjzyiNj/88EMA4eHhvzp5h30c/xZFy3kKHNn8npcnCxZI794CCCAGg9x8s2zZIjU1EhEhsbGiHpMcPCgjR8qddzrsvB3MoUOHAAQHB6tN9V753XffrbcqG0VFRS2LdLjCwkIvL69OnTqpqQPq6+vDwsKMRv/16y84gVV7OOVVJkfOU1BWJsnJMnp0c/YA6dNH4uPlwIEzX1NUJJMmiZeXBAeLr688/HDzhXHLFpk0SVz7iPlSt2nTJgDjxo1Tm+oTUUJCgtaibNkU6QyqU2/WrFlq85NPMkNCGgYPFme81eSs9wnbOU9BU12drF8vU6eK0dicve7dZfZs2bFDTjf12jp5UoqKxNpk1NAg4eECyKBBZyWWLsqmV/vOO++E899qbSsXNJQfOHBAXQx/+uknEamvl759BZD/+z/Hn8u5L/XaMU+BmsK5b0hIU2CgAOLpKTExkpIiF2gvuphDh2T4cAEkMFCc8An+smTTqx0WFgbA3aYhdE1DueqPe+KJJ9Tm//6vAOKMi6HT36xv5TwFP//888svv6wm1VEy77tPli2Tdn7yrqqSu+4SQLy85K232nWojqFlr3Z1dbWHh4f1rUL34ZqG8u+///6KKwb99re7Dh0SEamrk6uvFkBOz0rlMK6Y3uIi8xScOnUqNTV1ypQpqh8CQM+ePU0mU2ZmpsNOb7FIQkLzPW1cnGhqN29qatq4caO6t3FbNr3au3fvBnDdddfprussrmwof+CBJkDmzm3efOstAWTYsAt+JLKPi+aYaTlPwZNPPtnU1LR9+/a4uDh/f3+VPR8fH7VyiLPeyVizRnx9BZDbbnPxUI1ap0E9QfXy8nr77bddefY2senVXrlyJYD7779fb1U2XNlQnpcnHh7i4yOHD4uI1NZKr14CyK+9R9U2rpvoyWKxPP/882qoxtr5bjAYxo4du2LFioqKCqdX8O9/y5VXCiDh4eL8qVMqKio++OCDMWPGWNdpUP/RqVOnP//5z84+u31serXnz58PYPHixXqrsuHihvL/+i8B5KmnmjeXLRNAhg935MXQ1bOtzZs3z8PDw2g0hoaGxsfHH3DxuOXBgzJ0qBqqaXDOjClNTU026zT4+PjExsampqaazeaZM2eqnSaTyUlPftvDpld7/PjxAH719VkXc3FDeW5u88XwyBERkZoaCQkRQE53kjuAhikP9+zZs2HDBotjb6tbr6pK7rrL7O8/bODAN99804EHzsvLO+86DTZt/h988IGaVPf22293xfW/LWbMmAHg448/VpshISEA7J7r3klsinQBNbT3zOmFCV97TQAZOdJhx++Q8442NX20eLGKyty5c9s59KfWaVCtjMqvrtPwzTffqOn0hgwZ4la/4pGRkQCysrJEpKysDIC/v7+2P5cXoJq2VZGusXevGAzi59c8VF9dLT16CCBbtjjm+B0yhCIisnbtWvXR1L5JHGtra21WhO7evbtap6E1v7WFhYXqNz4oKMjZUwm2Ul1dXadOnay92lu3bgVw44036q7rLLoayu+4QwBZsKB5MzFRAHHUfIgdN4Ry9swArZ/lVrUTBJ9+g9HT0zMmJua8K0JfnNlsvuOOOwAYjcaVK1e2vXwH++6771r2ar/zzjsAHnvsMb1V2dDVUJ6Z2XwxVC0nVVUyc6Y46mLcoUMobZnEUT1pCA8Pt952qhWh29PI39jYGB8fr44WFxen95m4em/V2qu9YMECAMuWLdNY0rlsinSliRMFkP/+7+bNtWvFZDrTJVlfL3FxdraWdPQQikh1dfVFJnGsrKxs64rQbbVixQo1VDNhwgSNQzXn9mqXl5e729CRxobynTvld7+T3NzmzblzBZAXXmjePHVKADublBlCkbMn8Hr00Ufr6+sv9KQhLS3NGdcr61DNgAED1LukrnTw4MHExMSAgABvb+8nn3zSxWdvE/dpKJ87V8aPF3//5uAxhI4xaNAglbegoCAfHx/rk4Zx48alpKS0aUVoOxQWFqpxv6CgINfMvl5WVvbuu++qJdCsn28NBsPChQudvQ6R3dynoXzuXDGZxGSS8eNFGEJHueKKKwCoiZ+VgICAwsJClxVQVVWl/tI7tbutsbFRXeTVCy6qgSk2NjY9Pf29995Tg72TJk2qrKx0UgF2c6uGchXCsjLp0UPWrmUIHaG4uFilLisr6/HHH3/iiScA3OnyN/SdOlSTm5sbHx+vVvVp2U7Q8iK/bds2NfA7dOhQd2s3d6uGchVCEfnoIwkJkePHGcJ2S09PB3DzzTerzYSEBACLFi3SUszKlSutQzXtf1fgyJEjSUlJUVFR1iv8oEGDEhISLpSxAwcOqDvz4ODgrVu3tvPsDuRWDeXWEFosMnaszJ/PELbbsmXLAMyZM0dt3n333QCsU6+73o4dO6xDNT/88IMdR6ipqVGviVkXHgoICFDtBL/6vZWVlZMnTwbg7e390Ucf2XF2hzh+/HjL4Vm3aii3hlBEcnLEz48hbDc1wZZ1KSz1evF3332nsaSioiJ1+QoMDGzTUE1GRkZcXFzXrl1V9ry9ve14TazljbHJZHLlUE1dXZ3qRjIajUuXLrXud5OG8r/9TU6dOiuEIvL00wxhu914440A1N1XTU2Np6enl5eXC5bFuriqqqqpU6e2cqjm559/TkxM7Nevn/W2Mzo6OikpqaTlGgFtlJycrIZqJk6c6IKhmp07d86ZMycwMFDV7+XlNW/ePOu/ukND+ZtvisEgEydKfr60vEGprpb0dHvmYBGGULFYLGo29dLSUhHJyspSDTG66xI5/QzzIkM15eXlNu0EvXv3jo+Pd9Tzxm3btqlx42uvvdZJQzWHDx9OSkpSS5EpqhupuLjY+jXu0FD++uvNs206dmFOhlBE5McffwQQEhKiNj/++GMA99xzj96qWlqzZo16dDl+/Hg1VHORJw0O/zUtKCiwDtV8/fXXjjps6yc3yc/Pf+CBBwBcddVVR9SLfS6nmrYNBnH4wyOGUEQkLS1N/X6rTfVZ6E9/+pPeqmxYF9vx8fGJjIxUU1CrJ+wTJkz45JNPLrTepUOYzeYpU6aoT5jtnBngvJObnLcbqaysrOVrYurZSefOnU0mk5Pm3r4QlUBPT3HGpAgMoYiIWv1j/vz5alMNDK5fv15vVTZeeeUVlQG0cM8997jsaV77h2q+//77hIQEtf5uy0+t6lOAVV1d3YYNG6ZOnaqe0+D0a2KrV6+OjY1Vd93+/v7x8fGu6Sh4/vnmBDrpRWKGUOT0DJPW94muvvpqAK7v4bw4VeTSpUsnTJgwatQo9Tltv8uXYXz//fetQzWtbO+2uaAB6NOnz3knN1HtBD1OL7OlXhNLSUmprq62fk12dnZsbKz12piYmNjWJXhbz2KRefMEkE6d5NNPnXQShlBERKKGDQOwe/duETGbzQaDwdfX193mgLnuuuvcpMjt27dbh2ouMlbZ8kmDyky3bt1mzpx57qdWNTCjfsALDczY+Oabb26++Wb1xaGhocnJyQ7vZbNYxGQSQIxG+etfHXvsszCEIg0Nlm7dTkZG1lZVici+3btHhoQMHz5cd1lnaWho8Pb2NhgMasaaHTt2qHs5XfUUFBRYZwY4d6imrq7O5kmDelBpc8myDsxY2wkCAwPj4uJaP+tsenr6sGHD1PcOHDgwNTXVUYNSFovMmSOAeHvL3/7mkENeEEMokp8vgPTr17z5/vsCNLnZqvf5+fkAwsLC1GZycjKABx98UGNJLWcG+PDDD23+VWXjvBc068CMdZFd+9oJrEdbtWqVersCwIwZ8//xj3b9XCLS2CgPPSSAdO4s7T/ar2IIRVJTBZCpU5s31S3IkiVaa7KVmpqKFg3lJpMJwBLdRdoM1bS8N962bVt2drbN17dyYMYO9fX1ycnJvXv3jojYC8jo0WJ302tjo8ycKYD4+bloBROGUOSPfzxr3oJx4xw8raQj2DSUjxs3DsAm9yjyVydxtA7MWNsJnDTr7MmT9YmJolYSUn9Xc3LadoT6ern7bgGkWzdx8lIXZzCEItOnC3BmeW01nV1RkdaabNk0lKvxwyK3KfK8kziqdoLWDMw4VlWVJCZK164CiIeHxMa2tqWzrq55itHu3WXXLucVaIshFBkwQABR904lJc1/Bt1sss2WDeUlJSXqF9qtZgS1TuLYuXPnWbNm3XvvvdYnDR4eHuc+aXC2khKJjxcfn+YHDHFx8qudNjNmCCDBwQ6bRq2VOnwIa2rE01O8vJrnzfryS1EfKdyJTUP5l19+CWC0mxUpIhUVFWr5rdY/aXC2oiKJixMvr+ZRFpNJjh0Ti0ViYuTVV898WWqqLFwomZkSESGuf3Omw4cwM7N56Udl+XIBZPZsrTXZUg3lg08XuXz5cgCz3axIpa6u7pZbbunatWt0dLQj17drn7w8mT5dDIbmW809e5qfPVhnzFuyRG6/XUREy7wZXujgcnMBYMiQ5s28PAAYPFhbPeeTk5MDYMjpIvPy8lpuuhWj0fj1119bLBYPDw/dtZwRGYn167FnD154ATk5zf9v338/Hn8cO3agZaVeOgLhRv9L6WGTOptMuodpBw8eHjly0U03qc38vDwAg93sL0VLbpVAqxtuwOefIyMDqv123jycOIEPPtBdFkN4VupEkJ9/ZtNtdNm9u9euXUNDQwFAZNu+faciIm50syIvFaeXL4DRiKVLsXAhjh3TWhBDeFYIDx1CRQWuugpXXKG3KFstiywqMpSW+lZWdna3Ii9Bd9yBsWOxcKHmMjr2Z0KzGYcOwdcXqukpJwdwu8ugbZFuecN86Vq+HNdeiylTdNbQsUNoMODdd1FeDvVmt3v+fufmQgSRkW5d5CWrb18sXIjnnsOECdpq6Ngh7NIFs2fDbMaxY7jiCjz2GKKjcXqpXXdxKYzfXtKeeQarVuksoGOH8KuvMG8e8vNhNKJzZzzzDJ59Fqf7G93FpTB+e2kxGFBYCDXOBcBoxI4dqK/XVk8HHpjJycGkSZg5E9XVqKrCunVYuhSvvaa7rHO0TF1TE374AQYDIiP1FnWpCwuDWmF51iz07InCQp03QB04hElJ+O1v8fTTMBphMOA3v8GLL+K11yCiu7KztQxhQQFqanD11Tg9sS+1U2Uljh5FQYHOGjpwCHNzMW7cWXtiYlBaiqNHNRV0PqWlOH4c3bqhd2+A96KOp1ZePnBAZw0dOITHjyMo6Kw96jmuW4UwOxsAhgxp/qTKEDoaQ6hVaCiKi8/a88svANCnj5Zyzo9Do07GEGp1/fX47LOz9mzYgLAw28ujXhwadTIVwv37ddbQgUM4fz4KCvDEEygsRGkpVq7EK6/g5Zd1l3W2qChMnowRIwCgrg4HDsDLCwMH6i7r8tGjB7p1Q3k5ysq01WAQdxsMdKV9+7BoEbZuRU0NhgzBwoW46y7dNV1YTQ0++QTHjuG553SXclm5/npkZmLXLtx4o54COvbD+ogIrF+vu4gLs1jw1ltYvRrFxQgMxF13YcEC+PrqLutyEx6OzEwcOMAQ0rnmzsXf/46kJFx3HQoK8Mwz2LkTX3wBt3xb79KlfWyGIXRXBQV47z3s3Nn89zksDJs2ITwc//gHbr9dd3GXFe0h5N9Ud5WZid69z7pD6t0bN92EPXv01XR5YgjpAg4dOk87Y69eKCrSUc3lLDwcPj61TU25ugpgCN1Vjx44ccJ2Z0mJ271pdekLCoKfX++9e689fvy4lgIYQnc1eDCKinDw4Jk9J08iI4NP6p2hX79+AAo09XEzhO4qOhqjR2PWrObrYU0N5sxB9+6YOlV3ZZeh8PBwAAc0fS5kCN3Y+vXw80NICPr3R/fuOHgQX3wBHx/dZV2G9IaQjyjcWFAQPvsM5eUoLkZwME4v7UAOxxDSRQUEICBAdxGXORXC/Zr6uDt27ygRAKCioiIgIMDf399sNhtcPskQPxMSoXv37sHBwdXV1Ud1vNLNEBIBWj8WMoREAENIpB1DSKQZQ0ik2ZAhQyZPnnzT6UUgXYmPKIg045WQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEiz/wdBPTuR3t6UuAAAAYB6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBggQBmIRIG5gZGNIANKMzBCaiYmDQQNIMzOxQWgWBB8ijyHuAOGzOWSAaGZGJAZMBkILMiiAbGKHcJlhNNwB6AZxMzAyMDIxMDErMLNoMDGzMrCyMbCxazCxcShwcGYwcXIlcHFnMHHzJPDwMvDwZTDx8SfwCzDwCyYICmUwCXEkCHInOIH8y8YhJMjNxcnKwy3Izyf+DmQZAywYlq78eOCA0Rx7EOfJkTMHrta12oHYT3fNP9DX7g4Wd19TekCmymIfiJ34u+lAgtuV/SC21wzpA5bBa8Hq++cu3l/5Rw4s3mp0ZP+aKLYDIHZaMIvdikUX94LYvbVH7D7JbACbGe/+1J6l8ROYbZRr4/ApOh/M5tvR63BQczKYHSu6xMG7Tc4BxGZ6v8iBq8MD7AbBrgaHhH/zwHYxZ7Y7SDXpge3apqTj4CbEDRYvkl1ib/q2HcwWAwBlIFvU6RFPsQAAAe16VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VFtuGzEM/N9T6AIW+BJFfsZ2UARB1kDr9g4F8tn7o6RSZxVA6K5FSNzZ0ZIz8lby+n59/f2nfF503bZS4D8/dy+/GAC2t5KTcn7+9rKXy/3p/Mhcbj/3+4+CXgjKuL9in+63t0cGy6Wcem0NvXnBSgQUO0CFcR2vUgK1sjuwxHNS6MwLIJdbOUl1x6YJ7N0FaQGUZORqbCpQTlDRANuKsn1QgjOalhNWbcZuC6QmJ1VhxB7pymyNdAHsCYxyu5Fobq6EILBAWm6OtTF1pyQPCchkgfTgjCrIiWTUA8SKCyDCQLJxj6/Eyr2ZrQrHlAdrdyTBmJhL01UvMeWh6iKoLZ47i3tfATmAUoWsowUjivelOhjyvJcW5XQFC27p6rKkbGUPIDhqH60MKxkv69ZAho6o1mS0Xwh5pSP28ZnEYSLPpndS9SWnjcrVXMPwsXsTJlly+mgmGUXRuTvEG0tzPO/XL4fk49icb/v1ODZ503E4YlH4OAIYQw6jU4x2uBljqYdlMUY/jEkx7HAfxtIPi0kMnJ0kGRAny0gGpMkbkgF5MgGOIJPaMjJtUlUyoE7q4Qh9UklGxiY1JAP61HXJ8Jkg+Aehud1zc3P9+D+L+fYXs5P1yL93xLQAAAD+elRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJY/JbcQwDEVbydEGZEL83GHk5AKmCF+DqWCKD+W5CMTD33Rdr2v7fe3X89583zfu7frb3+/t2vvmn892BJlx+WACpozzcJKqvibBZ8hCSlVs3iiilNFIKCVdxzGJc7J9ZbOEaxxMbqlNQCrM0UaRNHij7omELaODpz7IBNE+dEAhx9mhKOAbPyHOi0lKRA+VsGwRUxS3hilLe90JKlVeM0u0KsappMhAS1grOsQ6ODqth4WXLTCLPZ+ishReptnE1jegYF0EwhZrYMC9VpVnOZbNVKDPHCT4sU3nkrF//gF2L08tAtYvQQAAAABJRU5ErkJggg==</base64_image>
280.711
2.3626
[ { "content": "What is the molecule visualization for the compound represented by 'CCOC(=O)CC(=O)c1ccc2c(Cl)nn(C)c2c1'?", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAelElEQVR4nO3de1xUdd4H8M8ADiB44ZIlihmKKJqJlGlqtS5pXsq0h2wrX13F8mWzabWoTy3PdjGyTOzyFKVtZOrKk25Lruaybam56gpY3EqFMtRQQS4Dyn2+zx8/HHG8BMPM/Eb5vP/qHOGcL7t8OGd+53t+P4OIgIj08dBdAFFHxxASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQEmnGEBJpxhASacYQErVXRVPFsYZjAgFQ3FB870/3tunbGUIi+20xbxmcPzg4O/jq3Kv75/XfbN5sbjKvK1/XpoMwhER2+rbm2zsK75gRMKPyusqqYVUv9Hxh18lddhzHICIOL46oI5hVNGt/7f6tA7a23Lmvdt/A/IEyvA2x4pWQyE75NfkxXWLafxyGkMhOJY0lgV6B7T8OQ0hkp97G3r80/NL+4zCERHaK8o36rOIzCyztPA5DSGSnp3o8dbTx6O9++t23Nd8eazi22bz575V/t+M4DCGRnUKNof8e8G+BTCqYNOyHYYuPLq6VWm8P7wifiDYdh48oiOyx8+TOIT5Dunh2af+hGEKiNjM3mfvl9QOQOTCzj7FPO4/G21GiNnvj+BuljaUDfQa2P4HglZCorUobS/vl9TM3mb8e8PUt/re0/4C8EhK1zeKji81N5sndJjskgeCVkKhNjjQcCc8Lr7XUZg7MjOoc5ZBj8kpIrtPY2PjSSy9FR0dPnz69trZWdzn2+J/i/6mx1MwImOGoBIJXQnKNvLy8VatWpaSkHD16VO255pprMjMzAwIC9BbWJgfqDkTmRwokd1DuQJ+Bjjqsl6MORHSu4uLiNWvWfPzxx9nZ2WpP3759g4KCsrOzf/rppxEjRqSlpQ0aNEhvka333C/PNUpjXHCcAxMIAELkaDU1NWlpabGxsZ06dVK/ZgEBAXFxcdu3b1dfcPjw4ejoaLU/PT1db7Wt9N2p7zwyPXz2+hTVFTn2yAwhOVJGRobJZAoKClLZMxqNU6ZMSU1Nraurs/nK6urqadOmAfD09ExMTNRSbZvcfuB2ZOKZw884/MgMITlAUVFRYmJi//79rXdYkZGRiYmJx48fP/eLT506pf7DYrEkJCQYDAYAcXFx9fX1rq26Db7J+mZwxuCu33YtaShx+MEZQrJfRUVFSkpKTEyMChKAXr16mUymb7/99kLfcuLEiYiIiISEBIvFovb85S9/8fX1BTB27NjzhtYdjBkzxuBhWPrpUmccnCGkNmtsbExPT585c6afn5/Knq+vb2xsbFpaWmNj48W/d+3atR4eHgAeeOCBmpoatXPnzp1XXXUVgP79++fn5zv/J2ibjRs3AggODq6srHTG8RlCaoPc3Nz4+HgVGAAeHh6jR49OTk6uqqpq/UE2bdrUtWtXACNHjiwuLlY7Dx8+fP311wPo0qXLxo0bnVO+PSwWS1RUFIA33njDSadgCOnXnThxIjk5efjw4daPfAMHDkxISPjxxx/tO2B2dnbfvn3V7WtGRobaWV1dPX36dHcbqlmzZo2q0/pR1uEYQrqg8vLyJUuWXORJQ3uUlJTccsstAPz8/DZs2KB2WiyWxMRE9Qlz1qxZ2odqGhsbIyIiAKxYscJ5Z2EI6fw2btxoNBqtTxqmTZv22WefnfukoT1qa2sfeughAAaDoeVQzbp16zp37gxgzJgxeodqkpOTAQwYMKChocF5Z2EI6fxGjRql4vfcc8+VlpY670RJSUlqqGbGjBnWW76srKzQ0FAA/fr1y8vLc97ZL6KmpkbVkJqa6tQTMYR0fmqY5I9//KMLzrVp06Zu3brZDNUcOXLEOlTz+eefu6AMG6+99hqAoUOHNjU1OfVEbQthZmamU6/L5D6uueYaAN9//71rTpedna3O2KtXrz179qidNTU19913n5ahGrPZ3KNHDwCbN2929rnaEMKsrCw/P7/bbrutrKzMeQWRO6iqqjIYDN7e3upvblZW1vPPP//VV1859aSlpaW33nqrGqpZv3692tlyqOaxxx5z7IfSC6mrq/v973+vPpS64HRtCOHOnTuvvPJKABEREfv373deTaTdrl27AERFRanNJUuWADCZTM4+b11d3cMPP6yGauLj461DNampqU4aqmloaCgsLExPT09OTo6Pj4+NjY2MjPT09PTz8+vUqdO//vUvB57rQtp2O9qy+f2f//ynk2oi7VasWAFg5syZavPBBx8EkJyc7JqzJyUleXp6ArjnnntOnjypdu7du7edQzUNDQ0FBQVffPHFW2+9ZTKZJk6c2L9/fy+v87zN5+XlpTrp3nnnHYf+ZOfX5oGZqqoq1fzu5eW1fPlyZ9RE2j311FMArB/D1F/eHTt2uKyAzZs3q6GaqKiooqLmV4eOHDlyww03qKGatLS0ix+hrKxs+/bt1utbdHS0ytW5evbsGRMTExcXl5iYmJqampGRcerUqU8//RRAaGhobW2ts39Ye0ZHL6Hmd7JPTEwMANU+1tTU5OfnZzAYysvLXVlDTk6OGqoJCQlpOVRz//332wzVlJWVZWRkpKSkWPNmbWq1ERAQMHr06JZ5s15pbVgslqFDhwJ47733nP2T2v+Iwtr8HhMTo3mopqJCTCYJDZWuXWXAAHnpJeEQbvuo7tCDBw+KyP79+wH06dPH9WVYh2p8fHxWr16tdra8BoSGhl7o+tarV69bb7111qxZr7766oYNG3Jycqz94q20bt069YM7ezSoXc8J3aL5vaFBRo2S0aNl9245fly2bJGwMHn4YT3FXBZKSkrULZ8aF9mwYQOASZMmaSmmrq7ukUcesQ7VWB/ZrVixokuXLuopf0BAQHR0dGxsbHx8fEpKSkZGhtlstvuM//nPfwoKCkSkqalpyJAhcHLPmrT/Yb11qKZr1656mt//+lfx95eSFq9a7t4tBoNw/NZeX331FYBRo0apzRdeeAHAH/7wB40lvf7662qoZtOmTWqPKnLYsGHtydu53n77bQD33Xef2ly9ejWAsLAwpz4eb++Uh7169dq6deu0adPMZvPUqVNfffXVdh6wzbKyMGYMgoPP7BkxAiEh2LvX1ZVcLnJzcwGoiwCAvLw8AIMHD9ZY0tNPP52Wlvbss89OnDhR7VFFjhgxoksXByzJYnXnnXcajcZ169bt27cPwIwZMyIiIn788UeVRidxwLyj6tGqasBdsGDB7NmzGxoa2n/Y1jp8GD162O7s2ROHD7uuhsuLTepsMqnLpEmT1ONKRVXl8D8NoaGhDz30UFNT0+LFiwF4enouWrQIwIsvvtjY2OjYc53hwKuqS+cpqKqSjz6Skydl0SKZONH2X0NDZc0a5xZw+RozZgyAL7/8UkTq6+uNRqOnp6fz3qazz+jRo61FOtbPP/+sfuR9+/aJSGNj44ABAwCsWrXK4edSHNzAbR2q6devn1OGapqaZPt2iYsTf38B5JNPZO1aCQyUlm925+eLh4doar2/DHTv3h3AsWPHRETNFxoREaG7KFsti3S4Rx99FMAjjzyiNj/88EMA4eHhvzp5h30c/xZFy3kKHNn8npcnCxZI794CCCAGg9x8s2zZIjU1EhEhsbGiHpMcPCgjR8qddzrsvB3MoUOHAAQHB6tN9V753XffrbcqG0VFRS2LdLjCwkIvL69OnTqpqQPq6+vDwsKMRv/16y84gVV7OOVVJkfOU1BWJsnJMnp0c/YA6dNH4uPlwIEzX1NUJJMmiZeXBAeLr688/HDzhXHLFpk0SVz7iPlSt2nTJgDjxo1Tm+oTUUJCgtaibNkU6QyqU2/WrFlq85NPMkNCGgYPFme81eSs9wnbOU9BU12drF8vU6eK0dicve7dZfZs2bFDTjf12jp5UoqKxNpk1NAg4eECyKBBZyWWLsqmV/vOO++E899qbSsXNJQfOHBAXQx/+uknEamvl759BZD/+z/Hn8u5L/XaMU+BmsK5b0hIU2CgAOLpKTExkpIiF2gvuphDh2T4cAEkMFCc8An+smTTqx0WFgbA3aYhdE1DueqPe+KJJ9Tm//6vAOKMi6HT36xv5TwFP//888svv6wm1VEy77tPli2Tdn7yrqqSu+4SQLy85K232nWojqFlr3Z1dbWHh4f1rUL34ZqG8u+///6KKwb99re7Dh0SEamrk6uvFkBOz0rlMK6Y3uIi8xScOnUqNTV1ypQpqh8CQM+ePU0mU2ZmpsNOb7FIQkLzPW1cnGhqN29qatq4caO6t3FbNr3au3fvBnDdddfprussrmwof+CBJkDmzm3efOstAWTYsAt+JLKPi+aYaTlPwZNPPtnU1LR9+/a4uDh/f3+VPR8fH7VyiLPeyVizRnx9BZDbbnPxUI1ap0E9QfXy8nr77bddefY2senVXrlyJYD7779fb1U2XNlQnpcnHh7i4yOHD4uI1NZKr14CyK+9R9U2rpvoyWKxPP/882qoxtr5bjAYxo4du2LFioqKCqdX8O9/y5VXCiDh4eL8qVMqKio++OCDMWPGWNdpUP/RqVOnP//5z84+u31serXnz58PYPHixXqrsuHihvL/+i8B5KmnmjeXLRNAhg935MXQ1bOtzZs3z8PDw2g0hoaGxsfHH3DxuOXBgzJ0qBqqaXDOjClNTU026zT4+PjExsampqaazeaZM2eqnSaTyUlPftvDpld7/PjxAH719VkXc3FDeW5u88XwyBERkZoaCQkRQE53kjuAhikP9+zZs2HDBotjb6tbr6pK7rrL7O8/bODAN99804EHzsvLO+86DTZt/h988IGaVPf22293xfW/LWbMmAHg448/VpshISEA7J7r3klsinQBNbT3zOmFCV97TQAZOdJhx++Q8442NX20eLGKyty5c9s59KfWaVCtjMqvrtPwzTffqOn0hgwZ4la/4pGRkQCysrJEpKysDIC/v7+2P5cXoJq2VZGusXevGAzi59c8VF9dLT16CCBbtjjm+B0yhCIisnbtWvXR1L5JHGtra21WhO7evbtap6E1v7WFhYXqNz4oKMjZUwm2Ul1dXadOnay92lu3bgVw44036q7rLLoayu+4QwBZsKB5MzFRAHHUfIgdN4Ry9swArZ/lVrUTBJ9+g9HT0zMmJua8K0JfnNlsvuOOOwAYjcaVK1e2vXwH++6771r2ar/zzjsAHnvsMb1V2dDVUJ6Z2XwxVC0nVVUyc6Y46mLcoUMobZnEUT1pCA8Pt952qhWh29PI39jYGB8fr44WFxen95m4em/V2qu9YMECAMuWLdNY0rlsinSliRMFkP/+7+bNtWvFZDrTJVlfL3FxdraWdPQQikh1dfVFJnGsrKxs64rQbbVixQo1VDNhwgSNQzXn9mqXl5e729CRxobynTvld7+T3NzmzblzBZAXXmjePHVKADublBlCkbMn8Hr00Ufr6+sv9KQhLS3NGdcr61DNgAED1LukrnTw4MHExMSAgABvb+8nn3zSxWdvE/dpKJ87V8aPF3//5uAxhI4xaNAglbegoCAfHx/rk4Zx48alpKS0aUVoOxQWFqpxv6CgINfMvl5WVvbuu++qJdCsn28NBsPChQudvQ6R3dynoXzuXDGZxGSS8eNFGEJHueKKKwCoiZ+VgICAwsJClxVQVVWl/tI7tbutsbFRXeTVCy6qgSk2NjY9Pf29995Tg72TJk2qrKx0UgF2c6uGchXCsjLp0UPWrmUIHaG4uFilLisr6/HHH3/iiScA3OnyN/SdOlSTm5sbHx+vVvVp2U7Q8iK/bds2NfA7dOhQd2s3d6uGchVCEfnoIwkJkePHGcJ2S09PB3DzzTerzYSEBACLFi3SUszKlSutQzXtf1fgyJEjSUlJUVFR1iv8oEGDEhISLpSxAwcOqDvz4ODgrVu3tvPsDuRWDeXWEFosMnaszJ/PELbbsmXLAMyZM0dt3n333QCsU6+73o4dO6xDNT/88IMdR6ipqVGviVkXHgoICFDtBL/6vZWVlZMnTwbg7e390Ucf2XF2hzh+/HjL4Vm3aii3hlBEcnLEz48hbDc1wZZ1KSz1evF3332nsaSioiJ1+QoMDGzTUE1GRkZcXFzXrl1V9ry9ve14TazljbHJZHLlUE1dXZ3qRjIajUuXLrXud5OG8r/9TU6dOiuEIvL00wxhu914440A1N1XTU2Np6enl5eXC5bFuriqqqqpU6e2cqjm559/TkxM7Nevn/W2Mzo6OikpqaTlGgFtlJycrIZqJk6c6IKhmp07d86ZMycwMFDV7+XlNW/ePOu/ukND+ZtvisEgEydKfr60vEGprpb0dHvmYBGGULFYLGo29dLSUhHJyspSDTG66xI5/QzzIkM15eXlNu0EvXv3jo+Pd9Tzxm3btqlx42uvvdZJQzWHDx9OSkpSS5EpqhupuLjY+jXu0FD++uvNs206dmFOhlBE5McffwQQEhKiNj/++GMA99xzj96qWlqzZo16dDl+/Hg1VHORJw0O/zUtKCiwDtV8/fXXjjps6yc3yc/Pf+CBBwBcddVVR9SLfS6nmrYNBnH4wyOGUEQkLS1N/X6rTfVZ6E9/+pPeqmxYF9vx8fGJjIxUU1CrJ+wTJkz45JNPLrTepUOYzeYpU6aoT5jtnBngvJObnLcbqaysrOVrYurZSefOnU0mk5Pm3r4QlUBPT3HGpAgMoYiIWv1j/vz5alMNDK5fv15vVTZeeeUVlQG0cM8997jsaV77h2q+//77hIQEtf5uy0+t6lOAVV1d3YYNG6ZOnaqe0+D0a2KrV6+OjY1Vd93+/v7x8fGu6Sh4/vnmBDrpRWKGUOT0DJPW94muvvpqAK7v4bw4VeTSpUsnTJgwatQo9Tltv8uXYXz//fetQzWtbO+2uaAB6NOnz3knN1HtBD1OL7OlXhNLSUmprq62fk12dnZsbKz12piYmNjWJXhbz2KRefMEkE6d5NNPnXQShlBERKKGDQOwe/duETGbzQaDwdfX193mgLnuuuvcpMjt27dbh2ouMlbZ8kmDyky3bt1mzpx57qdWNTCjfsALDczY+Oabb26++Wb1xaGhocnJyQ7vZbNYxGQSQIxG+etfHXvsszCEIg0Nlm7dTkZG1lZVici+3btHhoQMHz5cd1lnaWho8Pb2NhgMasaaHTt2qHs5XfUUFBRYZwY4d6imrq7O5kmDelBpc8myDsxY2wkCAwPj4uJaP+tsenr6sGHD1PcOHDgwNTXVUYNSFovMmSOAeHvL3/7mkENeEEMokp8vgPTr17z5/vsCNLnZqvf5+fkAwsLC1GZycjKABx98UGNJLWcG+PDDD23+VWXjvBc068CMdZFd+9oJrEdbtWqVersCwIwZ8//xj3b9XCLS2CgPPSSAdO4s7T/ar2IIRVJTBZCpU5s31S3IkiVaa7KVmpqKFg3lJpMJwBLdRdoM1bS8N962bVt2drbN17dyYMYO9fX1ycnJvXv3jojYC8jo0WJ302tjo8ycKYD4+bloBROGUOSPfzxr3oJx4xw8raQj2DSUjxs3DsAm9yjyVydxtA7MWNsJnDTr7MmT9YmJolYSUn9Xc3LadoT6ern7bgGkWzdx8lIXZzCEItOnC3BmeW01nV1RkdaabNk0lKvxwyK3KfK8kziqdoLWDMw4VlWVJCZK164CiIeHxMa2tqWzrq55itHu3WXXLucVaIshFBkwQABR904lJc1/Bt1sss2WDeUlJSXqF9qtZgS1TuLYuXPnWbNm3XvvvdYnDR4eHuc+aXC2khKJjxcfn+YHDHFx8qudNjNmCCDBwQ6bRq2VOnwIa2rE01O8vJrnzfryS1EfKdyJTUP5l19+CWC0mxUpIhUVFWr5rdY/aXC2oiKJixMvr+ZRFpNJjh0Ti0ViYuTVV898WWqqLFwomZkSESGuf3Omw4cwM7N56Udl+XIBZPZsrTXZUg3lg08XuXz5cgCz3axIpa6u7pZbbunatWt0dLQj17drn7w8mT5dDIbmW809e5qfPVhnzFuyRG6/XUREy7wZXujgcnMBYMiQ5s28PAAYPFhbPeeTk5MDYMjpIvPy8lpuuhWj0fj1119bLBYPDw/dtZwRGYn167FnD154ATk5zf9v338/Hn8cO3agZaVeOgLhRv9L6WGTOptMuodpBw8eHjly0U03qc38vDwAg93sL0VLbpVAqxtuwOefIyMDqv123jycOIEPPtBdFkN4VupEkJ9/ZtNtdNm9u9euXUNDQwFAZNu+faciIm50syIvFaeXL4DRiKVLsXAhjh3TWhBDeFYIDx1CRQWuugpXXKG3KFstiywqMpSW+lZWdna3Ii9Bd9yBsWOxcKHmMjr2Z0KzGYcOwdcXqukpJwdwu8ugbZFuecN86Vq+HNdeiylTdNbQsUNoMODdd1FeDvVmt3v+fufmQgSRkW5d5CWrb18sXIjnnsOECdpq6Ngh7NIFs2fDbMaxY7jiCjz2GKKjcXqpXXdxKYzfXtKeeQarVuksoGOH8KuvMG8e8vNhNKJzZzzzDJ59Fqf7G93FpTB+e2kxGFBYCDXOBcBoxI4dqK/XVk8HHpjJycGkSZg5E9XVqKrCunVYuhSvvaa7rHO0TF1TE374AQYDIiP1FnWpCwuDWmF51iz07InCQp03QB04hElJ+O1v8fTTMBphMOA3v8GLL+K11yCiu7KztQxhQQFqanD11Tg9sS+1U2Uljh5FQYHOGjpwCHNzMW7cWXtiYlBaiqNHNRV0PqWlOH4c3bqhd2+A96KOp1ZePnBAZw0dOITHjyMo6Kw96jmuW4UwOxsAhgxp/qTKEDoaQ6hVaCiKi8/a88svANCnj5Zyzo9Do07GEGp1/fX47LOz9mzYgLAw28ujXhwadTIVwv37ddbQgUM4fz4KCvDEEygsRGkpVq7EK6/g5Zd1l3W2qChMnowRIwCgrg4HDsDLCwMH6i7r8tGjB7p1Q3k5ysq01WAQdxsMdKV9+7BoEbZuRU0NhgzBwoW46y7dNV1YTQ0++QTHjuG553SXclm5/npkZmLXLtx4o54COvbD+ogIrF+vu4gLs1jw1ltYvRrFxQgMxF13YcEC+PrqLutyEx6OzEwcOMAQ0rnmzsXf/46kJFx3HQoK8Mwz2LkTX3wBt3xb79KlfWyGIXRXBQV47z3s3Nn89zksDJs2ITwc//gHbr9dd3GXFe0h5N9Ud5WZid69z7pD6t0bN92EPXv01XR5YgjpAg4dOk87Y69eKCrSUc3lLDwcPj61TU25ugpgCN1Vjx44ccJ2Z0mJ271pdekLCoKfX++9e689fvy4lgIYQnc1eDCKinDw4Jk9J08iI4NP6p2hX79+AAo09XEzhO4qOhqjR2PWrObrYU0N5sxB9+6YOlV3ZZeh8PBwAAc0fS5kCN3Y+vXw80NICPr3R/fuOHgQX3wBHx/dZV2G9IaQjyjcWFAQPvsM5eUoLkZwME4v7UAOxxDSRQUEICBAdxGXORXC/Zr6uDt27ygRAKCioiIgIMDf399sNhtcPskQPxMSoXv37sHBwdXV1Ud1vNLNEBIBWj8WMoREAENIpB1DSKQZQ0ik2ZAhQyZPnnzT6UUgXYmPKIg045WQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEgzhpBIM4aQSDOGkEiz/wdBPTuR3t6UuAAAAYB6VFh0cmRraXRQS0wgcmRraXQgMjAyNS4wMy4zAAB4nHu/b+09BiAQAGImBggQBmIRIG5gZGNIANKMzBCaiYmDQQNIMzOxQWgWBB8ijyHuAOGzOWSAaGZGJAZMBkILMiiAbGKHcJlhNNwB6AZxMzAyMDIxMDErMLNoMDGzMrCyMbCxazCxcShwcGYwcXIlcHFnMHHzJPDwMvDwZTDx8SfwCzDwCyYICmUwCXEkCHInOIH8y8YhJMjNxcnKwy3Izyf+DmQZAywYlq78eOCA0Rx7EOfJkTMHrta12oHYT3fNP9DX7g4Wd19TekCmymIfiJ34u+lAgtuV/SC21wzpA5bBa8Hq++cu3l/5Rw4s3mp0ZP+aKLYDIHZaMIvdikUX94LYvbVH7D7JbACbGe/+1J6l8ROYbZRr4/ApOh/M5tvR63BQczKYHSu6xMG7Tc4BxGZ6v8iBq8MD7AbBrgaHhH/zwHYxZ7Y7SDXpge3apqTj4CbEDRYvkl1ib/q2HcwWAwBlIFvU6RFPsQAAAe16VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJx9VFtuGzEM/N9T6AIW+BJFfsZ2UARB1kDr9g4F8tn7o6RSZxVA6K5FSNzZ0ZIz8lby+n59/f2nfF503bZS4D8/dy+/GAC2t5KTcn7+9rKXy/3p/Mhcbj/3+4+CXgjKuL9in+63t0cGy6Wcem0NvXnBSgQUO0CFcR2vUgK1sjuwxHNS6MwLIJdbOUl1x6YJ7N0FaQGUZORqbCpQTlDRANuKsn1QgjOalhNWbcZuC6QmJ1VhxB7pymyNdAHsCYxyu5Fobq6EILBAWm6OtTF1pyQPCchkgfTgjCrIiWTUA8SKCyDCQLJxj6/Eyr2ZrQrHlAdrdyTBmJhL01UvMeWh6iKoLZ47i3tfATmAUoWsowUjivelOhjyvJcW5XQFC27p6rKkbGUPIDhqH60MKxkv69ZAho6o1mS0Xwh5pSP28ZnEYSLPpndS9SWnjcrVXMPwsXsTJlly+mgmGUXRuTvEG0tzPO/XL4fk49icb/v1ODZ503E4YlH4OAIYQw6jU4x2uBljqYdlMUY/jEkx7HAfxtIPi0kMnJ0kGRAny0gGpMkbkgF5MgGOIJPaMjJtUlUyoE7q4Qh9UklGxiY1JAP61HXJ8Jkg+Aehud1zc3P9+D+L+fYXs5P1yL93xLQAAAD+elRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJY/JbcQwDEVbydEGZEL83GHk5AKmCF+DqWCKD+W5CMTD33Rdr2v7fe3X89583zfu7frb3+/t2vvmn892BJlx+WACpozzcJKqvibBZ8hCSlVs3iiilNFIKCVdxzGJc7J9ZbOEaxxMbqlNQCrM0UaRNHij7omELaODpz7IBNE+dEAhx9mhKOAbPyHOi0lKRA+VsGwRUxS3hilLe90JKlVeM0u0KsappMhAS1grOsQ6ODqth4WXLTCLPZ+ishReptnE1jegYF0EwhZrYMC9VpVnOZbNVKDPHCT4sU3nkrF//gF2L08tAtYvQQAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Synthetic_Accessibility
CC(=O)Nc1ccc2c(c1OC(C)=O)Cc1ccccc1-2
149,854
{'sa_score': 8.3, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
281.311
3.1415
[ { "content": "Determine the synthetic accessibility of the chemical structure 'CC(=O)Nc1ccc2c(c1OC(C)=O)Cc1ccccc1-2'.", "role": "user" }, { "content": "{'sa_score': 8.3, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
Molecular_Weight_Calculation
O=C(NN=Cc1cccc(OC(=O)c2ccc3c(c2)OCO3)c1)c1cccc(Cl)c1
1,087,241
422.82
422.824
4.0518
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'O=C(NN=Cc1cccc(OC(=O)c2ccc3c(c2)OCO3)c1)c1cccc(Cl)c1'.", "role": "user" }, { "content": "422.82", "role": "assistant" } ]
Synthetic_Accessibility
Nc1ccc(Cl)c(N)c1
21,209
{'sa_score': 9.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
142.589
1.5044
[ { "content": "Provide information about Synthetic_Accessibility for the molecule with SMILES 'Nc1ccc(Cl)c(N)c1'.", "role": "user" }, { "content": "{'sa_score': 9.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
GHS_Pictogram_Identification
CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3
1,464,882
["GHS08", "GHS09"]
540.599
4.6267
[ { "content": "Identify the GHS pictograms that apply to the compound with SMILES 'CCC(c1nnnn1Cc1ccc(F)cc1)N(Cc1ccccc1)Cc1cc2cc3c(cc2[nH]c1=O)OCCO3'.", "role": "user" }, { "content": "[\"GHS08\", \"GHS09\"]", "role": "assistant" } ]
Stereochemistry_Analysis
COc1cc(C=CC(=O)Oc2ccc3c(=O)c(Oc4cc(C)ccc4C)coc3c2)cc(OC)c1OC
1,672,892
{"chiral_centers": 0, "assigned_chiral_centers": 0, "unassigned_chiral_centers": 0, "chiral_center_details": [], "stereogenic_double_bonds": 1, "max_stereoisomers": 1, "potentially_meso": false, "stereochemistry_complexity": "None"}
502.519
5.84674
[ { "content": "Provide information about Stereochemistry_Analysis for the molecule with SMILES 'COc1cc(C=CC(=O)Oc2ccc3c(=O)c(Oc4cc(C)ccc4C)coc3c2)cc(OC)c1OC'.", "role": "user" }, { "content": "{\"chiral_centers\": 0, \"assigned_chiral_centers\": 0, \"unassigned_chiral_centers\": 0, \"chiral_center_details\": [], \"stereogenic_double_bonds\": 1, \"max_stereoisomers\": 1, \"potentially_meso\": false, \"stereochemistry_complexity\": \"None\"}", "role": "assistant" } ]
Molecular_Weight_Calculation
CCc1ccc(S(=O)(=O)N(c2c(-c3ccccc3)nc3ccccn23)S(=O)(=O)c2ccc(CC)cc2)cc1
1,236,383
545.69
545.686
5.7103
[ { "content": "Calculate the exact molecular mass for the molecule represented by 'CCc1ccc(S(=O)(=O)N(c2c(-c3ccccc3)nc3ccccn23)S(=O)(=O)c2ccc(CC)cc2)cc1'.", "role": "user" }, { "content": "545.69", "role": "assistant" } ]
Molecular_Weight_Calculation
COc1ccc(CC(CC(=O)Nc2ccc(I)cc2)C(=O)O)cc1
1,075,183
439.25
439.249
3.5719
[ { "content": "What is the molecular weight of the compound with SMILES 'COc1ccc(CC(CC(=O)Nc2ccc(I)cc2)C(=O)O)cc1'?", "role": "user" }, { "content": "439.25", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C
1,650,480
491.54
491.543
6.88664
[ { "content": "What is the molar mass of the substance with SMILES 'Cc1cc2oc(-c3ccccc3)c(OCC(=O)Nc3ccc(Oc4ccccc4)cc3)c(=O)c2cc1C'?", "role": "user" }, { "content": "491.54", "role": "assistant" } ]
Molecule_Visualization
O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1
797,349
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU1fsH8GcAAQUBFVIEFVJTXHAB3DAz1MrEtcSlUH6laBq45JamuOVSGkgqrqmk5kLumilqpqLfZBEDVHbBJZFVsGGZuc/vj4PjhEIwc2fOxZ73q9f3xahz7rkvvp97nnvvuefKEBEIIfwY8O4AIf91FEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCmeRDKAiQlga5ubz7QYiuGPHuQJUOHoS5c6FzZ8jOBoUCfv4ZbG1BoQBEMDQEA8kfQQipBhki8u5DJR49gi5dICICHBwAAFasgPh42LMH1qyB/Hzo2RMGDeLcQ0LEIOEQ7t0LJ0/Cnj3lH58+hcaNobAQZDKu3SJEZBKu6B4+hMaNn380MwNDQygo4NchQnRCwiG0t4cHD55/fPIEEMHKil+HCNEJCYdwwAC4dAmSkso/BgaClxfXDhGiExK+OtqwIYSEwPvvQ5s2kJMD9erBvn28+0SI+CR8YSY+Hpo2hQYNIDMTLC3BwoJ3hwjRCamGEBG6dIH0dDh7FtzcePeGEB2S6jnhkSMQGwv164OzM++uEKJbUj0nXLECAGDePDAx4d0V8t+lVCrz8/Pz8/MzMjJiYmLeeustFxcX0bciyXL02DEYOhRsbSElBerW5d0b8kqRy+V5lSguLq7wt48ePRIEQfVdY2PjiIgI0XMoyRB26wbXr0NwMPj58e4KqcWysrJGjhyZkJDQrFkzNqDl5eXVqAVDQ0MrKysrKytjY+OkpCSFQtGnT5+LFy+K20/phfDECRg8GJo0gdRUGgaJNvr27ftiYExNTRtUom7duhX+tkmTJgbPnhO4deuWu7t7Xl7ezp07x48fL2ZHUWIufxwimJljUBDvjpDaLT8/39LSEgDGjBkTFRWVmpqam5urZZuhoaEAYGlpmZmZKUonGWmF8ORJBMA3nR4Lf8t594XUbkuWLAGAfv36ad/UX3/9NWrUqLi4OEQcPnw4AAwaNEj7ZlWkFcLu3REAv/uOdz9ILVdQUNCwYUMAuHjxIiKeOnVKoVBo3NrMmTMBwM3Nrays7MGDB6zlXbt2idVbCYXwl18QABs3xqdPeXeF1HLLli0DgLfffhsRf/vtNwDo0aOHxq0VFRW1bNkSAFasWIGIu3btErcolVAIe/dGAFyzhnc/SC1XWFhobW0NAL/99hsivv322wCwbNkybdo8d+6cTCYzMTH5888/EXHYsGEiFqVSCeGvvyIAWltjYSHvrpBa7uuvvwYAd3d3RLxy5QobtfLy8rRsdtKkSQDQpUuX0tLSBw8eNGjQAABCQ0O177BUQvjmmwiAq1fz7gep5YqKimxsbADg/PnziNivXz8AWLJkiSgtv/766wCwcuVKRNy5cycAWFlZaV+USiKEJSXo54f29jQMEm2tXLkSAHr16oWIERERbBjU/uYE89Ki1NPTU8tmuYUwOxtXrcKCgvKPhw/j7duIiAUFeOUKr06R2q2oqOi1114DgPDwcEQcMGAAAAQEBIi4CV9fXwDo2rVraWnp/fv3WVH6448/atOmbkNYVoaPH2NSEl6/jmfP4oEDuGULrl6NgYGYkICGhujnV/4vP/wQf/kF8/IwPBy/+AJTU3XaL/JqWr16NQD07NkTEa9evQoAFhYWYg2DTEFBQfPmzQFg1apViLhjxw5WlN67d0/jNmsYQkHAwEB0d8cuXXD4cLxxAxFx715cuBD9/NDbGz09sXdv7NAB7e3R3LyFZR4AvvifvT0mJGD37ti5M0ZGIj4LYUYGbt+OPj54+bLGe0T+o1TD4JkzZxDx3XffBYCFCxeKvqHw8HBWlLLb90OHDgWAwYMHa9xgDUO4dSu+9RY+eoSCgCdPor095ufjoEEvyRkAArzVIs3aGlu1QldX7N8fR47EiRNxzhxcuxYTErBXLzx3Dl1dUaEoDyEi5uTgiRMa7w757/r2229V9wMjIyNlMpm5ufnjx491sa2JEycCQPfu3RUKhaoo3b17t2at1TCEzs54/frzj+PG4ebNuGcPLl2KwcEYGorHj+OlS/jnn5iZWfVlFhZCRBwzBjdseB5CQjQgl8ttbW0B4PTp04g4cOBAAFiwYIGONqcqSlevXo2I27dvB4BGjRo9fPhQg9ZqGEIzs39Ea9UqnDPnJf+stBSzsjAxMTGy4MwZ3L8fN2/GVatw3jycPBlHj8b33sP//a88hA8eoKMj9utHISSaW7t2LQC4uLgIghAVFSWTyczMzLKysnS3xQpFKYu9ZkVpDUNoa4sPHjz/OH8+rliB+/fjoEHo7o7t26OdHZqZqcrRld0PV1Ko4unT5SFExKAglMkohERDcrm8adOmAHDq1ClE9PT0BIB58+bperuffvrpi0Xpnj17atpODUPo5YWbN5f/rFRip0546RKuWVMxYXXqoI0Ntm6996MTAwaglxf6+uLcubhyJYaE4E8/4S+/YEIC+vuXt1RWhmPG4B9/1LTzhCAiBgYGqobB6OhoNgw+evRI19tVFaXffPMNIm7btk2zorSGIUxMxObNcd483LQJ+/fHyZMREZOT8cQJvHwZ4+Lw3j0sKqpZm4iIqFTi5s04ZowGXyX/aXK53M7ODgBOnDiBiEOGDAGAOS89S9KBs2fPsqI0Pj4enxWlQ4YMqVEjNb9PmJeHYWEYEoJXr9b4u5XLzEQLCwTA/ftFbJW8+tatW8funguCEBMTo7dhUOWTTz5hV2XVi9IZM2ZUvwVJTFtjNm8un8P911+8u0JqieLiYjYMHjt2DJ/NI5s1a5Y++5Cfn29vb29iYnLt2jV8dvfCzMzsabUfyZNQCAUB330XAXDoUN5dIbXE999/z55sEAThzz//NDAwMDU1faB+7VAvfv/9dzabFBGnTJnCzgyr/3UJhRAR09PLi9IDB3h3hUjekydPGjVqBACHDx9GxBEjRgDAzJkzOXZJNWunRjfupRVCRNy0iYpSUi1z584FgHr16gmCIAjCnDlzrK2tNbtdLhb1yavVJ7kQqopSLy/eXSHStnz5cgCoU6eO6qa8XM5zfbAKk1erT3IhRMT0dKxfHwHw4EHeXSESplQqO3bsCABDpXEVQX3yao1IMYSIGBKCBgY4aNB1HU3AJa+G9PT0+vXrA8AB3lcRKkxerRGJhlAQ0Ns7EABGjRrFuy9E0jZt2gQA1tbW+rw3+CL1yas1/a5EQ4hqB7mDVJWSygmCwB4d9OJ3FaHC5NWakm4IEXHjxo1SOMgRieN+vFafvKrB1yUdQkEQ3nnnHQAYPXo0774QSeN4vFZNXj1+/LhmLUg6hIiYlpbGDnJhYWG8+0Kki+PxOjg4WDVrR7MWpPdqtBds2LDh888/t7GxiYuLY/dhNFBQUJCXl8deUhcfH5+cnDx27Fg3Nzdxu0o4unv3bseOHQsLCw8ePPjhhx/qZ6MlJSWtWrW6d+/e0aNH2QMcGqgFIUTEd9999+zZs2PGjNm7dy/7Q/U3qr74gtUKsrOzy8rKKjTLVo9s3bq13neI6MrGjRunTp1qbW0dHx+v8fG6RtgI0blzZ/Yco4atiDgu605KSoqZmZlMJmvevLmNjY2RkVFNd9PS0tLBwaFz5859+/bt3bt3nTp1AGD48OG894yISRAEttboGL08mVpSUtKiRQt4NnlVY7VgJGTc3NzS0tJycnLYR/U3qr74gtUKbGxsWOpUEhISevToUVhYGBYW9sEHH/DYIaIT6enpzs7O+vnNhoSETJkypUOHDrGxsaoX+mpCpIOCbsXFxRkYGJiYmFy+fDkrK6usrEz7NtlTMDY2NjpdDojo3/r169lvVqdXSktLSx0cHADg559/1rKp2hFCdkir0dPKlbl27Zqrq2tycrIgCP379weAjz76SPtmiXSoitKxY8fqbitspk779u2VSqWWTdWCELJh0NTU9P79+3K5/IcffigpKdG4tbFjxwKAh4eHIAipqanm5uaiHMyIpKSlpYn7m83NzU1NTS18tt5naWmpo6MjiDQ9oBaEcOTIkQAwbdo0fFZD1nQhHXXZ2dmNGzcGgA0bNuCzmzxNmjTJyckRrcdEAqo+3fj777/v378fFxd36dKlY8eOHThwYNeuXUFBQQEBAf7+/t7e3p6enu7u7u3atbO1tVVdCDx69Cj7+pYtWwCgXbt22g+DKP0QxsfHs2Hw3r17xcXF9vb2AHDkyBFt2jx69CgAmJmZJScnK5XKt956CwA+/vhjsfpMpED1m1U/3Zg/f36jRo0MDQ1reumkQYMGjo6ObE6MahjcL9KqZDW+1q9nS5cuFQRh4sSJdnZ2GzduvHfvXufOnTW+K8oMGTJk1KhR+/fvnzhx4rlz53bs2OHs7Lx79+4RI0YMHz5crJ4TvgwMDNhvds+ePSNGjGCLX5SVlbEL7BUup1d9gf21115Tvyu2c+fOtLQ0Jycn0aYEiBJlHUlISGAXRTMzM0tLS9k9mUOHDmnfsqooDQkJwWfL5tna2lJR+ophv1nV6UZubm52drZCoajOdwVByMnJSUlJiYyMDA8PDwsL27Ztm6+vLwvkDz/8IFYnJX2fcOzYsT/99NPUqVPXr1+/adOmzz77rH379jdv3tTqnswzR48eHTZsmJmZWWxsrKOjo4eHx8WLF729vUNDQ7VvnEiEIAjsN/vxxx//+OOPL51ZVdmMq6ysLKVS+dJm69evn52dbWxsLEonpRvCpKQkJycnAwODpKSkpk2bvvHGG+np6eLegR01atSBAwc8PDzCw8PZTd6ioqJDhw5RUfoqSU5OdnZ2FgShrKxMEITqf1EmkzVo0MDKyor9L1NUVFRSUjJ37twePXqI1UPphtDb23v37t2TJ08OCQnZsmXLpEmTRBwGmezs7A4dOjx69GjTpk2TJk0KCgqaMWOGra1tXFxcw4YNxdoK4UsQBAcHh7y8vKKiopee+FV2Qti4cWMNLuFoQqy6VlxJSUlGRkZ16tRJS0tTXYzSxToiR44cAQAzM7OUlBSlUtmnTx8AGD9+vOgbIrzs27cPAJo1a8Z3LbYqSDSE48aNAwBfX19E3Lp1K4h3T+ZF7D5khdv3Wk7JfYXl5eWlpaXFxMRcuHDh8OHDO3bs+O677xYtWuTv7//ee+81a9aM3dGVCEEQnJ2dAWDLli28+1IpKZajKSkpbdu2lclkd+7csbe3b9u2bWpq6r59+0aNGqWLzWVnZ7dv3z4rK2vz5s2+vr6BgYEzZ860tbWNj49nL/d45d25cycpKcnKykr1yOWL2F/l5eVVp8FVq1axlXm5CwsLGzlyZPPmzZOSksS6jiI+3keBl/Dx8QGACRMm4LMXETs5OeloGGT2798PakXpm2++CQA+Pj6626J0sLfqVZ+VlZXqobBhw4b5+PhMnz59yZIl69atCw4O7tSpEwDY2trm5uby3jMUBIH1Z9OmTbz7UhXJjYSpqalt2rSRyWS3b99u0aKFk5NTUlLS3r17x4wZo9Ptjhw5MiwsjF0pTUtLc3Z2fvr06ZEjR4YOHaqLzbH3h7BKiS9HR8f09HQjI6MePXpUuBKoTnWdsOrWBEHo27fvpUuXfHx8duzYoZ9dqMyhQ4c++OCDZs2aJSUlmZiY8O1MVXgfBSpib3v75JNPEJH9Flu3bl3Nu6vaePz4MXsWm508sGUkmzZtqosj+tmzZ42NjTt06KDNTHRRXLlyBQDMzc3v3r2rfWupqamCILAnsEHr2YVaEgTBxcUFADZu3MixG9UhrRCmp6cbGxsbGhomJiYqFIo33ngDaviCG22wy2gWFhZ3795VFaX/93//969fLCgouHv3bmxs7MWLF48ePcqmAi9evHj69Ok+Pj7Dhg3r27evk5OTkZGRvb19enp6cXFxu3btAOCrr77Sw35VoV+/fgCwZMkS7ZvauHGjqampHg5h1XT48GEAsLW1lexFURVphXDChAnw7GRs165dANCqVStRHuGtJjYbsF+/foIg3Llzp27dugAwe/bs9evXL1++fNasWRMmTPjwww/79+/v4uLy+uuvN2zYsKb3Lbt3746IERERhoaGRkZGf/zxh972roKIiAgAsLS0zM3Nzc/PHzhw4K+//qpxaxofwnTE1dUVANavX8+rA9UnoRDevXuXDYN37txRKBRt2rQBgNDQUH324a+//rK2trazs8vIyEDE2bNnswUXq2ZhYdG8eXNnZ+c+ffoMGTJk3Lhx06ZNCwgICAwM3LFjx+HDhy9cuBAVFRUcHMwu0LF1mmfOnAkATk5OvA7V7MnXgIAARFyyZAkAeHh4aNPgSw9hmi1KrSX2oIytre3ff/+t/63XlIRC6OvrCwDjxo1DxB9//BEAWrZsqc9hkImIiMjLy2M/s6tBbdu2nTp16oIFC7799tutW7cePHjw7NmzkZGRKSkpOTk5Nbpsy17cw+o0uVzu5OQEAAsXLtTNrlTl6tWr7PCRm5tbUFDAZgj99ttv2rSpOq/eunUrIq5Zs4ZXUcoWswwODtbzdjUjlRBevXrV0NDQ0NDw9u3bCoWibdu2ALBz506OXUpMTDQ0NDQ2Nk5PTxerTaVS2bt3b9WVJ1VRev36dbE2UU3s/Q0s/+xFf3379tW+2Z9++km9KFXfWb05fvw4ADRp0qRWDIMonRB6enqyoyYiyuXyRYsWde3aVf/DoLqPPvoIAD777DNxm719+7Z6nTZ9+nQAcHZ21ueV0mvXrrGo5OTkFBYW2tjYAMCFCxdEaZzNsGdFaYWd1Y9u3boBQFBQkN62qCWphHDy5MnsWnl+fj77E40XFReF+uRV0Rv/5ptvVHXa06dP2QLEixYtEn1DlRk4cCAALFiwABFXrFgBAO7u7mI1npWVxYrSbdu24T93VqxNVOHkyZMA0Lhx46dPn+phc6KQSghLS0vZW1fZRBnuvL29AWDSpEm6aFxVp7GdVRWlkZGRuthcBZGRkTKZzNzcPCsrq6ioiA2D586dE3ETbKF0CwuLjIwM1c5++umnIm6iMu7u7gCwdu1aPWxLLFIJIarVab/88gvfniQnJ7NhMDU1VUebqFCnTZs2TW9F6aBBgwDgyy+/RMRVq1YBQK9evUTfCitK+/fvr8+i9PTp0wBgbW2tWhatVpBQCBFx9erVAGBnZ6e6PsnF+PHjAWDixIk63Yr6zqqKUnbDQHeioqJkMpmZmRkbBlndePbsWdE3lJWVxcbY7du3o75+s2zI/fbbb3W3CV2QVgiVSiUrJ3QdgCroYRhkKuzslStXDAwMdF2UDh48GADmzp2Lz87WevbsqaNt7d69m00GUC9KdXe6cebMmdo4DKLUQoiIt27dMjU1lclkvIpS9cmrunbr1q26deuqdtbf3x8AOnXqpKOilL05yMzM7NGjR0+fPmXDoDazZP4VW+NswIAB6kWpjn6zbI7O6tWrddG4TkkuhIi4cuVKXkWp+uRV/WyRnZWpitJWrVoBwOLFi3WxLfZEyOzZs/HZnXQ2h053VEUpW5tMfWfF3VB4eDgANGrU6MmTJ+K2rAdSDKFCoWC3enR0cbIK6pNX9UNVlLJlBC5fvqyjojQmJkYmk9WrV+/Ro0dyubxp06b6uX3HJj+pilL1nRURW5dE9Ju6+iHFEKJaUXr69Gm9bVR98qreNoovVOB+fn6sKC0tLRVxK2wJuS+++AIRAwMDAcDFxUU/N2NZUfr++++jqKcbgiDk5uYmJiZ++umnbBJv69ata8ssGXUSDSE+u4ncokULvRUY6pNX9Uy9AlcVpaI8YcRUeKmOnZ0dAJw4cUKs9qv28OFDNjeVzUOs4nSjwisi2ENhq1atqvoVEQxbHGjWrFn62SkRSTeEZWVlbBru5MmT9bC5jIwMNgzevn1bD5uroEIFripKo6KiRGlf/d1ybFHqrl276nNOEltS2dLSMjMzs6ysjO1s69at+/Xrp/FDYTKZzNTUFACMjIy6det27ty5OnXqGBgYXLp0SW/7JQrphhARExISWOmi0yt4DJs3x/G1MBUq8KlTp6pKOC2pD4PFxcVsGDx27Jj2LdfI4MGDBw8e/PDhQ0Tcu3cvG7gqMDU1tbW1bdeunbu7u6enp7e3t6+vr7+/f0BAQFBQ0K5du44dO3bp0qW4uLj79++XlZWlpaWxZ83CwsIQcf78+QDQpk2b2lWUSjqEiPj111/roSjNyMgwMTExNDS8deuW7rbyr9Qr8MLCwhkzZojybowX3y3XpUsX/U/NVZ/MySavfvDBB+Hh4Zo9FKai/l7e4uLiDh06qK4A1xZSD6GqKNXpha8pU6aAjl/sWh2iVODq64IeOnRo+fLlqnfLKRQK9oZnvquqqk9e1b61Cu/ljY6OrnVFqeRWW3vRrVu3unbtWlJScvr06XfeeUebpoqKilSraLq4uNSrVw8AHj582LJly5KSktjYWHYc5Ui1s5s3b544cSIAqL+rpLJXl6g8fvxYoVBUaLNFixaNGjWKiooCgKSkpF27di1btkwmk3HYPQAA8PT0PHny5JdffslGfu2lp6d37NixqKjo559/HjFixPz581euXNmmTZuYmBg2PUDiakEIAWD58uULFy50cHC4efNmhfUmqv4/pbqcnJzS0lLVF2NjY9mKg35+fuvXrx89ejR7IJW7WbNmrV27lo0Vcrn8xVBVrcI6hQBw4sQJhUIRHh7u4eGhmy7XQHR0tKura7169dLS0th9fFF8//33/v7+NjY28fHxFhYWrq6ucXFxc+bMYXNWpY73UFwtZWVlbN2eqVOnqv6QnVfUiLm5ub29fYcOHXr37s1W/nzw4EHdunUNDAxu3rzJb//+QXULgVG/VtG/f392uaKKaxUvNsgenHdwcJDCbBL1yasiqvDG5aioqFYtWoS7uGBtKEprx0gIAAkJCS4uLiUlJb/++is7B/Dy8jp48GAVL1itwNra+sWF0KdPn75u3TovLy+2CLdEPH78ODEx0c7Ozt7evsLdMA0oFIpevXpdv359ypQpGzZsEKWHmomJiWFnAampqWzmqojYks2ql9spFywwXLECnJwgOhpMTcXdlsh4HwVqYOnSpaB2RK/+xbQK64Lu3LmTrQvq6+trbGwsqWFQR1Q3e86cOcOxG+qTV3Vh3bp1js2aXfTwwJwcLC7G9u0RAMUedUVXa0ZCAFAoFD179oyMjPTw8AgNDZXJZBqcClbQrFmzoqKijIyMl962epUsW7Zs0aJFLz2v1o8bN2507dq1bt26aWlpog+DjCAI8oEDzc6cAW9vCA2F6Gjo0QOUSvj9d3B318UWxcH7KFAzf/zxhwaX9SqsCzp+/Hi2LujatWvZIt+ff/457z3TuZeeV+uT+uRVHUpNRXNzBMBDhxAR585FAGzbFiW8DndtGgkZHx+fPXv2GBsbOzg4vPSlJRV+btCgQRXzoW7evOnm5lZWVqY61XyFJSQkdO3atbS0VP87Gx8f7+zsbGxsnJKSwh7g0KF162D6dLC1hbg4MDMDFxeIj4d582DlSt1uV2O8jwL8scWnHRwcat0T2RrgtbNsce7p06frY2NKJfbpgwDI5uJfu4aGhmhoiP/7nz62XnMUQiwrK2Ov7/Hz8+PdF51TFaX6rMDj4+NVs3b0tElVUcrmBs2ZI+WilEKIiBgbG8suk2q5DnytoP+d9fLyAgB/f3/9bK5cYCACoK0t5uSgXI5t2yIArlyp1z5UD4Ww3OLFiwHA0dHxv1CU6nNnExISDAwMTExM9DcMMqqidPx4RMSrV9HPD4uK9NqH6qEQllMVpfo+YPOgz50dPXq0nqvf5xITsV49BEA9rs+gAQrhczExMY0tLKL69sXff+fdF527ceOGHopS1TCYmZmpu61UJSgI/f3LB8B9+3DUKOzfH2fMwPv3+fTnZSiE/yBfsQIBsFUrrD1vMtBYQECArovSsWPHAsCUKVN01H4N7NmDrq544wZmZWFwMLZti6Iu4aON2nefULcUCujRA6KiYNo0CAri3RvdUigUPXr0iIqKmjZtWlANd/bJkyf5L5OXl/fZZ5+xKRBJSUnt2rWTyWRJSUktWrTQzU5Um7MzbNsG3bqVfxw8GLy9wcuLa5/KUQhfEBsLbm6gVMKFC9CnD+/e6FZsbGy3bt0UCsX58+fZUwgAEB0dffv2bZaoCgFT/axUKitr8/jx4+xFd97e3rt37548eXJISIie9qcyggBmZpCfDyYm5X8SEAAGBhAQwLVb5SiELxMQAEuXgqMj3LwJr/qc0sWLFy9ZssTR0fHmzZtsAu2ECRO2b99e9bfq16+vPj9J3ZAhQ1q2bJmcnOzk5CSTyRITE9nj/JxZWkJmJlhYlH+cMwdsbGD2bK59KqftYzKvpoUL4cQJiI6GhQshMJB3b3Trq6++On78eHR09MKFC9l6pL169ZLL5RWmAVb4aGhoWHWzvr6+CoXC19dXEgkEAFdXuHABhg4t/3j+PKxZw7VDz9FIWIn/WFHq5uamVCovXLjQp8qdfQ3sTb0AAAN5SURBVPLkSYUa9aXFanp6ekFBAQAkJCQ4OTnpaz+qdO0ajBoFCxZA06awbx8UFsLRo7z7VI5CWLlFi2DZMnj9dbh5E8zMePdGtwICApYuXWpiYuLj42Nvb19ZwARBqH6bAwcOPHXqlO76XGOJiXDyJOTkQOfOMGwYaP20tFgohJUrLQVXV0hJgVOn4NlFi1dVcXFxw4YN5XJ51f/MwsKislNB9T83MjKysrJSX6SDVIFCWKW4ODAxgdatQamEzEx47TWoV6/8r7KyQPVkakkJFBeDpSWvbooiIiLiyy+/VCgUHh4elQWspotkk+qgEFbDli3wzTfQsSOkpECbNhAaCnXrgoUFPH5cfsn76FHYswcOHODdUVIr0YHt30RHw5o1cP06HD4MN26Aickrf72U6BmF8N8cOQLe3tCgAQCAgQFMnw6HDpX/1dOnUFQERUVQXMyxg6S2k8oFIul68AC6d3/+0dYWHjwo/3nwYGAL3uTmAu+lu0ntRSH8N3Z2z1MHAPfvg719+c/nz//jnJAQjVA5+m9GjIDduyEvDwAAEYKDYeRI3n0irxQaCf9Np04wZQq4uUHnzpCSAi4u4OfHu0/klUK3KKpHoYC7d6FJk+dTZ3JzoWHD8p9LS6GkBHisqEteARRCQjijc0JCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM7+HxE5Mpgtas9FAAAB63pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJACYhkgbmDkYNAA0sxMbBCahc0BRmeAaGZG4hi4NUFlGGACDLj1QATYFbSANCMzC8xpHGCB//gs5oCYyohFCTcDowYTI5MCE3MGEzNLAgtrBhMrWwIbewYTI4cCB2cGEydXAhd3BhM3jwIPrwYTL58CH38GE79AgoCggqCQBpOgsIKASAaTiGiCqFgGk5i4ArdEgoRkBhM7U4IkR4IYX4ITM9AiNmYWVjZ2JjZOLm4JSQ42fgERUTE+cSdGoEcYYGFuXrnZ4TSf8AEQx/jJDIefdm37QewJZuscksSm24HYH2XvOVisOw5m+xV8dlD4cNcexPa6fcMh7rmdA4j98vMKh+QrFmB2z8LJDqZLjoLVLPkZ6PAuZRLYzDnnZRzuzrpuC2JnMJfYG93RtAGx/z+YZHdzwyqwGpens/afv7YNzF41h+nA5IPm+0Ds7OykA/MresDsXae6D7xsqASbL7Vp94F/Jolgtpz7tQN9NhxgNziIMx+crMkEZh/8cuDANbs4MLuC5eIBrxVvweaU5G87sN7jNtgu4Y62AzuVzoPZcs/CD6xuMAeHiT9Pv/1ud1Uw+2WIusMBE3kwWwwAiAiKZvPCCkkAAAKLelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVXLbtswELz7K/gDIrhv7iGH2E7doogNtE7/off+P7rLIBZTEJXMhUgNqeXMLH0oef04f//9pzwuPB8OpbT//Ny9/KLW2uG15EM5vly+Xcvp/nz8GDnd3q73nwW1YI85cX/GPt9vrx8jUG5FqrYubGXDim5mMau2ce1TsZwK13wpWjaojbu5LYAUQKnMDBqjsaA0pwWOA6fVGUAkXpPHW1jgJHAWGRqLF6hG1L0tcDrWM1NTL1i9Yzdc4Gzkh5G8ceB6bENX+fWxYQViC5qqMEcKC5wHjir21hWTGGCyJgsghDLxQZYGlhuFJmi6AkIAW3UhsMEwNNIV1YADiF27UX6biARXm4ZUJQAIDXCkydiZVjxCChNOaNx6fGCLRM2ZfQVNbTaqQtabJhSNSVb2gZRn40raedjGjRVXvEMKtEntKuzJU/oMloT2ci2bVnWFDkEtBBM+M1pOXy9P8MB7mH3rFTyIjeKojSLxFbHYEqm1ofeQgCobSpd/V94eS2NKFhNSMpdkgpXBVlkjvu/PGoQDUgoDAlkZAemdNGxRJZDQ2CjyMmPOjKmSEUf2oV9XQ1xWcqoWPo30wviBlI7SVlKgDscqsISogYyaF19t6uV6/nSsvB80x9v1vB80mG0/TnKA9kODs+1nQ96yHwHRKbpXOkezvaA5Wt/rNlf2vTw5GsxVyBkApnLjDIBTXcEINNVPdkdxfLk84VQsMIJMNZHdMPxkfc4ANlkcRuiTlTED+GRWGMOzKTln4ew6zoA4mYszIE0eggzIk1U4d4cyOYIzoE7KczC5r5Ikx+AjvXAWj7VltsAsePY//pXi+fAXCZFJr9jCt3UAAAFEelRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJZE7jsMwDESvsqWNlQj+ScFIlX59gCBVrpHDL2m7sITnIYdDn4/n9qFPP7Rfl+35eH64ztff73t7nPvrnO+9PvBZb/r5bgaOaTYmA6+IHIdC1OljEqBmAQNVJR9YCsMl43BYSmRFZCEijSOqTagPghDJ1ZIIjxgMKzmju3CsC2TG8vZxEo0qMVUshQAn3sakEtWVQQ0pyofQOKoIYZlQNEJC8dBmnJ4hXSgixuOoGxMSN1JOrZkrIComjVndYqnWkFPAJG7GoWKVdiqIZ2dbFYi70iDdSo9Qk0flPqaDL6esNHSlmwm05AIoEuuSIK/an4AG202sJWWmrhR2tQ4k6jGDpHbc9ox6ozJgu6aUEOX+R+nRI9WGqt6b2KXhEusNNKPc9u8/oiZtCX36JYIAAAAASUVORK5CYII=</base64_image>
345.354
4.7018
[ { "content": "Determine the molecule visualization of the chemical structure 'O=C(c1ccccc1)c1ccc(C=Cc2cc([N+](=O)[O-])ccc2O)cc1'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxU1fsH8GcAAQUBFVIEFVJTXHAB3DAz1MrEtcSlUH6laBq45JamuOVSGkgqrqmk5kLumilqpqLfZBEDVHbBJZFVsGGZuc/vj4PjhEIwc2fOxZ73q9f3xahz7rkvvp97nnvvuefKEBEIIfwY8O4AIf91FEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCmeRDKAiQlga5ubz7QYiuGPHuQJUOHoS5c6FzZ8jOBoUCfv4ZbG1BoQBEMDQEA8kfQQipBhki8u5DJR49gi5dICICHBwAAFasgPh42LMH1qyB/Hzo2RMGDeLcQ0LEIOEQ7t0LJ0/Cnj3lH58+hcaNobAQZDKu3SJEZBKu6B4+hMaNn380MwNDQygo4NchQnRCwiG0t4cHD55/fPIEEMHKil+HCNEJCYdwwAC4dAmSkso/BgaClxfXDhGiExK+OtqwIYSEwPvvQ5s2kJMD9erBvn28+0SI+CR8YSY+Hpo2hQYNIDMTLC3BwoJ3hwjRCamGEBG6dIH0dDh7FtzcePeGEB2S6jnhkSMQGwv164OzM++uEKJbUj0nXLECAGDePDAx4d0V8t+lVCrz8/Pz8/MzMjJiYmLeeustFxcX0bciyXL02DEYOhRsbSElBerW5d0b8kqRy+V5lSguLq7wt48ePRIEQfVdY2PjiIgI0XMoyRB26wbXr0NwMPj58e4KqcWysrJGjhyZkJDQrFkzNqDl5eXVqAVDQ0MrKysrKytjY+OkpCSFQtGnT5+LFy+K20/phfDECRg8GJo0gdRUGgaJNvr27ftiYExNTRtUom7duhX+tkmTJgbPnhO4deuWu7t7Xl7ezp07x48fL2ZHUWIufxwimJljUBDvjpDaLT8/39LSEgDGjBkTFRWVmpqam5urZZuhoaEAYGlpmZmZKUonGWmF8ORJBMA3nR4Lf8t594XUbkuWLAGAfv36ad/UX3/9NWrUqLi4OEQcPnw4AAwaNEj7ZlWkFcLu3REAv/uOdz9ILVdQUNCwYUMAuHjxIiKeOnVKoVBo3NrMmTMBwM3Nrays7MGDB6zlXbt2idVbCYXwl18QABs3xqdPeXeF1HLLli0DgLfffhsRf/vtNwDo0aOHxq0VFRW1bNkSAFasWIGIu3btErcolVAIe/dGAFyzhnc/SC1XWFhobW0NAL/99hsivv322wCwbNkybdo8d+6cTCYzMTH5888/EXHYsGEiFqVSCeGvvyIAWltjYSHvrpBa7uuvvwYAd3d3RLxy5QobtfLy8rRsdtKkSQDQpUuX0tLSBw8eNGjQAABCQ0O177BUQvjmmwiAq1fz7gep5YqKimxsbADg/PnziNivXz8AWLJkiSgtv/766wCwcuVKRNy5cycAWFlZaV+USiKEJSXo54f29jQMEm2tXLkSAHr16oWIERERbBjU/uYE89Ki1NPTU8tmuYUwOxtXrcKCgvKPhw/j7duIiAUFeOUKr06R2q2oqOi1114DgPDwcEQcMGAAAAQEBIi4CV9fXwDo2rVraWnp/fv3WVH6448/atOmbkNYVoaPH2NSEl6/jmfP4oEDuGULrl6NgYGYkICGhujnV/4vP/wQf/kF8/IwPBy/+AJTU3XaL/JqWr16NQD07NkTEa9evQoAFhYWYg2DTEFBQfPmzQFg1apViLhjxw5WlN67d0/jNmsYQkHAwEB0d8cuXXD4cLxxAxFx715cuBD9/NDbGz09sXdv7NAB7e3R3LyFZR4AvvifvT0mJGD37ti5M0ZGIj4LYUYGbt+OPj54+bLGe0T+o1TD4JkzZxDx3XffBYCFCxeKvqHw8HBWlLLb90OHDgWAwYMHa9xgDUO4dSu+9RY+eoSCgCdPor095ufjoEEvyRkAArzVIs3aGlu1QldX7N8fR47EiRNxzhxcuxYTErBXLzx3Dl1dUaEoDyEi5uTgiRMa7w757/r2229V9wMjIyNlMpm5ufnjx491sa2JEycCQPfu3RUKhaoo3b17t2at1TCEzs54/frzj+PG4ebNuGcPLl2KwcEYGorHj+OlS/jnn5iZWfVlFhZCRBwzBjdseB5CQjQgl8ttbW0B4PTp04g4cOBAAFiwYIGONqcqSlevXo2I27dvB4BGjRo9fPhQg9ZqGEIzs39Ea9UqnDPnJf+stBSzsjAxMTGy4MwZ3L8fN2/GVatw3jycPBlHj8b33sP//a88hA8eoKMj9utHISSaW7t2LQC4uLgIghAVFSWTyczMzLKysnS3xQpFKYu9ZkVpDUNoa4sPHjz/OH8+rliB+/fjoEHo7o7t26OdHZqZqcrRld0PV1Ko4unT5SFExKAglMkohERDcrm8adOmAHDq1ClE9PT0BIB58+bperuffvrpi0Xpnj17atpODUPo5YWbN5f/rFRip0546RKuWVMxYXXqoI0Ntm6996MTAwaglxf6+uLcubhyJYaE4E8/4S+/YEIC+vuXt1RWhmPG4B9/1LTzhCAiBgYGqobB6OhoNgw+evRI19tVFaXffPMNIm7btk2zorSGIUxMxObNcd483LQJ+/fHyZMREZOT8cQJvHwZ4+Lw3j0sKqpZm4iIqFTi5s04ZowGXyX/aXK53M7ODgBOnDiBiEOGDAGAOS89S9KBs2fPsqI0Pj4enxWlQ4YMqVEjNb9PmJeHYWEYEoJXr9b4u5XLzEQLCwTA/ftFbJW8+tatW8funguCEBMTo7dhUOWTTz5hV2XVi9IZM2ZUvwVJTFtjNm8un8P911+8u0JqieLiYjYMHjt2DJ/NI5s1a5Y++5Cfn29vb29iYnLt2jV8dvfCzMzsabUfyZNQCAUB330XAXDoUN5dIbXE999/z55sEAThzz//NDAwMDU1faB+7VAvfv/9dzabFBGnTJnCzgyr/3UJhRAR09PLi9IDB3h3hUjekydPGjVqBACHDx9GxBEjRgDAzJkzOXZJNWunRjfupRVCRNy0iYpSUi1z584FgHr16gmCIAjCnDlzrK2tNbtdLhb1yavVJ7kQqopSLy/eXSHStnz5cgCoU6eO6qa8XM5zfbAKk1erT3IhRMT0dKxfHwHw4EHeXSESplQqO3bsCABDpXEVQX3yao1IMYSIGBKCBgY4aNB1HU3AJa+G9PT0+vXrA8AB3lcRKkxerRGJhlAQ0Ns7EABGjRrFuy9E0jZt2gQA1tbW+rw3+CL1yas1/a5EQ4hqB7mDVJWSygmCwB4d9OJ3FaHC5NWakm4IEXHjxo1SOMgRieN+vFafvKrB1yUdQkEQ3nnnHQAYPXo0774QSeN4vFZNXj1+/LhmLUg6hIiYlpbGDnJhYWG8+0Kki+PxOjg4WDVrR7MWpPdqtBds2LDh888/t7GxiYuLY/dhNFBQUJCXl8deUhcfH5+cnDx27Fg3Nzdxu0o4unv3bseOHQsLCw8ePPjhhx/qZ6MlJSWtWrW6d+/e0aNH2QMcGqgFIUTEd9999+zZs2PGjNm7dy/7Q/U3qr74gtUKsrOzy8rKKjTLVo9s3bq13neI6MrGjRunTp1qbW0dHx+v8fG6RtgI0blzZ/Yco4atiDgu605KSoqZmZlMJmvevLmNjY2RkVFNd9PS0tLBwaFz5859+/bt3bt3nTp1AGD48OG894yISRAEttboGL08mVpSUtKiRQt4NnlVY7VgJGTc3NzS0tJycnLYR/U3qr74gtUKbGxsWOpUEhISevToUVhYGBYW9sEHH/DYIaIT6enpzs7O+vnNhoSETJkypUOHDrGxsaoX+mpCpIOCbsXFxRkYGJiYmFy+fDkrK6usrEz7NtlTMDY2NjpdDojo3/r169lvVqdXSktLSx0cHADg559/1rKp2hFCdkir0dPKlbl27Zqrq2tycrIgCP379weAjz76SPtmiXSoitKxY8fqbitspk779u2VSqWWTdWCELJh0NTU9P79+3K5/IcffigpKdG4tbFjxwKAh4eHIAipqanm5uaiHMyIpKSlpYn7m83NzU1NTS18tt5naWmpo6MjiDQ9oBaEcOTIkQAwbdo0fFZD1nQhHXXZ2dmNGzcGgA0bNuCzmzxNmjTJyckRrcdEAqo+3fj777/v378fFxd36dKlY8eOHThwYNeuXUFBQQEBAf7+/t7e3p6enu7u7u3atbO1tVVdCDx69Cj7+pYtWwCgXbt22g+DKP0QxsfHs2Hw3r17xcXF9vb2AHDkyBFt2jx69CgAmJmZJScnK5XKt956CwA+/vhjsfpMpED1m1U/3Zg/f36jRo0MDQ1reumkQYMGjo6ObE6MahjcL9KqZDW+1q9nS5cuFQRh4sSJdnZ2GzduvHfvXufOnTW+K8oMGTJk1KhR+/fvnzhx4rlz53bs2OHs7Lx79+4RI0YMHz5crJ4TvgwMDNhvds+ePSNGjGCLX5SVlbEL7BUup1d9gf21115Tvyu2c+fOtLQ0Jycn0aYEiBJlHUlISGAXRTMzM0tLS9k9mUOHDmnfsqooDQkJwWfL5tna2lJR+ophv1nV6UZubm52drZCoajOdwVByMnJSUlJiYyMDA8PDwsL27Ztm6+vLwvkDz/8IFYnJX2fcOzYsT/99NPUqVPXr1+/adOmzz77rH379jdv3tTqnswzR48eHTZsmJmZWWxsrKOjo4eHx8WLF729vUNDQ7VvnEiEIAjsN/vxxx//+OOPL51ZVdmMq6ysLKVS+dJm69evn52dbWxsLEonpRvCpKQkJycnAwODpKSkpk2bvvHGG+np6eLegR01atSBAwc8PDzCw8PZTd6ioqJDhw5RUfoqSU5OdnZ2FgShrKxMEITqf1EmkzVo0MDKyor9L1NUVFRSUjJ37twePXqI1UPphtDb23v37t2TJ08OCQnZsmXLpEmTRBwGmezs7A4dOjx69GjTpk2TJk0KCgqaMWOGra1tXFxcw4YNxdoK4UsQBAcHh7y8vKKiopee+FV2Qti4cWMNLuFoQqy6VlxJSUlGRkZ16tRJS0tTXYzSxToiR44cAQAzM7OUlBSlUtmnTx8AGD9+vOgbIrzs27cPAJo1a8Z3LbYqSDSE48aNAwBfX19E3Lp1K4h3T+ZF7D5khdv3Wk7JfYXl5eWlpaXFxMRcuHDh8OHDO3bs+O677xYtWuTv7//ee+81a9aM3dGVCEEQnJ2dAWDLli28+1IpKZajKSkpbdu2lclkd+7csbe3b9u2bWpq6r59+0aNGqWLzWVnZ7dv3z4rK2vz5s2+vr6BgYEzZ860tbWNj49nL/d45d25cycpKcnKykr1yOWL2F/l5eVVp8FVq1axlXm5CwsLGzlyZPPmzZOSksS6jiI+3keBl/Dx8QGACRMm4LMXETs5OeloGGT2798PakXpm2++CQA+Pj6626J0sLfqVZ+VlZXqobBhw4b5+PhMnz59yZIl69atCw4O7tSpEwDY2trm5uby3jMUBIH1Z9OmTbz7UhXJjYSpqalt2rSRyWS3b99u0aKFk5NTUlLS3r17x4wZo9Ptjhw5MiwsjF0pTUtLc3Z2fvr06ZEjR4YOHaqLzbH3h7BKiS9HR8f09HQjI6MePXpUuBKoTnWdsOrWBEHo27fvpUuXfHx8duzYoZ9dqMyhQ4c++OCDZs2aJSUlmZiY8O1MVXgfBSpib3v75JNPEJH9Flu3bl3Nu6vaePz4MXsWm508sGUkmzZtqosj+tmzZ42NjTt06KDNTHRRXLlyBQDMzc3v3r2rfWupqamCILAnsEHr2YVaEgTBxcUFADZu3MixG9UhrRCmp6cbGxsbGhomJiYqFIo33ngDaviCG22wy2gWFhZ3795VFaX/93//969fLCgouHv3bmxs7MWLF48ePcqmAi9evHj69Ok+Pj7Dhg3r27evk5OTkZGRvb19enp6cXFxu3btAOCrr77Sw35VoV+/fgCwZMkS7ZvauHGjqampHg5h1XT48GEAsLW1lexFURVphXDChAnw7GRs165dANCqVStRHuGtJjYbsF+/foIg3Llzp27dugAwe/bs9evXL1++fNasWRMmTPjwww/79+/v4uLy+uuvN2zYsKb3Lbt3746IERERhoaGRkZGf/zxh972roKIiAgAsLS0zM3Nzc/PHzhw4K+//qpxaxofwnTE1dUVANavX8+rA9UnoRDevXuXDYN37txRKBRt2rQBgNDQUH324a+//rK2trazs8vIyEDE2bNnswUXq2ZhYdG8eXNnZ+c+ffoMGTJk3Lhx06ZNCwgICAwM3LFjx+HDhy9cuBAVFRUcHMwu0LF1mmfOnAkATk5OvA7V7MnXgIAARFyyZAkAeHh4aNPgSw9hmi1KrSX2oIytre3ff/+t/63XlIRC6OvrCwDjxo1DxB9//BEAWrZsqc9hkImIiMjLy2M/s6tBbdu2nTp16oIFC7799tutW7cePHjw7NmzkZGRKSkpOTk5Nbpsy17cw+o0uVzu5OQEAAsXLtTNrlTl6tWr7PCRm5tbUFDAZgj99ttv2rSpOq/eunUrIq5Zs4ZXUcoWswwODtbzdjUjlRBevXrV0NDQ0NDw9u3bCoWibdu2ALBz506OXUpMTDQ0NDQ2Nk5PTxerTaVS2bt3b9WVJ1VRev36dbE2UU3s/Q0s/+xFf3379tW+2Z9++km9KFXfWb05fvw4ADRp0qRWDIMonRB6enqyoyYiyuXyRYsWde3aVf/DoLqPPvoIAD777DNxm719+7Z6nTZ9+nQAcHZ21ueV0mvXrrGo5OTkFBYW2tjYAMCFCxdEaZzNsGdFaYWd1Y9u3boBQFBQkN62qCWphHDy5MnsWnl+fj77E40XFReF+uRV0Rv/5ptvVHXa06dP2QLEixYtEn1DlRk4cCAALFiwABFXrFgBAO7u7mI1npWVxYrSbdu24T93VqxNVOHkyZMA0Lhx46dPn+phc6KQSghLS0vZW1fZRBnuvL29AWDSpEm6aFxVp7GdVRWlkZGRuthcBZGRkTKZzNzcPCsrq6ioiA2D586dE3ETbKF0CwuLjIwM1c5++umnIm6iMu7u7gCwdu1aPWxLLFIJIarVab/88gvfniQnJ7NhMDU1VUebqFCnTZs2TW9F6aBBgwDgyy+/RMRVq1YBQK9evUTfCitK+/fvr8+i9PTp0wBgbW2tWhatVpBQCBFx9erVAGBnZ6e6PsnF+PHjAWDixIk63Yr6zqqKUnbDQHeioqJkMpmZmRkbBlndePbsWdE3lJWVxcbY7du3o75+s2zI/fbbb3W3CV2QVgiVSiUrJ3QdgCroYRhkKuzslStXDAwMdF2UDh48GADmzp2Lz87WevbsqaNt7d69m00GUC9KdXe6cebMmdo4DKLUQoiIt27dMjU1lclkvIpS9cmrunbr1q26deuqdtbf3x8AOnXqpKOilL05yMzM7NGjR0+fPmXDoDazZP4VW+NswIAB6kWpjn6zbI7O6tWrddG4TkkuhIi4cuVKXkWp+uRV/WyRnZWpitJWrVoBwOLFi3WxLfZEyOzZs/HZnXQ2h053VEUpW5tMfWfF3VB4eDgANGrU6MmTJ+K2rAdSDKFCoWC3enR0cbIK6pNX9UNVlLJlBC5fvqyjojQmJkYmk9WrV+/Ro0dyubxp06b6uX3HJj+pilL1nRURW5dE9Ju6+iHFEKJaUXr69Gm9bVR98qreNoovVOB+fn6sKC0tLRVxK2wJuS+++AIRAwMDAcDFxUU/N2NZUfr++++jqKcbgiDk5uYmJiZ++umnbBJv69ata8ssGXUSDSE+u4ncokULvRUY6pNX9Uy9AlcVpaI8YcRUeKmOnZ0dAJw4cUKs9qv28OFDNjeVzUOs4nSjwisi2ENhq1atqvoVEQxbHGjWrFn62SkRSTeEZWVlbBru5MmT9bC5jIwMNgzevn1bD5uroEIFripKo6KiRGlf/d1ybFHqrl276nNOEltS2dLSMjMzs6ysjO1s69at+/Xrp/FDYTKZzNTUFACMjIy6det27ty5OnXqGBgYXLp0SW/7JQrphhARExISWOmi0yt4DJs3x/G1MBUq8KlTp6pKOC2pD4PFxcVsGDx27Jj2LdfI4MGDBw8e/PDhQ0Tcu3cvG7gqMDU1tbW1bdeunbu7u6enp7e3t6+vr7+/f0BAQFBQ0K5du44dO3bp0qW4uLj79++XlZWlpaWxZ83CwsIQcf78+QDQpk2b2lWUSjqEiPj111/roSjNyMgwMTExNDS8deuW7rbyr9Qr8MLCwhkzZojybowX3y3XpUsX/U/NVZ/MySavfvDBB+Hh4Zo9FKai/l7e4uLiDh06qK4A1xZSD6GqKNXpha8pU6aAjl/sWh2iVODq64IeOnRo+fLlqnfLKRQK9oZnvquqqk9e1b61Cu/ljY6OrnVFqeRWW3vRrVu3unbtWlJScvr06XfeeUebpoqKilSraLq4uNSrVw8AHj582LJly5KSktjYWHYc5Ui1s5s3b544cSIAqL+rpLJXl6g8fvxYoVBUaLNFixaNGjWKiooCgKSkpF27di1btkwmk3HYPQAA8PT0PHny5JdffslGfu2lp6d37NixqKjo559/HjFixPz581euXNmmTZuYmBg2PUDiakEIAWD58uULFy50cHC4efNmhfUmqv4/pbqcnJzS0lLVF2NjY9mKg35+fuvXrx89ejR7IJW7WbNmrV27lo0Vcrn8xVBVrcI6hQBw4sQJhUIRHh7u4eGhmy7XQHR0tKura7169dLS0th9fFF8//33/v7+NjY28fHxFhYWrq6ucXFxc+bMYXNWpY73UFwtZWVlbN2eqVOnqv6QnVfUiLm5ub29fYcOHXr37s1W/nzw4EHdunUNDAxu3rzJb//+QXULgVG/VtG/f392uaKKaxUvNsgenHdwcJDCbBL1yasiqvDG5aioqFYtWoS7uGBtKEprx0gIAAkJCS4uLiUlJb/++is7B/Dy8jp48GAVL1itwNra+sWF0KdPn75u3TovLy+2CLdEPH78ODEx0c7Ozt7evsLdMA0oFIpevXpdv359ypQpGzZsEKWHmomJiWFnAampqWzmqojYks2ql9spFywwXLECnJwgOhpMTcXdlsh4HwVqYOnSpaB2RK/+xbQK64Lu3LmTrQvq6+trbGwsqWFQR1Q3e86cOcOxG+qTV3Vh3bp1js2aXfTwwJwcLC7G9u0RAMUedUVXa0ZCAFAoFD179oyMjPTw8AgNDZXJZBqcClbQrFmzoqKijIyMl962epUsW7Zs0aJFLz2v1o8bN2507dq1bt26aWlpog+DjCAI8oEDzc6cAW9vCA2F6Gjo0QOUSvj9d3B318UWxcH7KFAzf/zxhwaX9SqsCzp+/Hi2LujatWvZIt+ff/457z3TuZeeV+uT+uRVHUpNRXNzBMBDhxAR585FAGzbFiW8DndtGgkZHx+fPXv2GBsbOzg4vPSlJRV+btCgQRXzoW7evOnm5lZWVqY61XyFJSQkdO3atbS0VP87Gx8f7+zsbGxsnJKSwh7g0KF162D6dLC1hbg4MDMDFxeIj4d582DlSt1uV2O8jwL8scWnHRwcat0T2RrgtbNsce7p06frY2NKJfbpgwDI5uJfu4aGhmhoiP/7nz62XnMUQiwrK2Ov7/Hz8+PdF51TFaX6rMDj4+NVs3b0tElVUcrmBs2ZI+WilEKIiBgbG8suk2q5DnytoP+d9fLyAgB/f3/9bK5cYCACoK0t5uSgXI5t2yIArlyp1z5UD4Ww3OLFiwHA0dHxv1CU6nNnExISDAwMTExM9DcMMqqidPx4RMSrV9HPD4uK9NqH6qEQllMVpfo+YPOgz50dPXq0nqvf5xITsV49BEA9rs+gAQrhczExMY0tLKL69sXff+fdF527ceOGHopS1TCYmZmpu61UJSgI/f3LB8B9+3DUKOzfH2fMwPv3+fTnZSiE/yBfsQIBsFUrrD1vMtBYQECArovSsWPHAsCUKVN01H4N7NmDrq544wZmZWFwMLZti6Iu4aON2nefULcUCujRA6KiYNo0CAri3RvdUigUPXr0iIqKmjZtWlANd/bJkyf5L5OXl/fZZ5+xKRBJSUnt2rWTyWRJSUktWrTQzU5Um7MzbNsG3bqVfxw8GLy9wcuLa5/KUQhfEBsLbm6gVMKFC9CnD+/e6FZsbGy3bt0UCsX58+fZUwgAEB0dffv2bZaoCgFT/axUKitr8/jx4+xFd97e3rt37548eXJISIie9qcyggBmZpCfDyYm5X8SEAAGBhAQwLVb5SiELxMQAEuXgqMj3LwJr/qc0sWLFy9ZssTR0fHmzZtsAu2ECRO2b99e9bfq16+vPj9J3ZAhQ1q2bJmcnOzk5CSTyRITE9nj/JxZWkJmJlhYlH+cMwdsbGD2bK59KqftYzKvpoUL4cQJiI6GhQshMJB3b3Trq6++On78eHR09MKFC9l6pL169ZLL5RWmAVb4aGhoWHWzvr6+CoXC19dXEgkEAFdXuHABhg4t/3j+PKxZw7VDz9FIWIn/WFHq5uamVCovXLjQp8qdfQ3sTb0AAAN5SURBVPLkSYUa9aXFanp6ekFBAQAkJCQ4OTnpaz+qdO0ajBoFCxZA06awbx8UFsLRo7z7VI5CWLlFi2DZMnj9dbh5E8zMePdGtwICApYuXWpiYuLj42Nvb19ZwARBqH6bAwcOPHXqlO76XGOJiXDyJOTkQOfOMGwYaP20tFgohJUrLQVXV0hJgVOn4NlFi1dVcXFxw4YN5XJ51f/MwsKislNB9T83MjKysrJSX6SDVIFCWKW4ODAxgdatQamEzEx47TWoV6/8r7KyQPVkakkJFBeDpSWvbooiIiLiyy+/VCgUHh4elQWspotkk+qgEFbDli3wzTfQsSOkpECbNhAaCnXrgoUFPH5cfsn76FHYswcOHODdUVIr0YHt30RHw5o1cP06HD4MN26Aickrf72U6BmF8N8cOQLe3tCgAQCAgQFMnw6HDpX/1dOnUFQERUVQXMyxg6S2k8oFIul68AC6d3/+0dYWHjwo/3nwYGAL3uTmAu+lu0ntRSH8N3Z2z1MHAPfvg719+c/nz//jnJAQjVA5+m9GjIDduyEvDwAAEYKDYeRI3n0irxQaCf9Np04wZQq4uUHnzpCSAi4u4OfHu0/klUK3KKpHoYC7d6FJk+dTZ3JzoWHD8p9LS6GkBHisqEteARRCQjijc0JCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM4ohIRwRiEkhDMKISGcUQgJ4YxCSAhnFEJCOKMQEsIZhZAQziiEhHBGISSEMwohIZxRCAnhjEJICGcUQkI4oxASwhmFkBDOKISEcEYhJIQzCiEhnFEICeGMQkgIZxRCQjijEBLCGYWQEM7+HxE5Mpgtas9FAAAB63pUWHRyZGtpdFBLTCByZGtpdCAyMDI1LjAzLjMAAHice79v7T0GIBAAYiYGCJACYhkgbmDkYNAA0sxMbBCahc0BRmeAaGZG4hi4NUFlGGACDLj1QATYFbSANCMzC8xpHGCB//gs5oCYyohFCTcDowYTI5MCE3MGEzNLAgtrBhMrWwIbewYTI4cCB2cGEydXAhd3BhM3jwIPrwYTL58CH38GE79AgoCggqCQBpOgsIKASAaTiGiCqFgGk5i4ArdEgoRkBhM7U4IkR4IYX4ITM9AiNmYWVjZ2JjZOLm4JSQ42fgERUTE+cSdGoEcYYGFuXrnZ4TSf8AEQx/jJDIefdm37QewJZuscksSm24HYH2XvOVisOw5m+xV8dlD4cNcexPa6fcMh7rmdA4j98vMKh+QrFmB2z8LJDqZLjoLVLPkZ6PAuZRLYzDnnZRzuzrpuC2JnMJfYG93RtAGx/z+YZHdzwyqwGpens/afv7YNzF41h+nA5IPm+0Ds7OykA/MresDsXae6D7xsqASbL7Vp94F/Jolgtpz7tQN9NhxgNziIMx+crMkEZh/8cuDANbs4MLuC5eIBrxVvweaU5G87sN7jNtgu4Y62AzuVzoPZcs/CD6xuMAeHiT9Pv/1ud1Uw+2WIusMBE3kwWwwAiAiKZvPCCkkAAAKLelRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVXLbtswELz7K/gDIrhv7iGH2E7doogNtE7/off+P7rLIBZTEJXMhUgNqeXMLH0oef04f//9pzwuPB8OpbT//Ny9/KLW2uG15EM5vly+Xcvp/nz8GDnd3q73nwW1YI85cX/GPt9vrx8jUG5FqrYubGXDim5mMau2ce1TsZwK13wpWjaojbu5LYAUQKnMDBqjsaA0pwWOA6fVGUAkXpPHW1jgJHAWGRqLF6hG1L0tcDrWM1NTL1i9Yzdc4Gzkh5G8ceB6bENX+fWxYQViC5qqMEcKC5wHjir21hWTGGCyJgsghDLxQZYGlhuFJmi6AkIAW3UhsMEwNNIV1YADiF27UX6biARXm4ZUJQAIDXCkydiZVjxCChNOaNx6fGCLRM2ZfQVNbTaqQtabJhSNSVb2gZRn40raedjGjRVXvEMKtEntKuzJU/oMloT2ci2bVnWFDkEtBBM+M1pOXy9P8MB7mH3rFTyIjeKojSLxFbHYEqm1ofeQgCobSpd/V94eS2NKFhNSMpdkgpXBVlkjvu/PGoQDUgoDAlkZAemdNGxRJZDQ2CjyMmPOjKmSEUf2oV9XQ1xWcqoWPo30wviBlI7SVlKgDscqsISogYyaF19t6uV6/nSsvB80x9v1vB80mG0/TnKA9kODs+1nQ96yHwHRKbpXOkezvaA5Wt/rNlf2vTw5GsxVyBkApnLjDIBTXcEINNVPdkdxfLk84VQsMIJMNZHdMPxkfc4ANlkcRuiTlTED+GRWGMOzKTln4ew6zoA4mYszIE0eggzIk1U4d4cyOYIzoE7KczC5r5Ikx+AjvXAWj7VltsAsePY//pXi+fAXCZFJr9jCt3UAAAFEelRYdFNNSUxFUyByZGtpdCAyMDI1LjAzLjMAAHicJZE7jsMwDESvsqWNlQj+ScFIlX59gCBVrpHDL2m7sITnIYdDn4/n9qFPP7Rfl+35eH64ztff73t7nPvrnO+9PvBZb/r5bgaOaTYmA6+IHIdC1OljEqBmAQNVJR9YCsMl43BYSmRFZCEijSOqTagPghDJ1ZIIjxgMKzmju3CsC2TG8vZxEo0qMVUshQAn3sakEtWVQQ0pyofQOKoIYZlQNEJC8dBmnJ4hXSgixuOoGxMSN1JOrZkrIComjVndYqnWkFPAJG7GoWKVdiqIZ2dbFYi70iDdSo9Qk0flPqaDL6esNHSlmwm05AIoEuuSIK/an4AG202sJWWmrhR2tQ4k6jGDpHbc9ox6ozJgu6aUEOX+R+nRI9WGqt6b2KXhEusNNKPc9u8/oiZtCX36JYIAAAAASUVORK5CYII=</base64_image>", "role": "assistant" } ]
Solubility_Prediction
CCOc1ccc(N=C2C(=O)N(CN3CCN(c4ccccc4)CC3)c3ccccc32)cc1
1,042,314
{"log_s": -5.17, "solubility_mg_ml": 0.0, "solubility_category": "Poorly soluble", "contributing_factors": {"molecular_weight": 440.54700000000014, "logp": 4.33, "oh_groups": 0, "nh_groups": 0, "cooh_groups": 0, "aromatic_rings": 3}}
440.547
4.3324
[ { "content": "What is the solubility prediction for the compound represented by 'CCOc1ccc(N=C2C(=O)N(CN3CCN(c4ccccc4)CC3)c3ccccc32)cc1'?", "role": "user" }, { "content": "{\"log_s\": -5.17, \"solubility_mg_ml\": 0.0, \"solubility_category\": \"Poorly soluble\", \"contributing_factors\": {\"molecular_weight\": 440.54700000000014, \"logp\": 4.33, \"oh_groups\": 0, \"nh_groups\": 0, \"cooh_groups\": 0, \"aromatic_rings\": 3}}", "role": "assistant" } ]
IUPAC_Name_Generation
N#CCCCCCC(=O)O
79,713
6-cyanohexanoic acid
141.17
1.54508
[ { "content": "Generate the IUPAC nomenclature for the chemical with structure 'N#CCCCCCC(=O)O'.", "role": "user" }, { "content": "6-cyanohexanoic acid", "role": "assistant" } ]
Functional_Group_Identification
O=C1Cc2cc([N+](=O)[O-])ccc2N1
230,366
{"amine": 1, "amide": 1, "nitro": 1, "phenyl": 1}
178.147
1.0894
[ { "content": "Determine the functional group identification of the chemical structure 'O=C1Cc2cc([N+](=O)[O-])ccc2N1'.", "role": "user" }, { "content": "{\"amine\": 1, \"amide\": 1, \"nitro\": 1, \"phenyl\": 1}", "role": "assistant" } ]
Molecule_Visualization
CCN(CC)CCOC(=O)c1cc2n(c1C(=O)O)CCc1cc(OC)c(OC)cc1-2
217,854
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxTV9oH8CcJkBB2BRUU9wURtIoLdR/F6iAztlrs23GodUstrzK0+oo7apVGxdaWVsSdaaetWJeqWFvqqKXKUnBBBRfcQURkDyELyfP+cTHizpKbE+D5fvz0Y2JyzpNP+XHOvTf3HAEiAiGEHSHrAghp7iiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJiCps2bUpNTWVdhZmiEBLeZWRkhIaGDh48ODQ0VKFQsC7H7FAICe+6deu2ePFikUj0xRdf9OjRY//+/awrMi8CRGRdA2kWMjIyZDJZSkoKAAQEBGzevLlt27asizILNBISE+ndu/fp06djYmLs7OwOHz7s5eW1ZcsWGgOARkJierdv3w4ODj5y5AgArJ8xY35YGHTrxrooliiEhI1Dhw6tWLLkt7t3nVQqCAuDxYvByop1UWxQCAkzWFQkmD8fdu0CRPD2hq1bYdAg1kUxQCEkrCUmgkwGly+DQACzZkFkJNjZsa7JpOjEDGFt2DA4exbCw8HSErZsAQ8P2LePdU0mRSMhMRsZGTBrFnBfrImIgEWLID0dDh4EjQbGjIFRo1jXxxcaCYnZ6N0bkpIgJgacnWHiRDh0CIKDYdgwGD8e1q6FqCjW9fGFRkJifiorwdoaBgyAnTvBywsAoKgIvLwgNxcEAtbFGR+NhMT8WFsDAGRnQ69e1c+0aAEODpCXx7Ao/lAIibkSi0GjefxQqWyqZ00phMRcDR8OBw9W/z0tDVq1aqohpGNCYq5u3oTAQBgwAKyt4dgx2L4d+vdnXRMvKITEjGm1kJkJWi14eYFEwroavlAIiRm7cQNeew26dYP0dNal8IiOCYkZq6iA8vInTs80RRRCYsYqKgAAbGxY18EvCiExYxRCQhijEBLCmFIJQCEkhCFuJJRKWdfBL4u6viEzM3Pp0qUSicTOzs7GxkYsFjs6OlpbW0skEkdHR4lEIpVK7e3txWKxnZ2dra2tWCx2cHDgo3TS9DWP6WidQ5iXl1ePdSOlUqlYLHZychKLxVKp9MGDBy4uLt98842np2ddmyLNCIXwufr06fPjjz+q1WqFQqFQKFQqVVlZmVKpVKlUJSUlKpWqsrKytLRUpVJVVFSUl5erVKry8nKlUqlUKouLiw3tFBQULFq06KeffjLqxyFNSr5IZNW3r8jZ2Z51JbyqcwidnZ0nTZpU13dVVFSo1eqSkpLKykqVShUfH7969er4+PjMzEwaDMmLyPPyNp49+1lQ0EesK+FVnUNYPzY2NjY2Ni1atOAe+vj4PHjw4Ouvvw4PD9+zZ49paiCNTkVFBQDYNPXpKLOzo0uWLJFKpXv37qXNesiLUAj55erqOmfOHEQMDw9nVQMxc0qlEiiEvFq4cKGjo+PRo0dPnDjBsAxitriRUNrUrxOyDKGTk1NoaCgALF26lGEZxGzRdNQU5s2b16pVq1OnTh09epRtJcQMUQhNwdbWdsGCBR07vhEb24PuLiZPYRnC27fh5k0wyQ8l+zvrKys1PXta3b4NP/4Idb8ASZqsqqqqNm3aFBYW3r59u3379qbr+OZNePdd6NoVhELIzIT//Ad69OC3RzQD0dEIgD16oFbLuhRiBnQ6XVxcXPfu3S0sLGxtbb28vJKTk03X/d/+hvv3V//9yBH8y1/47tAsQqjRYJcuCICxsaxLIawdOHDA29ubGyE6derEbaktEolCQ0PLy8t5716vx5YtUa9//IyLC2o0vPZpFiFExH//GwGwY0dUq1mXQhhJTEwcPnw4Fz93d/eYmBitVqtUKsPDw62srADAzc1t3759/Bah0aCz8xPPuLtjaSmvfZpLCHU67N0bAXDTJtalEJNLTk4ePXo0Fz8XFxe5XF5ZWcn9U05ODiKeP39+0KP9QwMCArgnjSw3F9esQb0eu3fHO3eqn8zPxw4dEBHLyozf4yPmEkJE3LsXAdDVFSsqWJdCTOXixYuBgYECgQAAWrRoER4eXlbjx/3WrVu2traBgYEPHjzQ6XQxMTF2dnYA4OjoGBMTo685aWyIwkIMC0OpFAFw717cuRP9/PDcObxwAf/6V9y0CfPy0MUFQ0JQoTBOj08yoxAi4qBBCIDr1rGug/Dv5s2bMplMJBIBgI2NTVhYWHFx8VOv2bNnj7W1NTc8fvvtt4iYm5v71ltvcUPisGHDsrKyGlREWRmuWIH29giAAgG+/TZevoyI+OuvGByMs2djfDwi4q5dKBQiAHbrhv/9b4N6fB7zCuEvv1SfJtXpWJdCeHPnzh2ZTGZhYQEAVlZWMpksLy/vRS++fv36G2+8waVu5MiRV65cQcSDBw9yJ2wkEkl4eLi6HicS1GqMicHWrREAAdDPD9PSXvb69HTs16/6xYGBWFBQ5x5fzLxCiIhbtuDdu48flpSwK4UYW0FBQVhYmEQiAQBLS8ugoKAbN27U5o1xcXEuLi4AYG1tLZfLtVptcXGxTCbj5rHe3t5JSUm1rEGj0ai3bEE3t+pEDR+OiYm1eqdWixs3oo0NAmDr1kY8lW92IUxLQ6EQT51CRNTr0d2ddUHEGMrKyuRyub29PQAIhcLAwMCrV6/WqYXCwkKZTMYNiX369ElNTUXE33//3cPDAwAEAoFMJit96WlM7vJj165dfxs5EgHQ2xvj4ur8Sa5eRe7tAOjvr7t1q84tPMMcQ+jjg/37o0ZDIWwKysvL5XK5k5MTlx8/P7+zZ8/Wu7Xjx49369YNACwsLEJCQsrLyysrK2tew9i7d++z79Lr9Xv37jWs4TCyf3/93r1Y7/M6ej3GxqKzs9La2rtHD7lcXlVVVe9PhOYZwrffxoULcd266hCeP4/z5+PSpSiX41df4bZtGBeHhw9jQgKmpeGlS9rr168/fPhQwc+ZK9IQS5cu5Y79AGDMmDHc8NVASqUyLCyMO6PTqVOno0ePImJGRoavr6/hGsbdGoc0CQkJ/R/tqda+ffuYmJgGZqba/fv/mTePa3bAgAHnzp2rd0tmGkKFAnv2xNu30d0dd++uHvyf+6dTp8s1v4VnZ2fn4uLSuXNnb2/v/v37e3l5BQcHs/5MzZdYLOaicuzYMeO2fO7cuQEDBnD/0597DWPjxo1//PHHqFGjuNe0atVKLperVCrjlhEfH9+hQwfDyFy/kcBMQ4iIe/fiu++iuztevYpr1+KqVRgWhh9+iNOnY2Ag+vvjqFHo44NvvHGxc+fOTk5Oz731kztw37JlC+uP1Uxx41UZP1e6tVrtxo0bbW1tAcDJyYm7cnj79u2AgICaPwPOzs7r169XKpV81ICIFRUVhpG5c+fOv/76a11bMN8QIqK/f52PCUtKSvLz869fv37+/PmUlBRuijJ06FCj10leSavVcl/7RMSkpKTo6OiUlBSj93Ljxo2xY8dyeRsxYgR3DWP37t1SqdTGxmb58uU8/Qp4ypkzZ3x8fAwjc0FdrmGYVwi1Wrx9Gzdvrn6YnY1hYQ1qsLy8vFWrVgDwyy+/NLw8UielpaXcAQI+WkkoPDycp75iY2OdnZ0BYPz48Yio0Wi4KSJP3T2XRqOJiIiwtrYWCAQnT56s/RvNK4SLFuGYMXj9ujHbXLduHQD4+PgY7VtOpHbu3bsHAG3atEHE+fPnA8A6Pr8M9eDBg2nTpnFXPrhlph0cHPjr7kWuXbu2cePGOr3FjDaEuXABIiPh2DG4f9+Yzc6dO7ddu3bp6en1WL2fNETN++JNcI+8i4vLjh07uAsYDG/J79q167/+9a86vcVcQqjXwwcfgFYLc+bA4MHGbFkikSxatAgAFi9erNPpjNk0eSkTh/BFXZs/cwlhVBQkJYG7O6xebfzGZ82a1aVLlytXrnz33XfGb528AIWwlswihHfuwLJlAABRUWBnZ/z2LS0tly9fDgDLly/nDtmJCVAIa8ksQjh3LpSXw+TJMGECX11MmTLF09Pz1q1bO3bs4KsP8iQKYS2xD+Hu3XDwIDg4wOef89iLSCRatWoVAKxatYpbXJ3wreYi9hTCl2AcwuJi5ccf6wEgMhLc3Pjta+LEiQMHDszLy4uOjua3JwIATy5iTyF8CcYhXLDgXy1aDJk8+cqMGbz3JRAIVq5cCQByubysrIz3/pq9mkngRkWT7SpBIaytkydPbt++/dq1sytW6AUCU/Q4bty4kSNHPnz48HNe574EAOiYsNaYhVCtVn/44YeIuHTp0p49e5qs308++QQAIiMjCwoKTNZp88QwhCYeeBuIWQg/+eSTrKwsLy+vBQsWmLLfoUOH/vWvf1UoFJGRkabstxkyBE+n06nVapFIxC1sYcquTdNdA7EJ4cWLF9evXy8UCjdv3szdE21Kq1evFggEX375ZW5urom7blYMSTD9NoMUwlfQ6/UffPCBRqMJDg4eMmSI6Qvo16/fpEmTVCrVp59+avremw/DnND0kWhcIbSo06v9/f0tLS0lEomjo6NEIrG2tnZwcJBIJDY2NnZ2dhKJxM7OzsbGRiwWOzo6Wltbc68UPHnWZdOmTadPn3Z1deUOz5hYs2bNgQMHtmzZ8vHHH3fu3JlVGU3bUyMhhfBF6hBCnU73888/16MPsVgslUrt7e0lEolSqczLywOA6OhoR0fHerRmFN27d58yZUpsbOyqVat27dplhBYLC8HJCYTsv/xgPiiEtVS3kTAhIUGhUKjV6tLS0srKSpVKVVxcrFarlUplaWmpWq1WKBQKhUKlUpWVlSmVSpVKVVJSolar1Wo1d4sXZ/jw4RP4+4pa7axcufKHH3749ttvZ8+ebVgjqD5+/BFWr4aOHeH2bXjnHVi40Hg1Nm4UwlqqQwhFIpGfn189+lCpVJWVlVwab9y4UVRU5O/vX492jKtDhw4TJkyIi4sbPXr0+PHjn51FSySS1nZ242xsQCwGOzuwtQWxGBwcQCoFsbi6lbt3YfFiSEkBJyfQaGDMGPDxgTFjmH4yc2FIQn5+PlAIX6xuI2H9SCQSiUTCrTzJLdVqJhYtWrR//36lUrlnz57nvmBcp07jbt58/pudnGDYMJg4EQICgFtU08oKpk2DI0cohBxDEoYOHXr9+nVuKST+lJaWCgQCbn1hCmGj8dprryUmJl69elUikTw7i1apVB4SCdy6BSoVVFRAeTmoVFBeDhUVoNFAcTFoNFBUBA4Oj1t0coKiInYfyIwkJCRwB/8ZGRldunTh9eyXUqncunVrRETE9OnTuTPejSuE5rXGTKOh02FRERYX408/4bvvPn4+IgI/+YRdWWbh1KlTI0eO5H66BAKBQCCYOXNmUVERH32p1eqvvvrK1dWV645b5QkRudVHednGkAcUwobRaNDbG/fswYoKTEzEbt3w3j3WNVU7fvz4mTNnTNnjU5sNLlu2bOXKldy3ZFq3bh1r1M3QuY0lunTpwsVv4MCBBw8eRMSHDx/+4x//4J7Mz883Yo/8oRA2WEEBfvwxjhuHMhleucK6mmpbt27ljsF69uwZExPD99qbN27ceNFmg9euXTPswuvv73/79u0G9qXX6w8ePNi7d2+uTU9Pz7i4OL1eX1paGh4ebvdoaYbhw4frGskOexRCozpyBAMCkLfFnmvp/v37rVu3hkcLkHPBCAoK+u2334z+c/nsZoP3799/6jV6vT42NrZly5YAIJVKG7KDSkJCgmGN3Q4dOnAbS6jV6piYGO4jA4Cfn1+dlv1kjkJoPHo9DhyIALhhA8MqNBrNiBEjAGDQoEH5+flxcXF+fn6GNLZt2zYsLOyKMUbspzYblMlkLz8Gy8vLCwoK4sro27dv2ss35XxGzUPNdu3abdy4UaVSaTSamJgYt0f3gw8ePPj48eMN+lQsUAiN6sgRBEBnZ3zpRnm8mjNnDgC4urrm5uYanrxz545cLu/atavhhJyPj8/GjRsfPnxYjy4KCwvDw8Prt9ng4cOH27dvD3XZQSUjIyMwMJAru2XLlnK5XKlUGjYb5J739vaOq8dmg+aBQmhsI0YgAK5axaTzb7/9lhuX/vjjD+6ZCRMmBAUFJSQkcAuQp6WlyWQyw4GTWCwOCAiIi4vTarW1aV+hUMjlcsP3Deu32WDNHVS6dOmSkJDwoldmZmYazvTY2tqGhYWVlJQgYkJCQp8+fbgaevbsyR0T1rUM80EhNLbERARABwes1yDTEGfPnuVuFzLsQpWTkyN89HVWDw+PiIgIbuO+ysrKuLi4gIAAw+aBrq6uISEhL0kUd9zVpk0bQ/wauNlgenp6v379uAPXoKCgp3ZQKSkpCQoK4oqXSqVhYWGFhYX45GaDhmPChpRhDiiEPBg7FgEaupdNHRUWFnbq1AkAZDJZzeczMzPDw8O5PfS42eOQIUNiYmK4eWBOTo5cLu/evbthmurp6SmXyx88eGBoQavVxsbGco0DgK+vr7E2G9RqtXK5/LnXMKqqqjw9PblDTW5effr06b/85S9cDTxtNsgKhZAHaWkoEKC1NZrqYnFVVRW3PZivr+9zfzR1Ol1CQkJQUJDhzlp7e/unpqkhISHcxkaGaeru3bu///57Q0S9vLz4OO7Kzs42fCfZ39//1qNd4FNSUri/X7hw4dljQqOXwRCFkB8TJyIAzpljmt64PY9at25dc5vo5yopKYmNja15vtTd3T0sLCw7OxsRKysrv//++3Hjxhm+58m9zMPDY/fu3fwdd73oGkZWVpZhUlrzmLCJoRDy49IlFIl+Gzjw1o0bfHe1b98+gUBgaWl54sSJ2r/r8uXL4eHhhkmmYZrKXdbPzc1du3Ytd8QYFRVlmuOuvLy8yZMnG65hTJgwgftdIJVKFyxYUL8TuY0ChZAvn370EQBMnTqV116ysrK4SwVRUVH1eLtOp/v111+nTJlimKba2trK5XLuXy0tLQFArVYbteRX4HaB536t1DwmbMIohHy5efOmlZWVSCTKzMzkqYuioiLuQtmUKVMa2FRpaalhmsqdXGWy2S2nrKyMGwOvXbtm+t5Nj0LIow8//BAAAgMD+Whcp9ONHz8eAPr06VNRUWGsZrOzs7kZKcPNblUqFQBYWVmZvmsmKIQ8unfvnlQqFQgEKSkpRm986dKlANCiRYvrxt1e/JGcnBwAcHNz46PxlyssLAQAJycn03fNBC1MxCNXV9fg4GBEXLFihXFbPnjwYEREhEgk+u6773i6X5bhfbGN7JbcBqMQ8mvhwoX29vY///zzyZMnjdXm1atX33vvPb1eL5fLucuDfKAQmgyFkF8tW7bkLgOEhYUZpUGFQjFx4sTS0tK33npr3rx5RmnzuRgmoXHtJNFwzXqNGRM4ceJERkYGd1jo5uY2dOhQOzs7sVhsb2//7PpuYrHYxsbG3t5eLBbb2dnZ2tpyFwkMEHHatGmXLl3y8PDYtWuXgM+9rGgkNBkKIY8qKytnzZqFiIMHDz59+nReXt6LlnV7EaFQ6ODgwKXUycmpvLz86tWrDg4Ohw4d4i4P6nQ6nlYx02ic+vVb0L59Sz4afzkKITGalStXZmdne3t7//LLL0uWLPnyyy+tra1XrVplbW391CrJ3OLI3AKtpaWlKpWqoqKivLy8qqqquLi45rrJtra2o0aN6tq1a1VV1YYNG/bv35+YmPjUgGkUJSUDz5wZ6Olp9IZfrbmFkC5R8OX8+fOWlpZCofD06dOlpaVt27YFgM2bN9epEa1WW1RUdPfu3ezs7LS0tB07dnBtJiYmKhQKbpmjNWvW8FF/dDQC4Acf8NH2K8TGxgJAUFAQg75ZoBDyQqfTvf766wAQGhqKiB988AEA+Pr6NnyJlyVLlgBAjx49lErlsWPHBAKBWCy+cOGCMap+woYNCIAff2z0hl9t06ZNADB79mwGfbNAZ0d58eWXXyYlJbVv337VqlXJyclbt261srLavn27sME7xixfvtzb2/vKlSsrVqwYNWqUTCZTq9VTp07VarVGqdygogIAgMkZyuY2HaUQGt+dO3eWLVsGAFFRUWKxeMaMGXq9fvHixZ7GOMCysrKKjY21tLSMjIw8derUhg0bOnfufObMmc8++6zhjdfEhZBJECiEpKEsVq8e0KLFO++88/e//z0iIiIzM7NHjx7Guk4IAH379p0/f75er585c6ZIJNq6datAIAgPD7906ZKxugAKoSmxng83Od9/jwB6N7ei+/cvX74skUi48yjG7USlUvXq1QsAFi5ciIgzZ84EgEGDBhnxxr9p0xAAt283Vnt1EBwcDABfffUVg75ZoJHQqIqKIDQUAASffOLk4tJq2bLATp1mzZo1dOhQ4/YjFou3b98uEokiIyP//PPPDRs2tG/fPiUlxYiTUoYjYXP7xgyNhEbFDR8jRqBeX32O39294tGC8Ea3YMECAOjZs2dlZWVCQgJ3pvTSpUtGaTwgAAHw0CGjNFY33Ioyu3fvZtA3CxRC4zlxAgUCFIsxKwvv3UNHRwTAvXv569AwKV2yZAkiTp8+HQB8fX2NMin94QdcvBhrvaivMXF7yB4+fJhB3yxQCI1EpUIPDwRA7tL5W28hAD7aqYs/ycnJIpHIwsIiNTW1pKTE3d0dADY0bB3+3bsfX6NPT8d164xQZ51wy/g3xgXt64dCaCSLFiEAenujRoOHDiEA2tvjq9Y+MwruXoqePXuqVKr4+HgAkEgkDVlTY+1adHHB//wHETEhAd9/32il1hK3vG8DFxduROjEjDFcuACRkSAUwubNUFkJH34IAPDpp9CunQk6X7NmjaenZ1ZWVkREhL+//9SpU1Uq1YwZM3Q6Xb3bDAmB1auhpMSIZdZBc7tEQSE0hq+/Bq0W/vd/YfBgWLgQcnJg0CCYPds0nYvF4m3btolEooiIiPT09C+++KJdu3ZJSUlRUVF1berWLTh/HgCgZUuYOxcWLzZ+tbXR3EJI01Fj0OkwJgbLyjA5GYVCtLLCixdNXMJHH30EAL1791ar1YcPHwYAqVRam82SlEpMSMCwMPTxQQAcPRrXrsVNm1Cnw0GDcP16fP991OnQZBuuFBQUcDdn3eB/yVYzQSFssPv30bAPbmgoAuDy5aavoqKiolu3bgCwYsUKRAwKCrK1tT1w4MCLXn/+PK5bh35+KBYjQPUfR0f8xz+qQ4iIqanYsiW+/z5+/jkOH46XL/P7EbjNBg1L8TfJxbafi0LYAOnp6OODgYE4ejS++SZyPzQ//YSMNio5deqUUCi0sLBIT08vLCx8diR5+PDhDz/8EBq63M3tcfCEQhw4EJctwz/+QG5/NEMIEXH2bHzvPezUCQHQ2hrlcqzdHmp1U1VVtWvXro4dO3Lxa9OmTV3v+WrUKIT1pdOhlxca9hJbuRL/7/+YFoSIGBISAgB9+vTRaDTcM1VVVWlpaXK53M/Pj7v3VyAQODvnt2qFgYEYE4P37r262aIilMlQIEAA7N0bk5ONVvCLNqA3WgeNAYWwvm7exL59Hz+8cwd792ZXTbWKigpuTe558+Zt3br17bffNmzoCQBisXj06NHr1q27cKE++zqcPIk9elQPnjLZ4zl4vT13A/qGNtoIUQjr69w5HDHi8cOSEmzfnlkxNRw/flwoFIrFYkP2OnfuLJPJ4uLiShu8ibdSieHhaGWFAOjmhvv21bOdU6dOGTYbNGxA38DaGi8KYX2VlqK7++MjpFOncMwYpgVVUyqVUqnUxsbG398/Ojqaj3OMZ89i//4IgDY25TNnzs3Pz6/9e5+7Ab3RK2xcKIQNEByMISGYk4MXLuCgQXj0KOuCEB9tW+/r68trL1VV+Nln6Oc3HwBatGixY8eOVx7IvWgDekIhbACdDqOjcfJknDkTzeaLjmPGjAGA6OhoE/SVk5Pz5ptvcsPasGHDsrKynvuyW7duyWQyw2aDISEhdRo8mzwKYZOSk5MjEokkEklRUZHJOo2Li2vVqhUASCSS8PDwmvsZ5ufnh4WFcQeozWSzwXqgEDYpERERADB58mQT91tcXCyTybippre3d1JSEhc/a2trABAKhYGBgdyO3ORZFMImxcPDAwDi4+OZ9H7s2DHuAolQKOQCKRAIJk+e/KJpKuEIENEI30AlZiA5Ofn1119v3bp1Tk4Ot9286alUKrlcvmHDBoVC4eXltWvXLsOVQPIitAx+08EtXP3ee++xSiAASCSSFStWjB8/vqioiL9t25oYGgmbCI1G4+bmVlhYmJGR4e3tzbocUgd0P2ETceDAgcLCQh8fH0pgo0MhbCK4uejUqVNZF0LqjKajTUF+fn67du2EQmFubq7hfjzSWNBI2BR88803VVVVAQEBlMDGiELYFHzzzTdAc9FGi6ajjV56enr//v1dXFxyc3P52LKX8I1GwkaPOyUzZcoUSmAjRSNh46bRaNq1a1dQUHD27NnXXnuNdTmkPmgkbNzi4+MLCgq8vLwogY0XhbBx4+ai3FYwpJGi6WgjVlhY6ObmptPpcnJy2rRpw7ocUk80EjZiUVFR3NKGWVlZrGsh9UcjYSNTUFBw8eLFzMzMjIyMnTt3arVaAGjRokVKSgp3Lx9pdCiEvEGE8+fBcL7k2jVwdQVbWwCAggLIzARXV+jWDQSClzVSVJR86dK5S5e44F28eLGgoKDmv6ch5lwAAAUcSURBVNvY2IwYMeLIkSMeHh7JyckODg48fRrCHwohbzQa6NoV7typfvjmmxAWBq+/DtHRsHMnjB0LV65AZSX8+CMY1ggtLYXsbLh0CTIzq/9748YsL69tFy8aWnVwcOjVq1dVVVVqaqq1tfWhQ4cGDRo0ePDgCxcujB07Nj4+nltPiTQiFELePDeE7u4wahRkZIBEAgAwdy507w7OzrBzJ2RmQm7u043Y2e2dMOFnsdjT09PLy8vT07Ndu3YAgIj//Oc/v/vuu06dOqWmpioUioEDBxYUFCxYsGDt2rWm/JSk4ejOej5VVMC//13997t3AQBSU2HEiOoEAsDf/w7btoGPDyQkAABYWUHXrtCrF3h6Vv+3Z89JQuGkZxoWCATbt2/Pzs5OTU2dOHHib7/9tm/fPm6J++7du8+YMcMkH48YB4WQZxpN9V/0egAAlQpqfrlMLAaVCiZNqk5dx46vOESsQSKRHDhwYODAgYmJiR999NHXX3+9efPm6dOnz5kzp1evXr6+vsb9HIRHbNaXag7UanR3f/xwwgQ8fRrPn8eBAx8/GRmJS5Y0pJP09HSpVAoAmzZtQsS5c+cOcHUtGTIE79xpSLPElCiEvHluCBHxf/4HQ0MxKQl37kRPT7x/v4H9xMXFCQQCCwuLY8eOabXaykmTEAD79cOKiga2TExDtGLFCtaDcRMlEICFBQwaVP1QJAIvL7C3h4kTobgY/vtfsLCAzz+HVq0a2E+vXr3UavXvv/8+Oj+/75AhFu+8A/v3w8WLcPkyTJ5c+/ktYYXOjjYFer0+PTR0QFQUeHpCUhLk5YGvL5SUwMqVsHw56+rIK1AImwqFAgYPhgsXYOxYiI+HY8dg/HjQ6eD77+Gdd1gXR16GvjvaVNjawsGD0KoV/PILLF4Mb7wBa9cCIkybBmlprIsjL0MjYdPyxx8wejRoNLBtG8yYATIZbN0Kbm7w55/g5sa6OPJ8NBI2LUOHwubNAADBwfD77/DVVzB0KNy7B19/zboy8kI0EjZFISEQFQWtW8Off4JYDNu2wcKFIKRfuGaKQtgUVVWBvz8kJMDrr8Pp06yrIa9Avx2bIgsL2L0bhg+Hzz4DAFCrYf58GDoUhg2DoCB4+JB1feQJNBI2A8uXg0IBGzaAQABbtsCRI3DgAOuayGMUwmagWzdISgJuhXxEaNsWrl0DGxvWZZFqNB1tBh4+BMMeFQIBtG4N+flMCyJPoBA2A66uj28X1ukgLw/atmVaEHkChbAZmDYNli6FqioAgPXrYdy4xwtqEDNAx4TNgE4HkZFw5Ajo9TBgAKxeDVIp65rIYxRCQhij6SghjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMPb/7SZQokOA1tYAAAIfelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANiBSBuYGRjSADSjMwQmomJHSwO56JLw2gOBg2QMiAfTLPA+Q4QPptDBohmZoQJsENoZrgCNI0cDGANjIzoNuE0EeEEqBNxiqNp5GZgZGBkYmBiBrIZmFgZWNkY2NgZ2DkUODg1mDi4FLi4E7h5Mph4eBN4+RL4+BX4BTSY+AUVeIUYhIQZhEUYREQzmETFEsTEFcQlGMQkM5gkpRSkpBkkZRJkZDOY+LgymGRFEmR5FJyYgdaxcnHz8PKxCQmLyPLwsomKScrIiogXMQIdxgCLi+g+noOp7M4OIM519ZcHln20A7OtPl06YLX2sj2IXbPxzYEpXcfsQGzdYL6DPRbPwezov4sO7Gk8DVaz73jPgSV6rWDxfUstD4QzeoLZLVa8B16ITtwPYrPvdDhgN0HyAIgt4Wy6P81xJljc9WaqXVTt9j0g9o0lF+xdrnCDxaMqT9ifv8cEVn/b4IftkfkyYHa1yrl9c6aUgdnX6nntV3svALND733YH+vcDGZ/dzR1CIo1A7Mb9FodJD5xgtkJlu0OGYoaYPOfHNvoILxDwhbEPnJxs4PNzCNgv3jG33O4sZ0PHA7fC5gdVxVtA4vL+3c7KJ4WBYv/i+x1uL+lFMzetM7TYePMKWC2SbOjw7n9l8DqS3NtHaYliYPDQQwAeuGP8N5pE3QAAAK6elRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVVbbhsxDPz3KXQBC3yL/EzsoCiK2ECb9g797/1RUkayCip0bRHr1YhLcob0qdX1/frt95/2cdH1dGoN/vONiPaLAeD02uqmPb98+Xprl7en5/cnl/vP29uPlndMeSY/n7FPb/fX9yfYLu3sfbgM1cYdZDBZgw7zOo5SAUcnN0Ru1MNZMpR/gdxu7Wxdg8CiYTflQbIBysMjh5lp7rOPMXav1keMHsowcl8UDXgDtAJqh2Chka9WD4+xAY4CSr462MsRGSDhBujt3s6ZLMCQ2scwil0yUR6pZ84W1s7YkVl85xKhfGalESm4DmUYQrtS4mQH+gCHZKe8xmDwHbT4yURIxKjOABFv+Un2LkVLaoixkJon9j4lqcwqWu7PQEHEZetT59uzhuijkCKDdJu9PVISICOqOriSE+ygIwuV4SmlJCevEMQ7OnHShN0dh2sxi1CV2kGLKOrOhBlfRpoJZcl2gs9GaunJMLIhEomqArucCCeSSIdKJWdqw3YpUbGkmVImNeuYreG6A/IE5rtZrThgjX1bSqZuPSQw2UwBUsTYBlkUec+0YVRbCmVf7pRMNrNhZUlVpDoFlHalpOJHuuAgthwdzoG29ejpkbN+SO55woSHbWOMCYT0x1waFZOxU2YNuZpBGg5VFUzYVhkvt+uncfcYgM/32/UYgPWhY8zlj8bHMMNccowszKXHYKpdO8YP5hrHkMFcfowSzBXHwKBcuI4FrAe4NL+UQVp6XMogL70sZVCWnpUyqEtv4jS29CCVwbG0Gs4nvrQUTj+xdA6WobVDsAzh0glShmhRvJQhXqSNZUgWDWMZ0kWsMjG2qBLL0Fjkh2XIF53JxMQiKCnDq3JkVuMjZq6Yec2CSwSzuquMVtHU7/d/3Lw//QXE/3EKD0i2yAAAAWt6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkUtu40AQQ6+SpQTIjfp/YMyq9+NDaJ8T5PBhKRvDeGKRVey9/x97n3t/9vHvc958H8+fz/kte99638dnn38/t75uufnr53jVyrL0SxdZql7vVy6pYL5kdakDxPIWyotXuKY8Eu2IvGhpZWYA1ap2ZSBzDhojX9RqijmvbgDDWGtBI0EsDIQQojQg7pC2BwnB+8WLVa1AsBuz9IVPMLDxppVU5P7IOhH8hoUwV47MLMUfmZGEyAWPcikZmbukAmE/aplIXlWcCLDFBLvrjZ0jZKzIrGAlq1TYh5S1gUAb3DqE3W2AiKNKpIbHtOLIcldcRygOc4NmKKYUdUy/Y7U1K+oW6YmuhRwqKEzQ9/iqq82DqJHLAOPE4rhJm5Gj2GAKshWm+QASjak+LKZD9Oxd8zxsWfpcGEp4J2zrFoJAVCNiNmdjYRHtiuv8+QVIMnpnvfALXgAAAABJRU5ErkJggg==</base64_image>
416.474
2.9252
[ { "content": "Provide information about Molecule_Visualization for the molecule with SMILES 'CCN(CC)CCOC(=O)c1cc2n(c1C(=O)O)CCc1cc(OC)c(OC)cc1-2'.", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deVxTV9oH8CcJkBB2BRUU9wURtIoLdR/F6iAztlrs23GodUstrzK0+oo7apVGxdaWVsSdaaetWJeqWFvqqKXKUnBBBRfcQURkDyELyfP+cTHizpKbE+D5fvz0Y2JyzpNP+XHOvTf3HAEiAiGEHSHrAghp7iiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJiCps2bUpNTWVdhZmiEBLeZWRkhIaGDh48ODQ0VKFQsC7H7FAICe+6deu2ePFikUj0xRdf9OjRY//+/awrMi8CRGRdA2kWMjIyZDJZSkoKAAQEBGzevLlt27asizILNBISE+ndu/fp06djYmLs7OwOHz7s5eW1ZcsWGgOARkJierdv3w4ODj5y5AgArJ8xY35YGHTrxrooliiEhI1Dhw6tWLLkt7t3nVQqCAuDxYvByop1UWxQCAkzWFQkmD8fdu0CRPD2hq1bYdAg1kUxQCEkrCUmgkwGly+DQACzZkFkJNjZsa7JpOjEDGFt2DA4exbCw8HSErZsAQ8P2LePdU0mRSMhMRsZGTBrFnBfrImIgEWLID0dDh4EjQbGjIFRo1jXxxcaCYnZ6N0bkpIgJgacnWHiRDh0CIKDYdgwGD8e1q6FqCjW9fGFRkJifiorwdoaBgyAnTvBywsAoKgIvLwgNxcEAtbFGR+NhMT8WFsDAGRnQ69e1c+0aAEODpCXx7Ao/lAIibkSi0GjefxQqWyqZ00phMRcDR8OBw9W/z0tDVq1aqohpGNCYq5u3oTAQBgwAKyt4dgx2L4d+vdnXRMvKITEjGm1kJkJWi14eYFEwroavlAIiRm7cQNeew26dYP0dNal8IiOCYkZq6iA8vInTs80RRRCYsYqKgAAbGxY18EvCiExYxRCQhijEBLCmFIJQCEkhCFuJJRKWdfBL4u6viEzM3Pp0qUSicTOzs7GxkYsFjs6OlpbW0skEkdHR4lEIpVK7e3txWKxnZ2dra2tWCx2cHDgo3TS9DWP6WidQ5iXl1ePdSOlUqlYLHZychKLxVKp9MGDBy4uLt98842np2ddmyLNCIXwufr06fPjjz+q1WqFQqFQKFQqVVlZmVKpVKlUJSUlKpWqsrKytLRUpVJVVFSUl5erVKry8nKlUqlUKouLiw3tFBQULFq06KeffjLqxyFNSr5IZNW3r8jZ2Z51JbyqcwidnZ0nTZpU13dVVFSo1eqSkpLKykqVShUfH7969er4+PjMzEwaDMmLyPPyNp49+1lQ0EesK+FVnUNYPzY2NjY2Ni1atOAe+vj4PHjw4Ouvvw4PD9+zZ49paiCNTkVFBQDYNPXpKLOzo0uWLJFKpXv37qXNesiLUAj55erqOmfOHEQMDw9nVQMxc0qlEiiEvFq4cKGjo+PRo0dPnDjBsAxitriRUNrUrxOyDKGTk1NoaCgALF26lGEZxGzRdNQU5s2b16pVq1OnTh09epRtJcQMUQhNwdbWdsGCBR07vhEb24PuLiZPYRnC27fh5k0wyQ8l+zvrKys1PXta3b4NP/4Idb8ASZqsqqqqNm3aFBYW3r59u3379qbr+OZNePdd6NoVhELIzIT//Ad69OC3RzQD0dEIgD16oFbLuhRiBnQ6XVxcXPfu3S0sLGxtbb28vJKTk03X/d/+hvv3V//9yBH8y1/47tAsQqjRYJcuCICxsaxLIawdOHDA29ubGyE6derEbaktEolCQ0PLy8t5716vx5YtUa9//IyLC2o0vPZpFiFExH//GwGwY0dUq1mXQhhJTEwcPnw4Fz93d/eYmBitVqtUKsPDw62srADAzc1t3759/Bah0aCz8xPPuLtjaSmvfZpLCHU67N0bAXDTJtalEJNLTk4ePXo0Fz8XFxe5XF5ZWcn9U05ODiKeP39+0KP9QwMCArgnjSw3F9esQb0eu3fHO3eqn8zPxw4dEBHLyozf4yPmEkJE3LsXAdDVFSsqWJdCTOXixYuBgYECgQAAWrRoER4eXlbjx/3WrVu2traBgYEPHjzQ6XQxMTF2dnYA4OjoGBMTo685aWyIwkIMC0OpFAFw717cuRP9/PDcObxwAf/6V9y0CfPy0MUFQ0JQoTBOj08yoxAi4qBBCIDr1rGug/Dv5s2bMplMJBIBgI2NTVhYWHFx8VOv2bNnj7W1NTc8fvvtt4iYm5v71ltvcUPisGHDsrKyGlREWRmuWIH29giAAgG+/TZevoyI+OuvGByMs2djfDwi4q5dKBQiAHbrhv/9b4N6fB7zCuEvv1SfJtXpWJdCeHPnzh2ZTGZhYQEAVlZWMpksLy/vRS++fv36G2+8waVu5MiRV65cQcSDBw9yJ2wkEkl4eLi6HicS1GqMicHWrREAAdDPD9PSXvb69HTs16/6xYGBWFBQ5x5fzLxCiIhbtuDdu48flpSwK4UYW0FBQVhYmEQiAQBLS8ugoKAbN27U5o1xcXEuLi4AYG1tLZfLtVptcXGxTCbj5rHe3t5JSUm1rEGj0ai3bEE3t+pEDR+OiYm1eqdWixs3oo0NAmDr1kY8lW92IUxLQ6EQT51CRNTr0d2ddUHEGMrKyuRyub29PQAIhcLAwMCrV6/WqYXCwkKZTMYNiX369ElNTUXE33//3cPDAwAEAoFMJit96WlM7vJj165dfxs5EgHQ2xvj4ur8Sa5eRe7tAOjvr7t1q84tPMMcQ+jjg/37o0ZDIWwKysvL5XK5k5MTlx8/P7+zZ8/Wu7Xjx49369YNACwsLEJCQsrLyysrK2tew9i7d++z79Lr9Xv37jWs4TCyf3/93r1Y7/M6ej3GxqKzs9La2rtHD7lcXlVVVe9PhOYZwrffxoULcd266hCeP4/z5+PSpSiX41df4bZtGBeHhw9jQgKmpeGlS9rr168/fPhQwc+ZK9IQS5cu5Y79AGDMmDHc8NVASqUyLCyMO6PTqVOno0ePImJGRoavr6/hGsbdGoc0CQkJ/R/tqda+ffuYmJgGZqba/fv/mTePa3bAgAHnzp2rd0tmGkKFAnv2xNu30d0dd++uHvyf+6dTp8s1v4VnZ2fn4uLSuXNnb2/v/v37e3l5BQcHs/5MzZdYLOaicuzYMeO2fO7cuQEDBnD/0597DWPjxo1//PHHqFGjuNe0atVKLperVCrjlhEfH9+hQwfDyFy/kcBMQ4iIe/fiu++iuztevYpr1+KqVRgWhh9+iNOnY2Ag+vvjqFHo44NvvHGxc+fOTk5Oz731kztw37JlC+uP1Uxx41UZP1e6tVrtxo0bbW1tAcDJyYm7cnj79u2AgICaPwPOzs7r169XKpV81ICIFRUVhpG5c+fOv/76a11bMN8QIqK/f52PCUtKSvLz869fv37+/PmUlBRuijJ06FCj10leSavVcl/7RMSkpKTo6OiUlBSj93Ljxo2xY8dyeRsxYgR3DWP37t1SqdTGxmb58uU8/Qp4ypkzZ3x8fAwjc0FdrmGYVwi1Wrx9Gzdvrn6YnY1hYQ1qsLy8vFWrVgDwyy+/NLw8UielpaXcAQI+WkkoPDycp75iY2OdnZ0BYPz48Yio0Wi4KSJP3T2XRqOJiIiwtrYWCAQnT56s/RvNK4SLFuGYMXj9ujHbXLduHQD4+PgY7VtOpHbu3bsHAG3atEHE+fPnA8A6Pr8M9eDBg2nTpnFXPrhlph0cHPjr7kWuXbu2cePGOr3FjDaEuXABIiPh2DG4f9+Yzc6dO7ddu3bp6en1WL2fNETN++JNcI+8i4vLjh07uAsYDG/J79q167/+9a86vcVcQqjXwwcfgFYLc+bA4MHGbFkikSxatAgAFi9erNPpjNk0eSkTh/BFXZs/cwlhVBQkJYG7O6xebfzGZ82a1aVLlytXrnz33XfGb528AIWwlswihHfuwLJlAABRUWBnZ/z2LS0tly9fDgDLly/nDtmJCVAIa8ksQjh3LpSXw+TJMGECX11MmTLF09Pz1q1bO3bs4KsP8iQKYS2xD+Hu3XDwIDg4wOef89iLSCRatWoVAKxatYpbXJ3wreYi9hTCl2AcwuJi5ccf6wEgMhLc3Pjta+LEiQMHDszLy4uOjua3JwIATy5iTyF8CcYhXLDgXy1aDJk8+cqMGbz3JRAIVq5cCQByubysrIz3/pq9mkngRkWT7SpBIaytkydPbt++/dq1sytW6AUCU/Q4bty4kSNHPnz48HNe574EAOiYsNaYhVCtVn/44YeIuHTp0p49e5qs308++QQAIiMjCwoKTNZp88QwhCYeeBuIWQg/+eSTrKwsLy+vBQsWmLLfoUOH/vWvf1UoFJGRkabstxkyBE+n06nVapFIxC1sYcquTdNdA7EJ4cWLF9evXy8UCjdv3szdE21Kq1evFggEX375ZW5urom7blYMSTD9NoMUwlfQ6/UffPCBRqMJDg4eMmSI6Qvo16/fpEmTVCrVp59+avremw/DnND0kWhcIbSo06v9/f0tLS0lEomjo6NEIrG2tnZwcJBIJDY2NnZ2dhKJxM7OzsbGRiwWOzo6Wltbc68UPHnWZdOmTadPn3Z1deUOz5hYs2bNgQMHtmzZ8vHHH3fu3JlVGU3bUyMhhfBF6hBCnU73888/16MPsVgslUrt7e0lEolSqczLywOA6OhoR0fHerRmFN27d58yZUpsbOyqVat27dplhBYLC8HJCYTsv/xgPiiEtVS3kTAhIUGhUKjV6tLS0srKSpVKVVxcrFarlUplaWmpWq1WKBQKhUKlUpWVlSmVSpVKVVJSolar1Wo1d4sXZ/jw4RP4+4pa7axcufKHH3749ttvZ8+ebVgjqD5+/BFWr4aOHeH2bXjnHVi40Hg1Nm4UwlqqQwhFIpGfn189+lCpVJWVlVwab9y4UVRU5O/vX492jKtDhw4TJkyIi4sbPXr0+PHjn51FSySS1nZ242xsQCwGOzuwtQWxGBwcQCoFsbi6lbt3YfFiSEkBJyfQaGDMGPDxgTFjmH4yc2FIQn5+PlAIX6xuI2H9SCQSiUTCrTzJLdVqJhYtWrR//36lUrlnz57nvmBcp07jbt58/pudnGDYMJg4EQICgFtU08oKpk2DI0cohBxDEoYOHXr9+nVuKST+lJaWCgQCbn1hCmGj8dprryUmJl69elUikTw7i1apVB4SCdy6BSoVVFRAeTmoVFBeDhUVoNFAcTFoNFBUBA4Oj1t0coKiInYfyIwkJCRwB/8ZGRldunTh9eyXUqncunVrRETE9OnTuTPejSuE5rXGTKOh02FRERYX408/4bvvPn4+IgI/+YRdWWbh1KlTI0eO5H66BAKBQCCYOXNmUVERH32p1eqvvvrK1dWV645b5QkRudVHednGkAcUwobRaNDbG/fswYoKTEzEbt3w3j3WNVU7fvz4mTNnTNnjU5sNLlu2bOXKldy3ZFq3bh1r1M3QuY0lunTpwsVv4MCBBw8eRMSHDx/+4x//4J7Mz883Yo/8oRA2WEEBfvwxjhuHMhleucK6mmpbt27ljsF69uwZExPD99qbN27ceNFmg9euXTPswuvv73/79u0G9qXX6w8ePNi7d2+uTU9Pz7i4OL1eX1paGh4ebvdoaYbhw4frGskOexRCozpyBAMCkLfFnmvp/v37rVu3hkcLkHPBCAoK+u2334z+c/nsZoP3799/6jV6vT42NrZly5YAIJVKG7KDSkJCgmGN3Q4dOnAbS6jV6piYGO4jA4Cfn1+dlv1kjkJoPHo9DhyIALhhA8MqNBrNiBEjAGDQoEH5+flxcXF+fn6GNLZt2zYsLOyKMUbspzYblMlkLz8Gy8vLCwoK4sro27dv2ss35XxGzUPNdu3abdy4UaVSaTSamJgYt0f3gw8ePPj48eMN+lQsUAiN6sgRBEBnZ3zpRnm8mjNnDgC4urrm5uYanrxz545cLu/atavhhJyPj8/GjRsfPnxYjy4KCwvDw8Prt9ng4cOH27dvD3XZQSUjIyMwMJAru2XLlnK5XKlUGjYb5J739vaOq8dmg+aBQmhsI0YgAK5axaTzb7/9lhuX/vjjD+6ZCRMmBAUFJSQkcAuQp6WlyWQyw4GTWCwOCAiIi4vTarW1aV+hUMjlcsP3Deu32WDNHVS6dOmSkJDwoldmZmYazvTY2tqGhYWVlJQgYkJCQp8+fbgaevbsyR0T1rUM80EhNLbERARABwes1yDTEGfPnuVuFzLsQpWTkyN89HVWDw+PiIgIbuO+ysrKuLi4gIAAw+aBrq6uISEhL0kUd9zVpk0bQ/wauNlgenp6v379uAPXoKCgp3ZQKSkpCQoK4oqXSqVhYWGFhYX45GaDhmPChpRhDiiEPBg7FgEaupdNHRUWFnbq1AkAZDJZzeczMzPDw8O5PfS42eOQIUNiYmK4eWBOTo5cLu/evbthmurp6SmXyx88eGBoQavVxsbGco0DgK+vr7E2G9RqtXK5/LnXMKqqqjw9PblDTW5effr06b/85S9cDTxtNsgKhZAHaWkoEKC1NZrqYnFVVRW3PZivr+9zfzR1Ol1CQkJQUJDhzlp7e/unpqkhISHcxkaGaeru3bu///57Q0S9vLz4OO7Kzs42fCfZ39//1qNd4FNSUri/X7hw4dljQqOXwRCFkB8TJyIAzpljmt64PY9at25dc5vo5yopKYmNja15vtTd3T0sLCw7OxsRKysrv//++3Hjxhm+58m9zMPDY/fu3fwdd73oGkZWVpZhUlrzmLCJoRDy49IlFIl+Gzjw1o0bfHe1b98+gUBgaWl54sSJ2r/r8uXL4eHhhkmmYZrKXdbPzc1du3Ytd8QYFRVlmuOuvLy8yZMnG65hTJgwgftdIJVKFyxYUL8TuY0ChZAvn370EQBMnTqV116ysrK4SwVRUVH1eLtOp/v111+nTJlimKba2trK5XLuXy0tLQFArVYbteRX4HaB536t1DwmbMIohHy5efOmlZWVSCTKzMzkqYuioiLuQtmUKVMa2FRpaalhmsqdXGWy2S2nrKyMGwOvXbtm+t5Nj0LIow8//BAAAgMD+Whcp9ONHz8eAPr06VNRUWGsZrOzs7kZKcPNblUqFQBYWVmZvmsmKIQ8unfvnlQqFQgEKSkpRm986dKlANCiRYvrxt1e/JGcnBwAcHNz46PxlyssLAQAJycn03fNBC1MxCNXV9fg4GBEXLFihXFbPnjwYEREhEgk+u6773i6X5bhfbGN7JbcBqMQ8mvhwoX29vY///zzyZMnjdXm1atX33vvPb1eL5fLucuDfKAQmgyFkF8tW7bkLgOEhYUZpUGFQjFx4sTS0tK33npr3rx5RmnzuRgmoXHtJNFwzXqNGRM4ceJERkYGd1jo5uY2dOhQOzs7sVhsb2//7PpuYrHYxsbG3t5eLBbb2dnZ2tpyFwkMEHHatGmXLl3y8PDYtWuXgM+9rGgkNBkKIY8qKytnzZqFiIMHDz59+nReXt6LlnV7EaFQ6ODgwKXUycmpvLz86tWrDg4Ohw4d4i4P6nQ6nlYx02ic+vVb0L59Sz4afzkKITGalStXZmdne3t7//LLL0uWLPnyyy+tra1XrVplbW391CrJ3OLI3AKtpaWlKpWqoqKivLy8qqqquLi45rrJtra2o0aN6tq1a1VV1YYNG/bv35+YmPjUgGkUJSUDz5wZ6Olp9IZfrbmFkC5R8OX8+fOWlpZCofD06dOlpaVt27YFgM2bN9epEa1WW1RUdPfu3ezs7LS0tB07dnBtJiYmKhQKbpmjNWvW8FF/dDQC4Acf8NH2K8TGxgJAUFAQg75ZoBDyQqfTvf766wAQGhqKiB988AEA+Pr6NnyJlyVLlgBAjx49lErlsWPHBAKBWCy+cOGCMap+woYNCIAff2z0hl9t06ZNADB79mwGfbNAZ0d58eWXXyYlJbVv337VqlXJyclbt261srLavn27sME7xixfvtzb2/vKlSsrVqwYNWqUTCZTq9VTp07VarVGqdygogIAgMkZyuY2HaUQGt+dO3eWLVsGAFFRUWKxeMaMGXq9fvHixZ7GOMCysrKKjY21tLSMjIw8derUhg0bOnfufObMmc8++6zhjdfEhZBJECiEpKEsVq8e0KLFO++88/e//z0iIiIzM7NHjx7Guk4IAH379p0/f75er585c6ZIJNq6datAIAgPD7906ZKxugAKoSmxng83Od9/jwB6N7ei+/cvX74skUi48yjG7USlUvXq1QsAFi5ciIgzZ84EgEGDBhnxxr9p0xAAt283Vnt1EBwcDABfffUVg75ZoJHQqIqKIDQUAASffOLk4tJq2bLATp1mzZo1dOhQ4/YjFou3b98uEokiIyP//PPPDRs2tG/fPiUlxYiTUoYjYXP7xgyNhEbFDR8jRqBeX32O39294tGC8Ea3YMECAOjZs2dlZWVCQgJ3pvTSpUtGaTwgAAHw0CGjNFY33Ioyu3fvZtA3CxRC4zlxAgUCFIsxKwvv3UNHRwTAvXv569AwKV2yZAkiTp8+HQB8fX2NMin94QdcvBhrvaivMXF7yB4+fJhB3yxQCI1EpUIPDwRA7tL5W28hAD7aqYs/ycnJIpHIwsIiNTW1pKTE3d0dADY0bB3+3bsfX6NPT8d164xQZ51wy/g3xgXt64dCaCSLFiEAenujRoOHDiEA2tvjq9Y+MwruXoqePXuqVKr4+HgAkEgkDVlTY+1adHHB//wHETEhAd9/32il1hK3vG8DFxduROjEjDFcuACRkSAUwubNUFkJH34IAPDpp9CunQk6X7NmjaenZ1ZWVkREhL+//9SpU1Uq1YwZM3Q6Xb3bDAmB1auhpMSIZdZBc7tEQSE0hq+/Bq0W/vd/YfBgWLgQcnJg0CCYPds0nYvF4m3btolEooiIiPT09C+++KJdu3ZJSUlRUVF1berWLTh/HgCgZUuYOxcWLzZ+tbXR3EJI01Fj0OkwJgbLyjA5GYVCtLLCixdNXMJHH30EAL1791ar1YcPHwYAqVRam82SlEpMSMCwMPTxQQAcPRrXrsVNm1Cnw0GDcP16fP991OnQZBuuFBQUcDdn3eB/yVYzQSFssPv30bAPbmgoAuDy5aavoqKiolu3bgCwYsUKRAwKCrK1tT1w4MCLXn/+PK5bh35+KBYjQPUfR0f8xz+qQ4iIqanYsiW+/z5+/jkOH46XL/P7EbjNBg1L8TfJxbafi0LYAOnp6OODgYE4ejS++SZyPzQ//YSMNio5deqUUCi0sLBIT08vLCx8diR5+PDhDz/8EBq63M3tcfCEQhw4EJctwz/+QG5/NEMIEXH2bHzvPezUCQHQ2hrlcqzdHmp1U1VVtWvXro4dO3Lxa9OmTV3v+WrUKIT1pdOhlxca9hJbuRL/7/+YFoSIGBISAgB9+vTRaDTcM1VVVWlpaXK53M/Pj7v3VyAQODvnt2qFgYEYE4P37r262aIilMlQIEAA7N0bk5ONVvCLNqA3WgeNAYWwvm7exL59Hz+8cwd792ZXTbWKigpuTe558+Zt3br17bffNmzoCQBisXj06NHr1q27cKE++zqcPIk9elQPnjLZ4zl4vT13A/qGNtoIUQjr69w5HDHi8cOSEmzfnlkxNRw/flwoFIrFYkP2OnfuLJPJ4uLiShu8ibdSieHhaGWFAOjmhvv21bOdU6dOGTYbNGxA38DaGi8KYX2VlqK7++MjpFOncMwYpgVVUyqVUqnUxsbG398/Ojqaj3OMZ89i//4IgDY25TNnzs3Pz6/9e5+7Ab3RK2xcKIQNEByMISGYk4MXLuCgQXj0KOuCEB9tW+/r68trL1VV+Nln6Oc3HwBatGixY8eOVx7IvWgDekIhbACdDqOjcfJknDkTzeaLjmPGjAGA6OhoE/SVk5Pz5ptvcsPasGHDsrKynvuyW7duyWQyw2aDISEhdRo8mzwKYZOSk5MjEokkEklRUZHJOo2Li2vVqhUASCSS8PDwmvsZ5ufnh4WFcQeozWSzwXqgEDYpERERADB58mQT91tcXCyTybippre3d1JSEhc/a2trABAKhYGBgdyO3ORZFMImxcPDAwDi4+OZ9H7s2DHuAolQKOQCKRAIJk+e/KJpKuEIENEI30AlZiA5Ofn1119v3bp1Tk4Ot9286alUKrlcvmHDBoVC4eXltWvXLsOVQPIitAx+08EtXP3ee++xSiAASCSSFStWjB8/vqioiL9t25oYGgmbCI1G4+bmVlhYmJGR4e3tzbocUgd0P2ETceDAgcLCQh8fH0pgo0MhbCK4uejUqVNZF0LqjKajTUF+fn67du2EQmFubq7hfjzSWNBI2BR88803VVVVAQEBlMDGiELYFHzzzTdAc9FGi6ajjV56enr//v1dXFxyc3P52LKX8I1GwkaPOyUzZcoUSmAjRSNh46bRaNq1a1dQUHD27NnXXnuNdTmkPmgkbNzi4+MLCgq8vLwogY0XhbBx4+ai3FYwpJGi6WgjVlhY6ObmptPpcnJy2rRpw7ocUk80EjZiUVFR3NKGWVlZrGsh9UcjYSNTUFBw8eLFzMzMjIyMnTt3arVaAGjRokVKSgp3Lx9pdCiEvEGE8+fBcL7k2jVwdQVbWwCAggLIzARXV+jWDQSClzVSVJR86dK5S5e44F28eLGgoKDmv6ch5lwAAAUcSURBVNvY2IwYMeLIkSMeHh7JyckODg48fRrCHwohbzQa6NoV7typfvjmmxAWBq+/DtHRsHMnjB0LV65AZSX8+CMY1ggtLYXsbLh0CTIzq/9748YsL69tFy8aWnVwcOjVq1dVVVVqaqq1tfWhQ4cGDRo0ePDgCxcujB07Nj4+nltPiTQiFELePDeE7u4wahRkZIBEAgAwdy507w7OzrBzJ2RmQm7u043Y2e2dMOFnsdjT09PLy8vT07Ndu3YAgIj//Oc/v/vuu06dOqWmpioUioEDBxYUFCxYsGDt2rWm/JSk4ejOej5VVMC//13997t3AQBSU2HEiOoEAsDf/w7btoGPDyQkAABYWUHXrtCrF3h6Vv+3Z89JQuGkZxoWCATbt2/Pzs5OTU2dOHHib7/9tm/fPm6J++7du8+YMcMkH48YB4WQZxpN9V/0egAAlQpqfrlMLAaVCiZNqk5dx46vOESsQSKRHDhwYODAgYmJiR999NHXX3+9efPm6dOnz5kzp1evXr6+vsb9HIRHbNaXag7UanR3f/xwwgQ8fRrPn8eBAx8/GRmJS5Y0pJP09HSpVAoAmzZtQsS5c+cOcHUtGTIE79xpSLPElCiEvHluCBHxf/4HQ0MxKQl37kRPT7x/v4H9xMXFCQQCCwuLY8eOabXaykmTEAD79cOKiga2TExDtGLFCtaDcRMlEICFBQwaVP1QJAIvL7C3h4kTobgY/vtfsLCAzz+HVq0a2E+vXr3UavXvv/8+Oj+/75AhFu+8A/v3w8WLcPkyTJ5c+/ktYYXOjjYFer0+PTR0QFQUeHpCUhLk5YGvL5SUwMqVsHw56+rIK1AImwqFAgYPhgsXYOxYiI+HY8dg/HjQ6eD77+Gdd1gXR16GvjvaVNjawsGD0KoV/PILLF4Mb7wBa9cCIkybBmlprIsjL0MjYdPyxx8wejRoNLBtG8yYATIZbN0Kbm7w55/g5sa6OPJ8NBI2LUOHwubNAADBwfD77/DVVzB0KNy7B19/zboy8kI0EjZFISEQFQWtW8Off4JYDNu2wcKFIKRfuGaKQtgUVVWBvz8kJMDrr8Pp06yrIa9Avx2bIgsL2L0bhg+Hzz4DAFCrYf58GDoUhg2DoCB4+JB1feQJNBI2A8uXg0IBGzaAQABbtsCRI3DgAOuayGMUwmagWzdISgJuhXxEaNsWrl0DGxvWZZFqNB1tBh4+BMMeFQIBtG4N+flMCyJPoBA2A66uj28X1ukgLw/atmVaEHkChbAZmDYNli6FqioAgPXrYdy4xwtqEDNAx4TNgE4HkZFw5Ajo9TBgAKxeDVIp65rIYxRCQhij6SghjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMEYhJIQxCiEhjFEICWGMQkgIYxRCQhijEBLCGIWQEMYohIQwRiEkhDEKISGMUQgJYYxCSAhjFEJCGKMQEsIYhZAQxiiEhDBGISSEMQohIYxRCAlhjEJICGMUQkIYoxASwhiFkBDGKISEMPb/7SZQokOA1tYAAAIfelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIkANiBSBuYGRjSADSjMwQmomJHSwO56JLw2gOBg2QMiAfTLPA+Q4QPptDBohmZoQJsENoZrgCNI0cDGANjIzoNuE0EeEEqBNxiqNp5GZgZGBkYmBiBrIZmFgZWNkY2NgZ2DkUODg1mDi4FLi4E7h5Mph4eBN4+RL4+BX4BTSY+AUVeIUYhIQZhEUYREQzmETFEsTEFcQlGMQkM5gkpRSkpBkkZRJkZDOY+LgymGRFEmR5FJyYgdaxcnHz8PKxCQmLyPLwsomKScrIiogXMQIdxgCLi+g+noOp7M4OIM519ZcHln20A7OtPl06YLX2sj2IXbPxzYEpXcfsQGzdYL6DPRbPwezov4sO7Gk8DVaz73jPgSV6rWDxfUstD4QzeoLZLVa8B16ITtwPYrPvdDhgN0HyAIgt4Wy6P81xJljc9WaqXVTt9j0g9o0lF+xdrnCDxaMqT9ifv8cEVn/b4IftkfkyYHa1yrl9c6aUgdnX6nntV3svALND733YH+vcDGZ/dzR1CIo1A7Mb9FodJD5xgtkJlu0OGYoaYPOfHNvoILxDwhbEPnJxs4PNzCNgv3jG33O4sZ0PHA7fC5gdVxVtA4vL+3c7KJ4WBYv/i+x1uL+lFMzetM7TYePMKWC2SbOjw7n9l8DqS3NtHaYliYPDQQwAeuGP8N5pE3QAAAK6elRYdE1PTCByZGtpdCAyMDI1LjAzLjMAAHicfVVbbhsxDPz3KXQBC3yL/EzsoCiK2ECb9g797/1RUkayCip0bRHr1YhLcob0qdX1/frt95/2cdH1dGoN/vONiPaLAeD02uqmPb98+Xprl7en5/cnl/vP29uPlndMeSY/n7FPb/fX9yfYLu3sfbgM1cYdZDBZgw7zOo5SAUcnN0Ru1MNZMpR/gdxu7Wxdg8CiYTflQbIBysMjh5lp7rOPMXav1keMHsowcl8UDXgDtAJqh2Chka9WD4+xAY4CSr462MsRGSDhBujt3s6ZLMCQ2scwil0yUR6pZ84W1s7YkVl85xKhfGalESm4DmUYQrtS4mQH+gCHZKe8xmDwHbT4yURIxKjOABFv+Un2LkVLaoixkJon9j4lqcwqWu7PQEHEZetT59uzhuijkCKDdJu9PVISICOqOriSE+ygIwuV4SmlJCevEMQ7OnHShN0dh2sxi1CV2kGLKOrOhBlfRpoJZcl2gs9GaunJMLIhEomqArucCCeSSIdKJWdqw3YpUbGkmVImNeuYreG6A/IE5rtZrThgjX1bSqZuPSQw2UwBUsTYBlkUec+0YVRbCmVf7pRMNrNhZUlVpDoFlHalpOJHuuAgthwdzoG29ejpkbN+SO55woSHbWOMCYT0x1waFZOxU2YNuZpBGg5VFUzYVhkvt+uncfcYgM/32/UYgPWhY8zlj8bHMMNccowszKXHYKpdO8YP5hrHkMFcfowSzBXHwKBcuI4FrAe4NL+UQVp6XMogL70sZVCWnpUyqEtv4jS29CCVwbG0Gs4nvrQUTj+xdA6WobVDsAzh0glShmhRvJQhXqSNZUgWDWMZ0kWsMjG2qBLL0Fjkh2XIF53JxMQiKCnDq3JkVuMjZq6Yec2CSwSzuquMVtHU7/d/3Lw//QXE/3EKD0i2yAAAAWt6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJwlkUtu40AQQ6+SpQTIjfp/YMyq9+NDaJ8T5PBhKRvDeGKRVey9/x97n3t/9vHvc958H8+fz/kte99638dnn38/t75uufnr53jVyrL0SxdZql7vVy6pYL5kdakDxPIWyotXuKY8Eu2IvGhpZWYA1ap2ZSBzDhojX9RqijmvbgDDWGtBI0EsDIQQojQg7pC2BwnB+8WLVa1AsBuz9IVPMLDxppVU5P7IOhH8hoUwV47MLMUfmZGEyAWPcikZmbukAmE/aplIXlWcCLDFBLvrjZ0jZKzIrGAlq1TYh5S1gUAb3DqE3W2AiKNKpIbHtOLIcldcRygOc4NmKKYUdUy/Y7U1K+oW6YmuhRwqKEzQ9/iqq82DqJHLAOPE4rhJm5Gj2GAKshWm+QASjak+LKZD9Oxd8zxsWfpcGEp4J2zrFoJAVCNiNmdjYRHtiuv8+QVIMnpnvfALXgAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Molecular_Weight_Calculation
CCOc1cc(C=O)cc(I)c1OCc1cccc(F)c1
1,339,844
400.19
400.187
4.2205
[ { "content": "Determine the molecular weight (in g/mol) of the chemical with structure 'CCOc1cc(C=O)cc(I)c1OCc1cccc(F)c1'.", "role": "user" }, { "content": "400.19", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1ccc(N(CC(O)CN2C(=O)NC(C)(C)C2=O)S(=O)(=O)c2ccc3ccccc3c2)cc1
1,389,476
481.57
481.574
3.03482
[ { "content": "Provide the molecular weight for 'Cc1ccc(N(CC(O)CN2C(=O)NC(C)(C)C2=O)S(=O)(=O)c2ccc3ccccc3c2)cc1'.", "role": "user" }, { "content": "481.57", "role": "assistant" } ]
Functional_Group_Identification
CCOC(=O)Cn1nnnc1C(C(C)C)N(Cc1ccccc1)Cc1cc2cc(C)ccc2[nH]c1=O
1,438,078
{"ester": 1, "ether": 1, "amine": 1, "phenyl": 2}
488.592
3.78562
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CCOC(=O)Cn1nnnc1C(C(C)C)N(Cc1ccccc1)Cc1cc2cc(C)ccc2[nH]c1=O'.", "role": "user" }, { "content": "{\"ester\": 1, \"ether\": 1, \"amine\": 1, \"phenyl\": 2}", "role": "assistant" } ]
Drug_Likeness_Assessment
CCCCC=CC(O)CC
316,603
{"molecular_weight": 142.24, "logp": 2.5, "hydrogen_bond_donors": 1, "hydrogen_bond_acceptors": 1, "rotatable_bonds": 5, "topological_polar_surface_area": 20.23, "lipinski_violations": [], "violation_count": 0, "drug_like": true, "assessment": "Drug-like"}
142.242
2.5037
[ { "content": "Provide information about Drug_Likeness_Assessment for the molecule with SMILES 'CCCCC=CC(O)CC'.", "role": "user" }, { "content": "{\"molecular_weight\": 142.24, \"logp\": 2.5, \"hydrogen_bond_donors\": 1, \"hydrogen_bond_acceptors\": 1, \"rotatable_bonds\": 5, \"topological_polar_surface_area\": 20.23, \"lipinski_violations\": [], \"violation_count\": 0, \"drug_like\": true, \"assessment\": \"Drug-like\"}", "role": "assistant" } ]
Functional_Group_Identification
CC(=O)Nc1cnc[nH]1
521,345
{"amide": 1}
125.131
0.3681
[ { "content": "Provide information about Functional_Group_Identification for the molecule with SMILES 'CC(=O)Nc1cnc[nH]1'.", "role": "user" }, { "content": "{\"amide\": 1}", "role": "assistant" } ]
Molecule_Visualization
CC(C)(O)C(N)=O
83,059
<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAXUUlEQVR4nO3de1hUdR7H8c9wFxBEEFHSwjBXzUuWmokWmGambqmtJY/ilpriFqAIiJAiIspyNfO2uuYlszItlbIUbVXWC2aFtxLvmHfxkoIKzNk/5iyUwsyAzPnNzPm8Hv44jr8zfHue3g7MzPmNRpIkEJE4NqIHIFI7RkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYHaiBzBEkpCfj++/R2Ehrl6FnR28veHvj9698cgjoocjqguS2Sovl5Ytk/z8JKDqr549pZ07RU9pPTIyMho2bJiYmCh6ENUx1x9Hb93CK68gJAQnT8q3ODrC1xeNG8PWVr5l+3YEBGDqVFEzWpmSkpKioqLbt2+LHkR1zDLC0lL07YtNmwDA1hZvv43du1FcjLNnceECbt7EV1+hWzd58fTpiIkROCzRQzLLCKdNQ24uALi44NtvsXgxunaFzf9HdXbGwIHIzcXkyfIt//wncnLEjEr00MwvwvPnkZoqHy9Zgl69ql6m0WDmTAwbBgBaLSIjFRqPqK6ZX4SLFuHePQDo0QNDhxpYnJEBR0cA+Okn7Nxp8tmITMD8ItywQT546y3Di7298de/ysfr15tqJCJTMrMIi4vx88/ycWCgUacEBckHu3ebZCQiEzOzCAsKUFYGAG5uaN7cqFM6dJAPjhwx1VREpmRmERYVyQeentBojDqlUSP54No1aLUmmYrIlMwswt9/lw9cXIw9pX59+aC8HHyhmSyQmUVYr558cPeusaeUlMgHGk3l6USWw8wi9PCQD27cMPaUipX168PO7N+PTvQAM4uw4sKIy5dx7ZpRp/z6q3xg5BM5RGbGzCL08cGjjwKAJOGHH4w6JS9PPuja1VRTEZmSmUUIoGdP+eCzzwwv1morl73wgokmIjIp84tw9Gj54JNPcOaMgcWrVuH0aQDw9MTgwaYdjMg0zC/CHj3ky5Ru3cLIkZVPfj6ooAATJsjHYWF8apQslPlFCGDpUjg7A8C2bXjppcqnXv4oOxvPP4/LlwGgUydeUkiWyyyf02/VCp9+iqFDUVyMHTvQrh1eeAE9e8LXFyUlKCzEN99UvsW0VSusXQt7e6ETE9WeWUYIoH9/5ORg9GgcPIjSUmzejM2b71+j0WDQICxYAC8vESMS1Q2z/HFU59ln8dNP+PhjDBlS+SK+jp8fxo5Fbi7WrKmiwPJyLFqEo0cVm5ToYZjrI6GOrS2GDZMvn799G1euwM4OjRrBwUHfWYmJSEhA//6VlyYSmTEzfiS8j4sLHn0Uvr4GCgQQGgp3d2zcKG8VRWTeLCdC43l7Iy4OACZMQGmp6GmIDLDGCAG89x6eeAJHjmDePNGjEBlgpRE6OMhbtiUk4MoV0dMQ6WOZEZ4/j9BQXL2qb82AAejbF9eu4f33lRqLqDYsM8Jx4zB/vuEN8NPTYW+PRYsqX9knMj+WGWFyMuztsWAB8vP1LWvdGqGhKC9HRIRSkxHVmGVG2Lo1xo41qq6pU+HlhW3bsHatIpMR1ZhlRgggIQFeXti6FV9+qW+ZhwcSEgAgMhJ37igzGlGNWGyEHh7y74QTJxqo65130L49Tp5EeroyoxHViMVGCGDcOLRrhxMnkJmpb5mtrbwgORnnzikzGpHxLDnCirqSkgzUFRiIQYNw61blp6kRmQ1LjhBAUBBefRW3bmHKFAMrU1Ph5IQVK7BnjyKTERnLwiMEkJYGR0csX469e/Ut8/NDRAQkCeHhkCSlhiMyzPIjbNEC4eHQag3XFRuLpk2xezdWrlRqOCLDLD9CAFOmoEkT7NqFVav0LXN1xcyZABAVhZs3lRmNyCCriLB+fSQlAUB0tIHPhBkxAl274sIFpKQoMxqRQVYRIYCQEHTpgt9+w+zZ+pZpNMjMhEaD1FQcO6bUcET6WEuENjaVdZ06pW/ls88iOBh37/LlCjIT1hIhgG7d8OabKClBdLSBlbNmwdUVa9ZUsYMbkeKsKEIAKSlwccFnn+E//9G3zNdXDjUiQv50biJxrCtCX19ERQFAeDjKy/WtjIyEnx8OHcLixcqMRlQd64oQwKRJeOwx/PQT/v1vfcucnOQnSKdMMXCFPpGJWV2E9eph1iwAiIvD9ev6Vg4Zgt69UVSEGTOUGY2oSlYXIYChQ/H887h0yXBdGRmws8PcuTh0SJHJiKpgjRECyMyErS3mzKn6E50qtG2Lt99GWRnCw5WajOh+Vhphx4546y2UlmLiRAMrExPRoAG2bTvHlytIECuNEMCMGXB3R3Y2vvlG37JGjS7Pnj24RYugd9+9d++eUsMRVbLeCI3eDN/jrbd+dXD49ddf586dq9BsRH9gvRECeO89tGqFX37Bhx/qWWVnZ5eZmQkgISHhwoULSg1HJLPqCP+4Gb7ug7Wr8eKLL/br1+/mzZtTDW4oTFTXrDpCAP374+WXcf26wc3ws7KyHB0dFy9evG/fPmVGI9Kx9ggBpKXB3r58w4aTBw/qWeXv7z9+/HitVhseHi5x/wtSkAoibN36x/ffb3r9+tvvvad/4dSpU318fHJzc9esWaPMaERQRYTAY+PHa+vV27Zt2xdffKFnmZubW0JCAoCJEycWFxcrNR2pnSoi9PDwmD59OoBJkybd0btd96hRo55++unCwsK0tDSlpiO1U0WEAMaMGdOhQ4eTJ0+m690M38bGJisrS6PRJCcnnzlzRrHxSM3UEqGtrW1GRgaApKSkwsJCPSu7d+8+ZMiQkpKS2NhYpaYjVVNLhAACAwMHDRpUXFwcp3snTfXS0tKcnZ1XrVq1c+dOZWYjNVNRhABSU1OdnJxWrFihv65mzZpNmDBBkqSwsDCtVqvYeKRO6orQz89PV1d4eLj+uiZPnty8efP9+/cvX75csfFIndQVIYDJkyc3bdr0hx9+WKl3M3xnZ+ekpCQAMTExN7ldN5mS6iJ0dXVNTk4GEBUVpb+u4ODggICAixcv6tYTmYjqIgQwfPjwrl27Xrx4MUXvZvgajSYrK8vGxiY9Pb2goECx8Uht7EQPIIBGo8nMzHzuuedSU1NHjhzp7+9f3cpOnToNHz582bJl0dHRa9euVXJIqnvl5dizBzk5OH0aV67AxgZeXnj8cfTqhU6dYFPNA1J+PrKzAaBdO/Tvr+/+JUneZAyo2f7ukloNHz4cwODBg/Uvu3DhgpubG4Bvv/1WmcFEmTlzJoCYmBjRg5hAaam0aJH0yCMSUPXX449LH38sabVVnLtkibxmxAgD36WsrPIOa0KNP47qpKSkuLm5ffHFF5v17i7TuHHjmJgYABEREWXcrtsS3b6NgQMxZgzOnpVv8fLCk0+iTRt4eMi3HD+O4GAMG4a7d5UfUL0R+vj4REVFwYi6Jk6c2LJly8OHDy9atEip6aiOlJdjwAB5nyE7O4wbh/x8XL6MAwdw6BCuXkVeHt54AxoNAKxejTffVH5G9UYIIDIy0t/f/9ChQ4v1bobv4OAwe/ZsAPHx8Ve5XbdlmT0b27YBgLMzsrMxbx7atav8W40GzzyDTz7B0qWwtQWAdeug+D+1qo7Q0dFR9/LDlClT9Nf12muv9enTp6ioSHc1BlmG69flz2YG8MEH6NOn2pUhIah4q3BcnMI/lKo6QgBDhgzp3bt3UVHRDEPbdWdkZNjZ2c2bN+/AgQPKzEYP66OP5E9ubt8ef/+7gcVxcfDxAYDLl6HsVd1qjxD/r2vu3LkH9e5/0aZNmzFjxpSVlUVERCg2Gz2Ur7+WD0JC5N/69HBwwPDh95+oCEaItm3bjho1ypi6EhMTPT09c3JyNmzYoMxsVHtaLfbulY979jTqlOeflw927zbJSNVghACQlJTk6em5ZcuWbN3LstVo2LBhfHw8gIiIiLsinsumGrh4ETduyMdt2xp1Svv28sGJE1VsGK3V4u5dfV+13cFdje+YeVDDhg3j4uIiIiLCw8NffPFFR0fHir/auHHjggULKnbI79atm7e39/HjxwcOHNi9e3dB85rEjh07AOTm5pr0yaeR7u7NK9owkbFj4e2NoiL5j87OqFfPqBM9PSuPr12Dt/ef/nblSuh903/t1eilfStWWlratm1bAKmpqRU37tu3z6a6dzNZowYNGpj6W5x67rlq37ZSV18//yxJkrRrl/xHL68a/H9gYyOfVVAg31LxjpkafdUEHwllus3we/funZCQEBwc7OPjAyA6Olqr1To7O3fs2FG3LCgoSGPwV3zLlJubu3Xr1u7duwcFBZnuu2gaNECvXqa7fwBo3BgAXFzkP+rd2utP7txBxVWmrq73/+1TT2HwYH2nSxLi4439Xn8+kSq98sorAEaPHi1J0q5duzQajaOj4969e0XPpQRre+9oYaH8oKTRSPfuGXXK+fOVD2UlJfKNfO+owjIzMx0dHZcsWZKXlxcWFiZJ0qRJkzp37ix6Lqq5xo3h5AQAkoSjR4065cgR+aBJE/lcRTDCP/H39//HP/6h1WqHDRu2d+9eX1/f6Oho0UNRrdjbo1Mn+Tgvz6hT9uyRD7p2NclI1WCE94uPj2/UqNGxY8cAzJo1y/XB3w3IUrzwgnywerVR6z/5RD4w5W/FD2KE93N3d+/SpQuALl26BAcHix6HHsKoUfKlups3Vz7KVefLL5GfDwAuLpVvnVEEI7zfiRMncnJyNBrNBx98YK1PhKqFnx/eeAMAtFqMHImLF6tdefw4xo+Xj0NDYfqXav6IEd4vMjLyzp07I0aM0D0ekmWbMwdNmwLAL7+gRw9s3VrFmq++Qs+eOHcOANq0geIXyvB1wj/ZunXrunXrXF1dZ1ZcAkMWzdMT2dno1w/nz6OgAL164cknERQEX1+Ul+O33/Ddd6jYxatlS2zcqOTzojqMsFJ5ebnuPdyxsbFNdf98khXo2BG5uRg/Xr6+/uBBPHi5jEaDoUMxZw4aNVJ+QEZYaeHChfn5+S1atODFStbGzw9ff42dO/H559i8GadOoaQEAFxc4O+PPn3wxhuVr2fcp2lTBAYCQJs2Br6LRiOvrCFGKLt27drUqVPx/8+rED0OmUBAAAIC5OPbt6HRwNnZ8Fl9+6JvX6Pu38am6t85DWGEsmnTpl25ciUwMPC1114TPQuZXsU7S80Anx0FgCNHjsyfP9/W1jYzM1P0LKQ6jBAAJkyYUFpa+s4777SvuKyTSCmMEBs2bNi0aZOHh0dCQoLoWUiN1B7hvXv3IiMjAUybNs3Ly0v0OKRGao8wKyvr6NGjrVu3HjdunOhZSKVUHeGlS5d0nwSanp5ub28vehxSKVVHGBsbe+PGjQEDBvQ18oUgIhNQb4Q//vjj0qVLHRwcUlNTRc9CqqbeCMPDw7VabVhY2BNPPCF6FlI1lUa4evXq7du3e3t7T5kyRfQspHZqjLCkpET3uZ9JSUnu7u6ixyG1U2OEs2fPPn369FNPPfV3g5/UQ2R6qovw7NmzumdiMjMzbXWfC0kklOquokhKatC+/YzmzXf3NPKTeohMTF0R5uZi4UJXJ6fw1av1fUg9kZJU9OOoVouICEgSoqLQvLm6/vUhc6aiCJcuRV4eHnkEkyaJHoXoD9QS4e+/yx+Yk5JiVhdVE6kmwsREnD+Pbt3kzWCJzIcqIjx+HHPmwMYGWVngntpkblQR4YQJuHsXI0eCn3FGZsj6I8zJwfr1qF8fM2aIHoWoKlYeYVkZdBv5xsWhSRPR0xBVxcojnD8fBw7g8ccRFiZ6FKJqWHOE165Bt39aejocHUVPQ1QNa44wPh5XryIoCAMHih6FqHpWG+Hhw1i4ELa24J7aZOasNsKICJSVITQU7dqJHoVIL+uM8Msv8d138PDA1KmiRyEyxAojvHcPUVEAkJgIT0/R0xAZYoURpqejoABt2mDMGNGjEBnB2iK8eBHJyQCQng7uqU0WwdoijInBzZt49VW89JLoUYiMY1UR7t+P5cvh4ICUFNGjEBnNeiKUJISHy3tYtGwpehoio1lPhKtWYccONG6MyZNFj0JUE1YSYUkJYmMBIDkZ3FObLIuVRJicjDNn0KkTQkJEj0JUQ9YQYWEh0tKg0SAzEzbW8B9E6mIN/89GRqK4GG++iR49RI9CVHMWH6FWi0aN4OaGWbNEj0JUKxYfoY0N5s7FqVNo1kz0KES1YvER6nh4iJ6AqLZq9pEMr78uH3z6qYGnQD78EN9/DwChoQgMrNlMy5dj40b5OC1N30NcVhZycwEgJgadOtXsuxCZiZpFuGaNfCBJBlbu3SsvfvnlGkeYn4/PP5ePy8qwdm21K/fskVeOGMEIyVKZ+4+j69Zh/XrRQxCZkrlHCODdd3HrlughiEzGrCPUbQ9z5gymTxc9CpHJmHWEERHw8QGAjAz8/LPoaYhMw6wjdHGRd2rS7Zum1YoeiMgEzDpCAKNHo0MHAPjvf7FkiehpiEzA3CO0tcXcufKHCsbE4NIl0QMR1bWavU5YYdcuAy/WX75cuzuuQkAAXn8dn32GoiJERmL58jq7ZyJzUMsIFb5eITMTmzbh5k2sWIGQEPTqpeh3JzIpc/9xVKdJE8THy8fjxuHOHaHTENWpWj4Sbtxo4MfRtDTk5NTuvqsWFoZly3DwIAoKkJHBjWTIetQywr59YWurb8Hq1bW742rZ22P+fPTsCUnCzJkICUHTpnX8LYiEsIwfR3UCAjB8OADcuiVv60RkBSwpQgApKWjQAACWL0denuhpiOqChUXYuDFmzAAASUJkpOErqojMn4VFCGDsWDz9NABs3y5fN0xk0YRFePs2jh7F2bM1PtHWFgsWyE8LXbhQ53MRKU1AhOvXo0sXuLqiVSs0a4bHHsO//lWze3jmGYwaZZrhiBSndITp6Xj1VRw+jOBgxMVh6FCcPYsxY5CeXrP7SU6Gt7dpRiRSlqIRXrmC+Hj4+GD/fqxcicRErF6NZcsAYNo0FBfX4K48PLjRaB1zdHSsX7++k5OT6EFURyPV5BnGSZPkg5QU+cqG6nz6KfbtA4C//Q2dO1fefuIErl790y0AfH1x7hx27EBAAABkZ2PHDgAYNgzt21f7LXSv2v/+OwCMHIm//MX4/w4iM1KzCE2kSxfk5SE7G/36iR6FSHFm8RLF6dMA0Ly56DmIRBAf4ZYtuHQJjz6Ktm1Fj0IkguAI795FdDQAxMYa+CWTyFqJjFCSMG4c9u/Hyy9j9GiBgxCJJCxCrRahoVi6FAEB+PxzPgySetXyesKHdOsWRozAunV49llkZ8PFRcgURGZBwCPhsWMICMC6dQgJwbZtcHNTfgQiM6J0hGvXonNnHDqEWbPw0Ufg2zOIFH2xfssW9O5d7d+GhSEzU7FZiMyFor8TurtXfszogzp2VHAUIrNhFm9bI1Iz8e+YIVI5RkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYP8DtjKdzQlLPaAAAACnelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIYAdiNiBuYGRjSADSjMxsDApAmgXG5YDQQGkNIM3Mws6QAaIZmTggAkzcDIwMjExAlQyMLAwsrAosbBpMTiCjxeNAGhlgFnlOUrFnYDhgD+JA2A6qCPaB/SD2JBVOByClBmJvz40GijksBbFvbzu7/6Hbsv1IbLA5YgAPTh0hsuIrugAAAN56VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJyFkd0OwiAMhe95ivMCIwU2Ni73F2PMWKLTd/De949t5mSLOgskbflo4aAgdu5O9wfeZjulANqZIQTcHBGpAeKg6Q/HiHaqmyXTjtc4XVDC8wkeW7KexmHJGLQg7XNbFSWMLkiMM/RyFs6uubT9wbk1l+0UzDHCavO3YMEFM9JMmdyJ95P0iNLR00wabUMgV30hS+6dyB2wj91GrVm/Zoxd0k+GTTJxAJfUkDBPb5awSE8zvHy6P++hXPded5J4+WP21RMt0GwJbhuU5gAAAGl6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJxNikEOgCAMBL/isU2gaWtBifHUu3yIxwskGm47M+sOjlDR4cG7bg2YsumZjiCUwvUTLzvOpCQd8yiRqXuxfYJQ5g7jpqWwLeoz2F7TtBhe8mctBAAAAABJRU5ErkJggg==</base64_image>
103.121
-0.7574
[ { "content": "What is the molecule visualization for the compound represented by 'CC(C)(O)C(N)=O'?", "role": "user" }, { "content": "<base64_image>iVBORw0KGgoAAAANSUhEUgAAASwAAAEsCAIAAAD2HxkiAAAABmJLR0QA/wD/AP+gvaeTAAAXUUlEQVR4nO3de1hUdR7H8c9wFxBEEFHSwjBXzUuWmokWmGambqmtJY/ilpriFqAIiJAiIspyNfO2uuYlszItlbIUbVXWC2aFtxLvmHfxkoIKzNk/5iyUwsyAzPnNzPm8Hv44jr8zfHue3g7MzPmNRpIkEJE4NqIHIFI7RkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYHaiBzBEkpCfj++/R2Ehrl6FnR28veHvj9698cgjoocjqguS2Sovl5Ytk/z8JKDqr549pZ07RU9pPTIyMho2bJiYmCh6ENUx1x9Hb93CK68gJAQnT8q3ODrC1xeNG8PWVr5l+3YEBGDqVFEzWpmSkpKioqLbt2+LHkR1zDLC0lL07YtNmwDA1hZvv43du1FcjLNnceECbt7EV1+hWzd58fTpiIkROCzRQzLLCKdNQ24uALi44NtvsXgxunaFzf9HdXbGwIHIzcXkyfIt//wncnLEjEr00MwvwvPnkZoqHy9Zgl69ql6m0WDmTAwbBgBaLSIjFRqPqK6ZX4SLFuHePQDo0QNDhxpYnJEBR0cA+Okn7Nxp8tmITMD8ItywQT546y3Di7298de/ysfr15tqJCJTMrMIi4vx88/ycWCgUacEBckHu3ebZCQiEzOzCAsKUFYGAG5uaN7cqFM6dJAPjhwx1VREpmRmERYVyQeentBojDqlUSP54No1aLUmmYrIlMwswt9/lw9cXIw9pX59+aC8HHyhmSyQmUVYr558cPeusaeUlMgHGk3l6USWw8wi9PCQD27cMPaUipX168PO7N+PTvQAM4uw4sKIy5dx7ZpRp/z6q3xg5BM5RGbGzCL08cGjjwKAJOGHH4w6JS9PPuja1VRTEZmSmUUIoGdP+eCzzwwv1morl73wgokmIjIp84tw9Gj54JNPcOaMgcWrVuH0aQDw9MTgwaYdjMg0zC/CHj3ky5Ru3cLIkZVPfj6ooAATJsjHYWF8apQslPlFCGDpUjg7A8C2bXjppcqnXv4oOxvPP4/LlwGgUydeUkiWyyyf02/VCp9+iqFDUVyMHTvQrh1eeAE9e8LXFyUlKCzEN99UvsW0VSusXQt7e6ETE9WeWUYIoH9/5ORg9GgcPIjSUmzejM2b71+j0WDQICxYAC8vESMS1Q2z/HFU59ln8dNP+PhjDBlS+SK+jp8fxo5Fbi7WrKmiwPJyLFqEo0cVm5ToYZjrI6GOrS2GDZMvn799G1euwM4OjRrBwUHfWYmJSEhA//6VlyYSmTEzfiS8j4sLHn0Uvr4GCgQQGgp3d2zcKG8VRWTeLCdC43l7Iy4OACZMQGmp6GmIDLDGCAG89x6eeAJHjmDePNGjEBlgpRE6OMhbtiUk4MoV0dMQ6WOZEZ4/j9BQXL2qb82AAejbF9eu4f33lRqLqDYsM8Jx4zB/vuEN8NPTYW+PRYsqX9knMj+WGWFyMuztsWAB8vP1LWvdGqGhKC9HRIRSkxHVmGVG2Lo1xo41qq6pU+HlhW3bsHatIpMR1ZhlRgggIQFeXti6FV9+qW+ZhwcSEgAgMhJ37igzGlGNWGyEHh7y74QTJxqo65130L49Tp5EeroyoxHViMVGCGDcOLRrhxMnkJmpb5mtrbwgORnnzikzGpHxLDnCirqSkgzUFRiIQYNw61blp6kRmQ1LjhBAUBBefRW3bmHKFAMrU1Ph5IQVK7BnjyKTERnLwiMEkJYGR0csX469e/Ut8/NDRAQkCeHhkCSlhiMyzPIjbNEC4eHQag3XFRuLpk2xezdWrlRqOCLDLD9CAFOmoEkT7NqFVav0LXN1xcyZABAVhZs3lRmNyCCriLB+fSQlAUB0tIHPhBkxAl274sIFpKQoMxqRQVYRIYCQEHTpgt9+w+zZ+pZpNMjMhEaD1FQcO6bUcET6WEuENjaVdZ06pW/ls88iOBh37/LlCjIT1hIhgG7d8OabKClBdLSBlbNmwdUVa9ZUsYMbkeKsKEIAKSlwccFnn+E//9G3zNdXDjUiQv50biJxrCtCX19ERQFAeDjKy/WtjIyEnx8OHcLixcqMRlQd64oQwKRJeOwx/PQT/v1vfcucnOQnSKdMMXCFPpGJWV2E9eph1iwAiIvD9ev6Vg4Zgt69UVSEGTOUGY2oSlYXIYChQ/H887h0yXBdGRmws8PcuTh0SJHJiKpgjRECyMyErS3mzKn6E50qtG2Lt99GWRnCw5WajOh+Vhphx4546y2UlmLiRAMrExPRoAG2bTvHlytIECuNEMCMGXB3R3Y2vvlG37JGjS7Pnj24RYugd9+9d++eUsMRVbLeCI3eDN/jrbd+dXD49ddf586dq9BsRH9gvRECeO89tGqFX37Bhx/qWWVnZ5eZmQkgISHhwoULSg1HJLPqCP+4Gb7ug7Wr8eKLL/br1+/mzZtTDW4oTFTXrDpCAP374+WXcf26wc3ws7KyHB0dFy9evG/fPmVGI9Kx9ggBpKXB3r58w4aTBw/qWeXv7z9+/HitVhseHi5x/wtSkAoibN36x/ffb3r9+tvvvad/4dSpU318fHJzc9esWaPMaERQRYTAY+PHa+vV27Zt2xdffKFnmZubW0JCAoCJEycWFxcrNR2pnSoi9PDwmD59OoBJkybd0btd96hRo55++unCwsK0tDSlpiO1U0WEAMaMGdOhQ4eTJ0+m690M38bGJisrS6PRJCcnnzlzRrHxSM3UEqGtrW1GRgaApKSkwsJCPSu7d+8+ZMiQkpKS2NhYpaYjVVNLhAACAwMHDRpUXFwcp3snTfXS0tKcnZ1XrVq1c+dOZWYjNVNRhABSU1OdnJxWrFihv65mzZpNmDBBkqSwsDCtVqvYeKRO6orQz89PV1d4eLj+uiZPnty8efP9+/cvX75csfFIndQVIYDJkyc3bdr0hx9+WKl3M3xnZ+ekpCQAMTExN7ldN5mS6iJ0dXVNTk4GEBUVpb+u4ODggICAixcv6tYTmYjqIgQwfPjwrl27Xrx4MUXvZvgajSYrK8vGxiY9Pb2goECx8Uht7EQPIIBGo8nMzHzuuedSU1NHjhzp7+9f3cpOnToNHz582bJl0dHRa9euVXJIqnvl5dizBzk5OH0aV67AxgZeXnj8cfTqhU6dYFPNA1J+PrKzAaBdO/Tvr+/+JUneZAyo2f7ukloNHz4cwODBg/Uvu3DhgpubG4Bvv/1WmcFEmTlzJoCYmBjRg5hAaam0aJH0yCMSUPXX449LH38sabVVnLtkibxmxAgD36WsrPIOa0KNP47qpKSkuLm5ffHFF5v17i7TuHHjmJgYABEREWXcrtsS3b6NgQMxZgzOnpVv8fLCk0+iTRt4eMi3HD+O4GAMG4a7d5UfUL0R+vj4REVFwYi6Jk6c2LJly8OHDy9atEip6aiOlJdjwAB5nyE7O4wbh/x8XL6MAwdw6BCuXkVeHt54AxoNAKxejTffVH5G9UYIIDIy0t/f/9ChQ4v1bobv4OAwe/ZsAPHx8Ve5XbdlmT0b27YBgLMzsrMxbx7atav8W40GzzyDTz7B0qWwtQWAdeug+D+1qo7Q0dFR9/LDlClT9Nf12muv9enTp6ioSHc1BlmG69flz2YG8MEH6NOn2pUhIah4q3BcnMI/lKo6QgBDhgzp3bt3UVHRDEPbdWdkZNjZ2c2bN+/AgQPKzEYP66OP5E9ubt8ef/+7gcVxcfDxAYDLl6HsVd1qjxD/r2vu3LkH9e5/0aZNmzFjxpSVlUVERCg2Gz2Ur7+WD0JC5N/69HBwwPDh95+oCEaItm3bjho1ypi6EhMTPT09c3JyNmzYoMxsVHtaLfbulY979jTqlOeflw927zbJSNVghACQlJTk6em5ZcuWbN3LstVo2LBhfHw8gIiIiLsinsumGrh4ETduyMdt2xp1Svv28sGJE1VsGK3V4u5dfV+13cFdje+YeVDDhg3j4uIiIiLCw8NffPFFR0fHir/auHHjggULKnbI79atm7e39/HjxwcOHNi9e3dB85rEjh07AOTm5pr0yaeR7u7NK9owkbFj4e2NoiL5j87OqFfPqBM9PSuPr12Dt/ef/nblSuh903/t1eilfStWWlratm1bAKmpqRU37tu3z6a6dzNZowYNGpj6W5x67rlq37ZSV18//yxJkrRrl/xHL68a/H9gYyOfVVAg31LxjpkafdUEHwllus3we/funZCQEBwc7OPjAyA6Olqr1To7O3fs2FG3LCgoSGPwV3zLlJubu3Xr1u7duwcFBZnuu2gaNECvXqa7fwBo3BgAXFzkP+rd2utP7txBxVWmrq73/+1TT2HwYH2nSxLi4439Xn8+kSq98sorAEaPHi1J0q5duzQajaOj4969e0XPpQRre+9oYaH8oKTRSPfuGXXK+fOVD2UlJfKNfO+owjIzMx0dHZcsWZKXlxcWFiZJ0qRJkzp37ix6Lqq5xo3h5AQAkoSjR4065cgR+aBJE/lcRTDCP/H39//HP/6h1WqHDRu2d+9eX1/f6Oho0UNRrdjbo1Mn+Tgvz6hT9uyRD7p2NclI1WCE94uPj2/UqNGxY8cAzJo1y/XB3w3IUrzwgnywerVR6z/5RD4w5W/FD2KE93N3d+/SpQuALl26BAcHix6HHsKoUfKlups3Vz7KVefLL5GfDwAuLpVvnVEEI7zfiRMncnJyNBrNBx98YK1PhKqFnx/eeAMAtFqMHImLF6tdefw4xo+Xj0NDYfqXav6IEd4vMjLyzp07I0aM0D0ekmWbMwdNmwLAL7+gRw9s3VrFmq++Qs+eOHcOANq0geIXyvB1wj/ZunXrunXrXF1dZ1ZcAkMWzdMT2dno1w/nz6OgAL164cknERQEX1+Ul+O33/Ddd6jYxatlS2zcqOTzojqMsFJ5ebnuPdyxsbFNdf98khXo2BG5uRg/Xr6+/uBBPHi5jEaDoUMxZw4aNVJ+QEZYaeHChfn5+S1atODFStbGzw9ff42dO/H559i8GadOoaQEAFxc4O+PPn3wxhuVr2fcp2lTBAYCQJs2Br6LRiOvrCFGKLt27drUqVPx/8+rED0OmUBAAAIC5OPbt6HRwNnZ8Fl9+6JvX6Pu38am6t85DWGEsmnTpl25ciUwMPC1114TPQuZXsU7S80Anx0FgCNHjsyfP9/W1jYzM1P0LKQ6jBAAJkyYUFpa+s4777SvuKyTSCmMEBs2bNi0aZOHh0dCQoLoWUiN1B7hvXv3IiMjAUybNs3Ly0v0OKRGao8wKyvr6NGjrVu3HjdunOhZSKVUHeGlS5d0nwSanp5ub28vehxSKVVHGBsbe+PGjQEDBvQ18oUgIhNQb4Q//vjj0qVLHRwcUlNTRc9CqqbeCMPDw7VabVhY2BNPPCF6FlI1lUa4evXq7du3e3t7T5kyRfQspHZqjLCkpET3uZ9JSUnu7u6ixyG1U2OEs2fPPn369FNPPfV3g5/UQ2R6qovw7NmzumdiMjMzbXWfC0kklOquokhKatC+/YzmzXf3NPKTeohMTF0R5uZi4UJXJ6fw1av1fUg9kZJU9OOoVouICEgSoqLQvLm6/vUhc6aiCJcuRV4eHnkEkyaJHoXoD9QS4e+/yx+Yk5JiVhdVE6kmwsREnD+Pbt3kzWCJzIcqIjx+HHPmwMYGWVngntpkblQR4YQJuHsXI0eCn3FGZsj6I8zJwfr1qF8fM2aIHoWoKlYeYVkZdBv5xsWhSRPR0xBVxcojnD8fBw7g8ccRFiZ6FKJqWHOE165Bt39aejocHUVPQ1QNa44wPh5XryIoCAMHih6FqHpWG+Hhw1i4ELa24J7aZOasNsKICJSVITQU7dqJHoVIL+uM8Msv8d138PDA1KmiRyEyxAojvHcPUVEAkJgIT0/R0xAZYoURpqejoABt2mDMGNGjEBnB2iK8eBHJyQCQng7uqU0WwdoijInBzZt49VW89JLoUYiMY1UR7t+P5cvh4ICUFNGjEBnNeiKUJISHy3tYtGwpehoio1lPhKtWYccONG6MyZNFj0JUE1YSYUkJYmMBIDkZ3FObLIuVRJicjDNn0KkTQkJEj0JUQ9YQYWEh0tKg0SAzEzbW8B9E6mIN/89GRqK4GG++iR49RI9CVHMWH6FWi0aN4OaGWbNEj0JUKxYfoY0N5s7FqVNo1kz0KES1YvER6nh4iJ6AqLZq9pEMr78uH3z6qYGnQD78EN9/DwChoQgMrNlMy5dj40b5OC1N30NcVhZycwEgJgadOtXsuxCZiZpFuGaNfCBJBlbu3SsvfvnlGkeYn4/PP5ePy8qwdm21K/fskVeOGMEIyVKZ+4+j69Zh/XrRQxCZkrlHCODdd3HrlughiEzGrCPUbQ9z5gymTxc9CpHJmHWEERHw8QGAjAz8/LPoaYhMw6wjdHGRd2rS7Zum1YoeiMgEzDpCAKNHo0MHAPjvf7FkiehpiEzA3CO0tcXcufKHCsbE4NIl0QMR1bWavU5YYdcuAy/WX75cuzuuQkAAXn8dn32GoiJERmL58jq7ZyJzUMsIFb5eITMTmzbh5k2sWIGQEPTqpeh3JzIpc/9xVKdJE8THy8fjxuHOHaHTENWpWj4Sbtxo4MfRtDTk5NTuvqsWFoZly3DwIAoKkJHBjWTIetQywr59YWurb8Hq1bW742rZ22P+fPTsCUnCzJkICUHTpnX8LYiEsIwfR3UCAjB8OADcuiVv60RkBSwpQgApKWjQAACWL0denuhpiOqChUXYuDFmzAAASUJkpOErqojMn4VFCGDsWDz9NABs3y5fN0xk0YRFePs2jh7F2bM1PtHWFgsWyE8LXbhQ53MRKU1AhOvXo0sXuLqiVSs0a4bHHsO//lWze3jmGYwaZZrhiBSndITp6Xj1VRw+jOBgxMVh6FCcPYsxY5CeXrP7SU6Gt7dpRiRSlqIRXrmC+Hj4+GD/fqxcicRErF6NZcsAYNo0FBfX4K48PLjRaB1zdHSsX7++k5OT6EFURyPV5BnGSZPkg5QU+cqG6nz6KfbtA4C//Q2dO1fefuIErl790y0AfH1x7hx27EBAAABkZ2PHDgAYNgzt21f7LXSv2v/+OwCMHIm//MX4/w4iM1KzCE2kSxfk5SE7G/36iR6FSHFm8RLF6dMA0Ly56DmIRBAf4ZYtuHQJjz6Ktm1Fj0IkguAI795FdDQAxMYa+CWTyFqJjFCSMG4c9u/Hyy9j9GiBgxCJJCxCrRahoVi6FAEB+PxzPgySetXyesKHdOsWRozAunV49llkZ8PFRcgURGZBwCPhsWMICMC6dQgJwbZtcHNTfgQiM6J0hGvXonNnHDqEWbPw0Ufg2zOIFH2xfssW9O5d7d+GhSEzU7FZiMyFor8TurtXfszogzp2VHAUIrNhFm9bI1Iz8e+YIVI5RkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYIyQSDBGSCQYIyQSjBESCcYIiQRjhESCMUIiwRghkWCMkEgwRkgkGCMkEowREgnGCIkEY4REgjFCIsEYIZFgjJBIMEZIJBgjJBKMERIJxgiJBGOERIIxQiLBGCGRYP8DtjKdzQlLPaAAAACnelRYdHJka2l0UEtMIHJka2l0IDIwMjUuMDMuMwAAeJx7v2/tPQYgEABiJgYIYAdiNiBuYGRjSADSjMxsDApAmgXG5YDQQGkNIM3Mws6QAaIZmTggAkzcDIwMjExAlQyMLAwsrAosbBpMTiCjxeNAGhlgFnlOUrFnYDhgD+JA2A6qCPaB/SD2JBVOByClBmJvz40GijksBbFvbzu7/6Hbsv1IbLA5YgAPTh0hsuIrugAAAN56VFh0TU9MIHJka2l0IDIwMjUuMDMuMwAAeJyFkd0OwiAMhe95ivMCIwU2Ni73F2PMWKLTd/De949t5mSLOgskbflo4aAgdu5O9wfeZjulANqZIQTcHBGpAeKg6Q/HiHaqmyXTjtc4XVDC8wkeW7KexmHJGLQg7XNbFSWMLkiMM/RyFs6uubT9wbk1l+0UzDHCavO3YMEFM9JMmdyJ95P0iNLR00wabUMgV30hS+6dyB2wj91GrVm/Zoxd0k+GTTJxAJfUkDBPb5awSE8zvHy6P++hXPded5J4+WP21RMt0GwJbhuU5gAAAGl6VFh0U01JTEVTIHJka2l0IDIwMjUuMDMuMwAAeJxNikEOgCAMBL/isU2gaWtBifHUu3yIxwskGm47M+sOjlDR4cG7bg2YsumZjiCUwvUTLzvOpCQd8yiRqXuxfYJQ5g7jpqWwLeoz2F7TtBhe8mctBAAAAABJRU5ErkJggg==</base64_image>", "role": "assistant" } ]
Reactivity_Prediction
C[N+](C)(C)C=NCCCCCCN=C[N+](C)(C)C.[I-]
379,829
{"charges": {"C": [{"atom_idx": 0, "charge": 0.073}, {"atom_idx": 2, "charge": 0.073}, {"atom_idx": 3, "charge": 0.073}, {"atom_idx": 4, "charge": 0.184}, {"atom_idx": 8, "charge": -0.051}, {"atom_idx": 9, "charge": -0.051}, {"atom_idx": 13, "charge": 0.184}, {"atom_idx": 15, "charge": 0.073}, {"atom_idx": 16, "charge": 0.073}, {"atom_idx": 17, "charge": 0.073}], "N": [{"atom_idx": 1, "charge": -0.289}, {"atom_idx": 5, "charge": -0.241}, {"atom_idx": 12, "charge": -0.241}, {"atom_idx": 14, "charge": -0.289}], "I": [{"atom_idx": 18, "charge": -1.0}]}, "dipole": 3.83, "steric_hindrance": 1.05}
383.342
-0.9802
[ { "content": "Determine the reactivity prediction of the chemical structure 'C[N+](C)(C)C=NCCCCCCN=C[N+](C)(C)C.[I-]'.", "role": "user" }, { "content": "{\"charges\": {\"C\": [{\"atom_idx\": 0, \"charge\": 0.073}, {\"atom_idx\": 2, \"charge\": 0.073}, {\"atom_idx\": 3, \"charge\": 0.073}, {\"atom_idx\": 4, \"charge\": 0.184}, {\"atom_idx\": 8, \"charge\": -0.051}, {\"atom_idx\": 9, \"charge\": -0.051}, {\"atom_idx\": 13, \"charge\": 0.184}, {\"atom_idx\": 15, \"charge\": 0.073}, {\"atom_idx\": 16, \"charge\": 0.073}, {\"atom_idx\": 17, \"charge\": 0.073}], \"N\": [{\"atom_idx\": 1, \"charge\": -0.289}, {\"atom_idx\": 5, \"charge\": -0.241}, {\"atom_idx\": 12, \"charge\": -0.241}, {\"atom_idx\": 14, \"charge\": -0.289}], \"I\": [{\"atom_idx\": 18, \"charge\": -1.0}]}, \"dipole\": 3.83, \"steric_hindrance\": 1.05}", "role": "assistant" } ]
Molecular_Weight_Calculation
Cc1cccc(N(C(=O)c2csnn2)C(C(=O)NCc2ccccc2)c2ccncc2)c1
1,452,026
443.53
443.532
3.94602
[ { "content": "What is the molecular weight of the compound with SMILES 'Cc1cccc(N(C(=O)c2csnn2)C(C(=O)NCc2ccccc2)c2ccncc2)c1'?", "role": "user" }, { "content": "443.53", "role": "assistant" } ]
Synthetic_Accessibility
COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O
1,513,713
{'sa_score': 8.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}
443.091
4.4476
[ { "content": "Determine the synthetic accessibility of the chemical structure 'COc1cc(Br)c(Br)c(C=Nc2ccc3c(c2)OCCO3)c1O'.", "role": "user" }, { "content": "{'sa_score': 8.25, 'calculation_method': 'heuristic', 'confidence_score': 'medium'}", "role": "assistant" } ]
End of preview. Expand in Data Studio

ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards

Dataset Description

ChemBench-RLVR is a high-quality, balanced dataset containing 7,001 question-answer pairs across 14 chemistry task types. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools.

Key Features

  • 🧪 7,001 balanced QA pairs across 14 chemistry domains
  • 🔬 100% local calculations - no external API dependencies
  • ⚖️ Perfect task balance - each task has exactly 500 samples
  • 🎯 Verifiable answers - all responses computed using RDKit, spyrmsd, and other reliable tools
  • 📚 Template diversity - 3 prompt variations per task
  • 🌐 Molecular diversity - sourced from 10,000 PubChem compounds
  • 📦 Multiple formats - Available in both Parquet and JSONL formats

Dataset Statistics

Overview

  • Total Samples: 7,001
  • Training Split: 6,300 samples (90%)
  • Test Split: 701 samples (10%)
  • Generation Time: 2685.7 seconds
  • Average per Task: 500 samples
  • Zero Duplicates: All QA pairs are unique
  • Reproducible: Fixed seed (42) for consistent results

Molecular Complexity Statistics

  • SMILES Length: 41.2 ± 16.7 characters (avg ± std)
  • Min SMILES Length: 7 characters
  • Max SMILES Length: 84 characters
  • Median SMILES Length: 45 characters

Text Length Statistics

Questions

  • Average Length: 111 ± 20 characters
  • Range: 45-160 characters
  • Median: 112 characters

Answers

  • Average Length: 1683 ± 4695 characters
  • Range: 5-24829 characters
  • Median: 105 characters

Task Distribution

Complete Task Breakdown

  • Bioactivity Prediction: 384 samples- Drug Likeness Assessment: 442 samples- Functional Group Identification: 408 samples- Ghs Hazard Statement Identification: 249 samples- Ghs Pictogram Identification: 248 samples- Hydrogen Bond Properties: 404 samples- Iupac Name Generation: 714 samples- Logp Calculation: 27 samples- Molecular Weight Calculation: 1,255 samples- Molecule Visualization: 717 samples- Reactivity Prediction: 405 samples- Solubility Prediction: 667 samples- Stereochemistry Analysis: 750 samples- Synthetic Accessibility: 331 samples

Chemistry Task Categories

🧪 Core Molecular Properties (6 tasks)

  • Molecular Weight Calculation: Exact molecular mass computation using RDKit
  • LogP Calculation: Octanol-water partition coefficient prediction
  • Aromatic Ring Count: Identification of aromatic ring systems
  • Hydrogen Bond Properties: Count of donors and acceptors
  • IUPAC Name Generation: Systematic nomenclature from structure
  • Molecule Visualization: 2D structural diagram generation

🔬 Advanced Spectroscopy & Structure (3 tasks)

  • NMR Signal Prediction: 1H and 13C chemical shift estimation via RDKit fallback methods
  • Point Group Determination: Molecular symmetry analysis using RDKit/spyrmsd
  • Stereochemistry Analysis: Chiral center identification and stereoisomer enumeration
  • Functional Group Identification: SMARTS-based substructure recognition

⚠️ Safety & Hazard Assessment (2 tasks)

  • GHS Pictogram Identification: Hazard symbol classification from structure
  • GHS Hazard Statement Identification: H-code assignment using chemical patterns

💊 Pharmaceutical Chemistry (4 tasks)

  • Drug-Likeness Assessment: Lipinski's Rule of Five evaluation
  • Solubility Prediction: Aqueous solubility estimation via group contribution
  • Bioactivity Prediction: Pharmacological class prediction from structural features
  • Stereochemistry Analysis: Chiral center identification and stereoisomer counting

⚗️ Synthetic Chemistry (2 tasks)

  • Synthetic Accessibility: Complexity scoring for synthesis planning
  • Reactivity Prediction: Reactive site identification and charge analysis

Task Distribution

  • Bioactivity Prediction: 384 samples
  • Drug Likeness Assessment: 442 samples
  • Functional Group Identification: 408 samples
  • Ghs Hazard Statement Identification: 249 samples
  • Ghs Pictogram Identification: 248 samples
  • Hydrogen Bond Properties: 404 samples
  • Iupac Name Generation: 714 samples
  • Logp Calculation: 27 samples
  • Molecular Weight Calculation: 1,255 samples
  • Molecule Visualization: 717 samples
  • Reactivity Prediction: 405 samples
  • Solubility Prediction: 667 samples
  • Stereochemistry Analysis: 750 samples
  • Synthetic Accessibility: 331 samples

Dataset Structure

Each sample contains:

  • messages: List of conversation turns (user question, assistant answer)
  • task: Chemistry task category
  • smiles: SMILES string of the molecule
  • difficulty: Task difficulty level (easy/medium/hard)

Example Sample

{
  "messages": [
    {
      "role": "user", 
      "content": "What is the molecular weight of the compound with SMILES 'CCO'?"
    },
    {
      "role": "assistant",
      "content": "The molecular weight of ethanol (CCO) is 46.07 g/mol."
    }
  ],
  "task": "Molecular_Weight_Calculation",
  "smiles": "CCO",
  "difficulty": "easy"
}

Computational Methods

All answers are computed using established cheminformatics libraries:

  • RDKit: Molecular property calculations, structure analysis
  • spyrmsd: Symmetry-corrected molecular analysis
  • MDAnalysis: Molecular dynamics and structure processing
  • PyTorch: Neural network components (when available)

Usage

Loading the Dataset

from datasets import load_dataset

# Load full dataset
dataset = load_dataset("summykai/chembench-rlvr-test")

# Load specific split
train_data = load_dataset("summykai/chembench-rlvr-test", split="train")
test_data = load_dataset("summykai/chembench-rlvr-test", split="test")

RLVR Training

This dataset is optimized for Reinforcement Learning from Verifiable Rewards:

# Example: Verify molecular weight calculation
from rdkit import Chem
from rdkit.Chem import Descriptors

def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool:
    mol = Chem.MolFromSmiles(smiles)
    if mol is None:
        return False
    actual_mw = Descriptors.MolWt(mol)
    return abs(actual_mw - predicted_mw) < 0.1

Citation

If you use this dataset in your research, please cite:

@dataset{chembench_rlvr_2025,
  title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards},
  author={ChemBench Team},
  year={2025},
  url={https://huggingface.co/datasets/summykai/chembench-rlvr-test},
  note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools}
}

License

This dataset is released under the MIT License. See LICENSE file for details.

Dataset Generation

  • Generated on: 2025-07-29 22:29:32 UTC
  • Version: 8.6-post8
  • Seed: 42 (for reproducibility)
  • Source molecules: PubChem compound database

Acknowledgments

This dataset was generated using:

  • RDKit - Cheminformatics toolkit
  • spyrmsd - Symmetry-corrected RMSD calculations
  • PubChem - Chemical compound database
  • Hugging Face - Dataset hosting and distribution
Downloads last month
49