Datasets:
Formats:
parquet
Languages:
English
Size:
1K - 10K
Tags:
chemistry
molecular-properties
drug-discovery
spectroscopy
safety-assessment
synthetic-chemistry
License:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,36 +1,229 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- question-answering
|
5 |
+
- text-generation
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
tags:
|
9 |
+
- chemistry
|
10 |
+
- molecular-properties
|
11 |
+
- drug-discovery
|
12 |
+
- spectroscopy
|
13 |
+
- safety-assessment
|
14 |
+
- synthetic-chemistry
|
15 |
+
- rlvr
|
16 |
+
- reinforcement-learning
|
17 |
+
- cheminformatics
|
18 |
+
- rdkit
|
19 |
+
size_categories:
|
20 |
+
- 10K<n<100K
|
21 |
+
configs:
|
22 |
+
- config_name: default
|
23 |
+
data_files:
|
24 |
+
- split: train
|
25 |
+
path: train.parquet
|
26 |
+
- split: test
|
27 |
+
path: test.parquet
|
28 |
+
---
|
29 |
+
|
30 |
+
# ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards
|
31 |
+
|
32 |
+
## Dataset Description
|
33 |
+
|
34 |
+
ChemBench-RLVR is a high-quality, balanced dataset containing **19,995 question-answer pairs** across **15 chemistry task types**. This dataset is specifically designed for training language models using Reinforcement Learning from Verifiable Rewards (RLVR), where all answers are computationally verifiable using established cheminformatics tools.
|
35 |
+
|
36 |
+
### Key Features
|
37 |
+
|
38 |
+
- 🧪 **19,995 balanced QA pairs** across 15 chemistry domains
|
39 |
+
- 🔬 **100% local calculations** - no external API dependencies
|
40 |
+
- ⚖️ **Perfect task balance** - each task has exactly 1,333 samples
|
41 |
+
- 🎯 **Verifiable answers** - all responses computed using RDKit, spyrmsd, and other reliable tools
|
42 |
+
- 📚 **Template diversity** - 3 prompt variations per task
|
43 |
+
- 🌐 **Molecular diversity** - sourced from 20,000 PubChem compounds
|
44 |
+
- 📦 **Multiple formats** - Available in both Parquet and JSONL formats
|
45 |
+
|
46 |
+
## Dataset Statistics
|
47 |
+
|
48 |
+
### Overview
|
49 |
+
- **Total Samples**: 19,995
|
50 |
+
- **Training Split**: 17,995 samples (90%)
|
51 |
+
- **Test Split**: 2,000 samples (10%)
|
52 |
+
- **Generation Time**: 107.7 seconds
|
53 |
+
- **Average per Task**: 1,333 samples
|
54 |
+
- **Zero Duplicates**: All QA pairs are unique
|
55 |
+
- **Reproducible**: Fixed seed (42) for consistent results
|
56 |
+
|
57 |
+
### Molecular Complexity Statistics
|
58 |
+
|
59 |
+
- **SMILES Length**: 38.8 ± 16.0 characters (avg ± std)
|
60 |
+
- **Min SMILES Length**: 2 characters
|
61 |
+
- **Max SMILES Length**: 99 characters
|
62 |
+
- **Median SMILES Length**: 37 characters
|
63 |
+
|
64 |
+
### Text Length Statistics
|
65 |
+
|
66 |
+
#### Questions
|
67 |
+
- **Average Length**: 111 ± 18 characters
|
68 |
+
- **Range**: 63-189 characters
|
69 |
+
- **Median**: 110 characters
|
70 |
+
|
71 |
+
#### Answers
|
72 |
+
- **Average Length**: 1130 ± 3827 characters
|
73 |
+
- **Range**: 1-27577 characters
|
74 |
+
- **Median**: 75 characters
|
75 |
+
|
76 |
+
## Task Distribution
|
77 |
+
|
78 |
+
### Complete Task Breakdown
|
79 |
+
- **Aromatic Ring Count**: 1,333 samples- **Bioactivity Prediction**: 1,333 samples- **Drug Likeness Assessment**: 1,333 samples- **Functional Group Identification**: 1,333 samples- **Ghs Hazard Statement Identification**: 1,333 samples- **Ghs Pictogram Identification**: 1,333 samples- **Hydrogen Bond Properties**: 1,333 samples- **Iupac Name Generation**: 1,333 samples- **Logp Calculation**: 1,333 samples- **Molecular Weight Calculation**: 1,333 samples- **Molecule Visualization**: 1,333 samples- **Reactivity Prediction**: 1,333 samples- **Solubility Prediction**: 1,333 samples- **Stereochemistry Analysis**: 1,333 samples- **Synthetic Accessibility**: 1,333 samples
|
80 |
+
|
81 |
+
## Chemistry Task Categories
|
82 |
+
|
83 |
+
### 🧪 Core Molecular Properties (6 tasks)
|
84 |
+
- **Molecular Weight Calculation**: Exact molecular mass computation using RDKit
|
85 |
+
- **LogP Calculation**: Octanol-water partition coefficient prediction
|
86 |
+
- **Aromatic Ring Count**: Identification of aromatic ring systems
|
87 |
+
- **Hydrogen Bond Properties**: Count of donors and acceptors
|
88 |
+
- **IUPAC Name Generation**: Systematic nomenclature from structure
|
89 |
+
- **Molecule Visualization**: 2D structural diagram generation
|
90 |
+
|
91 |
+
### 🔬 Advanced Spectroscopy & Structure (3 tasks)
|
92 |
+
- **NMR Signal Prediction**: 1H and 13C chemical shift estimation via RDKit fallback methods
|
93 |
+
- **Point Group Determination**: Molecular symmetry analysis using RDKit/spyrmsd
|
94 |
+
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer enumeration
|
95 |
+
- **Functional Group Identification**: SMARTS-based substructure recognition
|
96 |
+
|
97 |
+
### ⚠️ Safety & Hazard Assessment (2 tasks)
|
98 |
+
- **GHS Pictogram Identification**: Hazard symbol classification from structure
|
99 |
+
- **GHS Hazard Statement Identification**: H-code assignment using chemical patterns
|
100 |
+
|
101 |
+
### 💊 Pharmaceutical Chemistry (4 tasks)
|
102 |
+
- **Drug-Likeness Assessment**: Lipinski's Rule of Five evaluation
|
103 |
+
- **Solubility Prediction**: Aqueous solubility estimation via group contribution
|
104 |
+
- **Bioactivity Prediction**: Pharmacological class prediction from structural features
|
105 |
+
- **Stereochemistry Analysis**: Chiral center identification and stereoisomer counting
|
106 |
+
|
107 |
+
### ⚗️ Synthetic Chemistry (2 tasks)
|
108 |
+
- **Synthetic Accessibility**: Complexity scoring for synthesis planning
|
109 |
+
- **Reactivity Prediction**: Reactive site identification and charge analysis
|
110 |
+
|
111 |
+
## Task Distribution
|
112 |
+
|
113 |
+
- **Aromatic Ring Count**: 1,333 samples
|
114 |
+
- **Bioactivity Prediction**: 1,333 samples
|
115 |
+
- **Drug Likeness Assessment**: 1,333 samples
|
116 |
+
- **Functional Group Identification**: 1,333 samples
|
117 |
+
- **Ghs Hazard Statement Identification**: 1,333 samples
|
118 |
+
- **Ghs Pictogram Identification**: 1,333 samples
|
119 |
+
- **Hydrogen Bond Properties**: 1,333 samples
|
120 |
+
- **Iupac Name Generation**: 1,333 samples
|
121 |
+
- **Logp Calculation**: 1,333 samples
|
122 |
+
- **Molecular Weight Calculation**: 1,333 samples
|
123 |
+
- **Molecule Visualization**: 1,333 samples
|
124 |
+
- **Reactivity Prediction**: 1,333 samples
|
125 |
+
- **Solubility Prediction**: 1,333 samples
|
126 |
+
- **Stereochemistry Analysis**: 1,333 samples
|
127 |
+
- **Synthetic Accessibility**: 1,333 samples
|
128 |
+
|
129 |
+
## Dataset Structure
|
130 |
+
|
131 |
+
Each sample contains:
|
132 |
+
- **messages**: List of conversation turns (user question, assistant answer)
|
133 |
+
- **task**: Chemistry task category
|
134 |
+
- **smiles**: SMILES string of the molecule
|
135 |
+
- **difficulty**: Task difficulty level (easy/medium/hard)
|
136 |
+
|
137 |
+
### Example Sample
|
138 |
+
|
139 |
+
```json
|
140 |
+
{
|
141 |
+
"messages": [
|
142 |
+
{
|
143 |
+
"role": "user",
|
144 |
+
"content": "What is the molecular weight of the compound with SMILES 'CCO'?"
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"role": "assistant",
|
148 |
+
"content": "The molecular weight of ethanol (CCO) is 46.07 g/mol."
|
149 |
+
}
|
150 |
+
],
|
151 |
+
"task": "Molecular_Weight_Calculation",
|
152 |
+
"smiles": "CCO",
|
153 |
+
"difficulty": "easy"
|
154 |
+
}
|
155 |
+
```
|
156 |
+
|
157 |
+
## Computational Methods
|
158 |
+
|
159 |
+
All answers are computed using established cheminformatics libraries:
|
160 |
+
|
161 |
+
- **RDKit**: Molecular property calculations, structure analysis
|
162 |
+
- **spyrmsd**: Symmetry-corrected molecular analysis
|
163 |
+
- **MDAnalysis**: Molecular dynamics and structure processing
|
164 |
+
- **PyTorch**: Neural network components (when available)
|
165 |
+
|
166 |
+
## Usage
|
167 |
+
|
168 |
+
### Loading the Dataset
|
169 |
+
|
170 |
+
```python
|
171 |
+
from datasets import load_dataset
|
172 |
+
|
173 |
+
# Load full dataset
|
174 |
+
dataset = load_dataset("summykai/chembench-rlvr-test")
|
175 |
+
|
176 |
+
# Load specific split
|
177 |
+
train_data = load_dataset("summykai/chembench-rlvr-test", split="train")
|
178 |
+
test_data = load_dataset("summykai/chembench-rlvr-test", split="test")
|
179 |
+
```
|
180 |
+
|
181 |
+
### RLVR Training
|
182 |
+
|
183 |
+
This dataset is optimized for Reinforcement Learning from Verifiable Rewards:
|
184 |
+
|
185 |
+
```python
|
186 |
+
# Example: Verify molecular weight calculation
|
187 |
+
from rdkit import Chem
|
188 |
+
from rdkit.Chem import Descriptors
|
189 |
+
|
190 |
+
def verify_molecular_weight(smiles: str, predicted_mw: float) -> bool:
|
191 |
+
mol = Chem.MolFromSmiles(smiles)
|
192 |
+
if mol is None:
|
193 |
+
return False
|
194 |
+
actual_mw = Descriptors.MolWt(mol)
|
195 |
+
return abs(actual_mw - predicted_mw) < 0.1
|
196 |
+
```
|
197 |
+
|
198 |
+
## Citation
|
199 |
+
|
200 |
+
If you use this dataset in your research, please cite:
|
201 |
+
|
202 |
+
```bibtex
|
203 |
+
@dataset{chembench_rlvr_2025,
|
204 |
+
title={ChemBench-RLVR: Comprehensive Chemistry Dataset for Reinforcement Learning from Verifiable Rewards},
|
205 |
+
author={ChemBench Team},
|
206 |
+
year={2025},
|
207 |
+
url={https://huggingface.co/datasets/summykai/chembench-rlvr-test},
|
208 |
+
note={Generated using RDKit, spyrmsd, and other open-source cheminformatics tools}
|
209 |
+
}
|
210 |
+
```
|
211 |
+
|
212 |
+
## License
|
213 |
+
|
214 |
+
This dataset is released under the MIT License. See LICENSE file for details.
|
215 |
+
|
216 |
+
## Dataset Generation
|
217 |
+
|
218 |
+
- **Generated on**: 2025-07-26 12:28:32 UTC
|
219 |
+
- **Version**: 8.6-post8
|
220 |
+
- **Seed**: 42 (for reproducibility)
|
221 |
+
- **Source molecules**: PubChem compound database
|
222 |
+
|
223 |
+
## Acknowledgments
|
224 |
+
|
225 |
+
This dataset was generated using:
|
226 |
+
- [RDKit](https://www.rdkit.org/) - Cheminformatics toolkit
|
227 |
+
- [spyrmsd](https://github.com/RMeli/spyrmsd) - Symmetry-corrected RMSD calculations
|
228 |
+
- [PubChem](https://pubchem.ncbi.nlm.nih.gov/) - Chemical compound database
|
229 |
+
- [Hugging Face](https://huggingface.co/) - Dataset hosting and distribution
|