data_source
stringclasses
1 value
prompt
stringlengths
949
8.38k
ability
stringclasses
1 value
reward_model
dict
extra_info
dict
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 86, experimental_model_of_disease 118, organophosphorus_compound 7, therapeutic_or_preventive_procedure src, edge_attr, dst 86, result_of, 7 118, affects, 86 118, causes, 86 7, affects, 86 7, associated_with, 86 7, complicates, 86 7, prevents, 86 7, treats, 86 Question: For what reason are experimental_model_of_disease, organophosphorus_compound, and therapeutic_or_preventive_procedure associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "experimental_model_of_disease", "organophosphorus_compound", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "experimental_model_of_disease", "result_of", "therapeutic_or_preventive_procedure" ], [ "organophosphorus_compound", "affects", "experimental_model_of_disease" ], [ "organophosphorus_compound", "causes", "experimental_model_of_disease" ], [ "therapeutic_or_preventive_procedure", "affects", "experimental_model_of_disease" ], [ "therapeutic_or_preventive_procedure", "associated_with", "experimental_model_of_disease" ], [ "therapeutic_or_preventive_procedure", "complicates", "experimental_model_of_disease" ], [ "therapeutic_or_preventive_procedure", "prevents", "experimental_model_of_disease" ], [ "therapeutic_or_preventive_procedure", "treats", "experimental_model_of_disease" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26, amino_acid_sequence 3, carbohydrate_sequence 86, experimental_model_of_disease 42, geographic_area 70, idea_or_concept 32, molecular_sequence 134, nucleotide_sequence 67, research_device 79, spatial_concept src, edge_attr, dst 26, isa, 70 26, isa, 32 26, isa, 79 3, isa, 70 3, isa, 32 3, isa, 79 42, associated_with, 86 42, isa, 70 42, isa, 79 32, isa, 70 32, isa, 79 134, isa, 70 134, isa, 32 134, isa, 79 67, causes, 86 79, isa, 70 Question: For what reason are carbohydrate_sequence, experimental_model_of_disease, and research_device associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "carbohydrate_sequence", "experimental_model_of_disease", "research_device" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "geographic_area", "associated_with", "experimental_model_of_disease" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "research_device", "causes", "experimental_model_of_disease" ], [ "spatial_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8, chemical_viewed_functionally 62, disease_or_syndrome 89, finding src, edge_attr, dst 8, affects, 62 8, causes, 62 89, associated_with, 62 89, evaluation_of, 62 89, manifestation_of, 62 Question: In what context are chemical_viewed_functionally, disease_or_syndrome, and finding connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "chemical_viewed_functionally", "disease_or_syndrome", "finding" ], "valid_edges": [ [ "chemical_viewed_functionally", "affects", "disease_or_syndrome" ], [ "chemical_viewed_functionally", "causes", "disease_or_syndrome" ], [ "finding", "associated_with", "disease_or_syndrome" ], [ "finding", "evaluation_of", "disease_or_syndrome" ], [ "finding", "manifestation_of", "disease_or_syndrome" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 123, diagnostic_procedure 50, event 128, health_care_related_organization src, edge_attr, dst 123, isa, 50 128, carries_out, 123 128, location_of, 123 Question: For what reason are diagnostic_procedure, event, and health_care_related_organization associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "diagnostic_procedure", "event", "health_care_related_organization" ], "valid_edges": [ [ "diagnostic_procedure", "isa", "event" ], [ "health_care_related_organization", "carries_out", "diagnostic_procedure" ], [ "health_care_related_organization", "location_of", "diagnostic_procedure" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 57, amino_acid_peptide_or_protein 61, clinical_drug 68, drug_delivery_device 75, food 99, hazardous_or_poisonous_substance 113, manufactured_object 59, medical_device 84, substance src, edge_attr, dst 57, ingredient_of, 61 57, interacts_with, 99 57, isa, 84 61, isa, 113 68, contains, 61 68, isa, 113 68, isa, 59 75, ingredient_of, 61 75, isa, 84 99, ingredient_of, 61 99, isa, 84 59, isa, 113 84, ingredient_of, 61 Question: How are amino_acid_peptide_or_protein, drug_delivery_device, and hazardous_or_poisonous_substance related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_peptide_or_protein", "drug_delivery_device", "hazardous_or_poisonous_substance" ], "valid_edges": [ [ "amino_acid_peptide_or_protein", "ingredient_of", "clinical_drug" ], [ "amino_acid_peptide_or_protein", "interacts_with", "hazardous_or_poisonous_substance" ], [ "amino_acid_peptide_or_protein", "isa", "substance" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "hazardous_or_poisonous_substance", "ingredient_of", "clinical_drug" ], [ "hazardous_or_poisonous_substance", "isa", "substance" ], [ "medical_device", "isa", "manufactured_object" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 80, mental_or_behavioral_dysfunction 119, organism 67, research_device src, edge_attr, dst 80, affects, 119 80, process_of, 119 67, causes, 80 Question: For what reason are mental_or_behavioral_dysfunction, organism, and research_device associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "mental_or_behavioral_dysfunction", "organism", "research_device" ], "valid_edges": [ [ "mental_or_behavioral_dysfunction", "affects", "organism" ], [ "mental_or_behavioral_dysfunction", "process_of", "organism" ], [ "research_device", "causes", "mental_or_behavioral_dysfunction" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 44, body_part_organ_or_organ_component 132, body_system 107, educational_activity 33, eicosanoid 70, idea_or_concept 111, qualitative_concept src, edge_attr, dst 44, conceptual_part_of, 132 44, produces, 33 132, isa, 70 111, evaluation_of, 107 111, isa, 70 Question: How are body_part_organ_or_organ_component, educational_activity, and eicosanoid related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_part_organ_or_organ_component", "educational_activity", "eicosanoid" ], "valid_edges": [ [ "body_part_organ_or_organ_component", "conceptual_part_of", "body_system" ], [ "body_part_organ_or_organ_component", "produces", "eicosanoid" ], [ "body_system", "isa", "idea_or_concept" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 26, amino_acid_sequence 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 124, family_group 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 99, hazardous_or_poisonous_substance 53, health_care_activity 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 111, qualitative_concept 66, regulation_or_law 67, research_device 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 26, isa, 17 26, isa, 70 64, associated_with, 28 64, associated_with, 124 64, isa, 69 64, isa, 50 48, isa, 17 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 107, isa, 69 107, isa, 50 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 42, isa, 17 42, isa, 70 91, isa, 69 91, isa, 50 10, isa, 17 10, property_of, 28 10, property_of, 124 99, ingredient_of, 61 53, isa, 69 53, isa, 50 70, conceptual_part_of, 64 70, isa, 17 55, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 66, affects, 28 66, affects, 124 66, isa, 17 122, associated_with, 28 122, associated_with, 124 122, isa, 69 122, isa, 50 Question: For what reason are amino_acid_sequence, daily_or_recreational_activity, and hazardous_or_poisonous_substance associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_sequence", "daily_or_recreational_activity", "hazardous_or_poisonous_substance" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "classification", "isa", "conceptual_entity" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "hazardous_or_poisonous_substance", "ingredient_of", "clinical_drug" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36, machine_activity 80, mental_or_behavioral_dysfunction 7, therapeutic_or_preventive_procedure src, edge_attr, dst 36, method_of, 7 80, result_of, 7 7, affects, 80 7, associated_with, 80 7, complicates, 80 7, prevents, 80 7, treats, 80 Question: For what reason are machine_activity, mental_or_behavioral_dysfunction, and therapeutic_or_preventive_procedure associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "machine_activity", "mental_or_behavioral_dysfunction", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "machine_activity", "method_of", "therapeutic_or_preventive_procedure" ], [ "mental_or_behavioral_dysfunction", "result_of", "therapeutic_or_preventive_procedure" ], [ "therapeutic_or_preventive_procedure", "affects", "mental_or_behavioral_dysfunction" ], [ "therapeutic_or_preventive_procedure", "associated_with", "mental_or_behavioral_dysfunction" ], [ "therapeutic_or_preventive_procedure", "complicates", "mental_or_behavioral_dysfunction" ], [ "therapeutic_or_preventive_procedure", "prevents", "mental_or_behavioral_dysfunction" ], [ "therapeutic_or_preventive_procedure", "treats", "mental_or_behavioral_dysfunction" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 9, entity 56, mental_process 108, temporal_concept src, edge_attr, dst 56, occurs_in, 108 108, isa, 9 108, result_of, 56 Question: In what context are entity, mental_process, and temporal_concept connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "entity", "mental_process", "temporal_concept" ], "valid_edges": [ [ "mental_process", "occurs_in", "temporal_concept" ], [ "temporal_concept", "isa", "entity" ], [ "temporal_concept", "result_of", "mental_process" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 102, biologically_active_substance 85, laboratory_procedure 1, population_group src, edge_attr, dst 85, analyzes, 102 85, assesses_effect_of, 102 85, measures, 102 1, performs, 85 Question: For what reason are biologically_active_substance, laboratory_procedure, and population_group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biologically_active_substance", "laboratory_procedure", "population_group" ], "valid_edges": [ [ "laboratory_procedure", "analyzes", "biologically_active_substance" ], [ "laboratory_procedure", "assesses_effect_of", "biologically_active_substance" ], [ "laboratory_procedure", "measures", "biologically_active_substance" ], [ "population_group", "performs", "laboratory_procedure" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 48, classification 61, clinical_drug 17, conceptual_entity 107, educational_activity 47, enzyme 50, event 124, family_group 91, governmental_or_regulatory_activity 53, health_care_activity 128, health_care_related_organization 55, intellectual_product 27, occupational_activity 31, organization 118, organophosphorus_compound 41, professional_society 111, qualitative_concept 66, regulation_or_law 40, self_help_or_relief_organization src, edge_attr, dst 28, isa, 17 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 27 28, produces, 48 28, produces, 61 28, produces, 55 28, produces, 66 28, uses, 48 28, uses, 61 28, uses, 55 28, uses, 66 48, isa, 17 48, isa, 55 107, isa, 69 107, isa, 50 107, isa, 27 47, ingredient_of, 61 124, isa, 17 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 27 124, produces, 48 124, produces, 61 124, produces, 55 124, produces, 66 124, uses, 48 124, uses, 61 124, uses, 55 124, uses, 66 91, isa, 69 91, isa, 50 91, isa, 27 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 55, isa, 17 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 118, ingredient_of, 61 118, interacts_with, 47 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 27 111, isa, 17 66, affects, 28 66, affects, 124 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 17 66, isa, 55 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 Question: How are enzyme, organophosphorus_compound, and self_help_or_relief_organization related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "enzyme", "organophosphorus_compound", "self_help_or_relief_organization" ], "valid_edges": [ [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "regulation_or_law" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "enzyme", "ingredient_of", "clinical_drug" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "regulation_or_law" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "organophosphorus_compound", "ingredient_of", "clinical_drug" ], [ "organophosphorus_compound", "interacts_with", "enzyme" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 48, classification 24, daily_or_recreational_activity 107, educational_activity 43, environmental_effect_of_humans 50, event 91, governmental_or_regulatory_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 36, machine_activity 19, molecular_biology_research_technique 31, organization 41, professional_society 111, qualitative_concept 96, quantitative_concept 66, regulation_or_law 40, self_help_or_relief_organization 108, temporal_concept src, edge_attr, dst 69, isa, 50 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 43, isa, 50 91, isa, 69 91, isa, 50 128, carries_out, 107 128, carries_out, 91 128, carries_out, 19 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 19 128, produces, 48 128, produces, 55 128, produces, 66 36, isa, 69 36, isa, 50 19, isa, 69 19, isa, 50 19, measures, 96 19, measures, 108 31, carries_out, 107 31, carries_out, 91 31, carries_out, 19 31, location_of, 107 31, location_of, 91 31, location_of, 19 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, carries_out, 19 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 19 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 36 111, evaluation_of, 19 111, isa, 70 96, isa, 70 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 40, carries_out, 107 40, carries_out, 91 40, carries_out, 19 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 19 40, produces, 48 40, produces, 55 40, produces, 66 108, isa, 70 Question: For what reason are environmental_effect_of_humans, machine_activity, and molecular_biology_research_technique associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "environmental_effect_of_humans", "machine_activity", "molecular_biology_research_technique" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "environmental_effect_of_humans", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "molecular_biology_research_technique" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "molecular_biology_research_technique" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "molecular_biology_research_technique", "isa", "activity" ], [ "molecular_biology_research_technique", "isa", "event" ], [ "molecular_biology_research_technique", "measures", "quantitative_concept" ], [ "molecular_biology_research_technique", "measures", "temporal_concept" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "molecular_biology_research_technique" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "molecular_biology_research_technique" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "molecular_biology_research_technique" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "molecular_biology_research_technique" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "molecular_biology_research_technique" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "molecular_biology_research_technique" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "molecular_biology_research_technique" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 47, enzyme 16, group 58, occupation_or_discipline src, edge_attr, dst 47, issue_in, 58 16, issue_in, 58 Question: How are enzyme, group, and occupation_or_discipline related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "enzyme", "group", "occupation_or_discipline" ], "valid_edges": [ [ "enzyme", "issue_in", "occupation_or_discipline" ], [ "group", "issue_in", "occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 102, biologically_active_substance 123, diagnostic_procedure 31, organization src, edge_attr, dst 123, analyzes, 102 123, assesses_effect_of, 102 123, measures, 102 31, carries_out, 123 31, location_of, 123 Question: In what context are biologically_active_substance, diagnostic_procedure, and organization connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biologically_active_substance", "diagnostic_procedure", "organization" ], "valid_edges": [ [ "diagnostic_procedure", "analyzes", "biologically_active_substance" ], [ "diagnostic_procedure", "assesses_effect_of", "biologically_active_substance" ], [ "diagnostic_procedure", "measures", "biologically_active_substance" ], [ "organization", "carries_out", "diagnostic_procedure" ], [ "organization", "location_of", "diagnostic_procedure" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 32, molecular_sequence 58, occupation_or_discipline 71, phenomenon_or_process src, edge_attr, dst 32, issue_in, 58 71, issue_in, 58 Question: For what reason are molecular_sequence, occupation_or_discipline, and phenomenon_or_process associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "molecular_sequence", "occupation_or_discipline", "phenomenon_or_process" ], "valid_edges": [ [ "molecular_sequence", "issue_in", "occupation_or_discipline" ], [ "phenomenon_or_process", "issue_in", "occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 94, body_location_or_region 132, body_system 115, carbohydrate 106, cell_component 17, conceptual_entity 82, functional_concept 70, idea_or_concept 23, professional_or_occupational_group src, edge_attr, dst 94, conceptual_part_of, 132 94, isa, 17 132, isa, 17 132, isa, 82 132, isa, 70 106, conceptual_part_of, 132 106, produces, 115 82, isa, 17 70, isa, 17 23, isa, 17 Question: In what context are carbohydrate, cell_component, and professional_or_occupational_group connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "carbohydrate", "cell_component", "professional_or_occupational_group" ], "valid_edges": [ [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "functional_concept" ], [ "body_system", "isa", "idea_or_concept" ], [ "cell_component", "conceptual_part_of", "body_system" ], [ "cell_component", "produces", "carbohydrate" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "professional_or_occupational_group", "isa", "conceptual_entity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 26, amino_acid_sequence 94, body_location_or_region 132, body_system 3, carbohydrate_sequence 48, classification 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 50, event 89, finding 82, functional_concept 42, geographic_area 91, governmental_or_regulatory_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 85, laboratory_procedure 36, machine_activity 32, molecular_sequence 134, nucleotide_sequence 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 96, quantitative_concept 66, regulation_or_law 40, self_help_or_relief_organization 79, spatial_concept 108, temporal_concept src, edge_attr, dst 69, isa, 50 26, isa, 17 26, isa, 70 26, isa, 32 26, isa, 79 94, isa, 17 94, isa, 70 94, isa, 79 132, isa, 17 132, isa, 70 3, isa, 17 3, isa, 70 3, isa, 32 3, isa, 79 48, isa, 17 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 107, isa, 27 89, isa, 17 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 42, isa, 79 91, isa, 69 91, isa, 50 91, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 85 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 85 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 70, isa, 17 55, isa, 17 85, isa, 69 85, isa, 50 85, isa, 27 85, measures, 96 85, measures, 108 36, isa, 69 36, isa, 50 36, method_of, 85 32, isa, 17 32, isa, 70 32, isa, 79 134, isa, 17 134, isa, 70 134, isa, 32 134, isa, 79 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 85 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 85 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, carries_out, 85 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 85 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 85 111, evaluation_of, 36 111, evaluation_of, 27 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 26 96, measurement_of, 94 96, measurement_of, 3 96, measurement_of, 42 96, measurement_of, 32 96, measurement_of, 134 96, measurement_of, 79 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 17 40, carries_out, 107 40, carries_out, 91 40, carries_out, 85 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 85 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 79, isa, 17 79, isa, 70 108, isa, 17 108, isa, 70 Question: In what context are amino_acid_sequence, finding, and laboratory_procedure connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_sequence", "finding", "laboratory_procedure" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "conceptual_entity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "classification", "isa", "conceptual_entity" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "finding", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "laboratory_procedure" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "laboratory_procedure" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "laboratory_procedure", "isa", "activity" ], [ "laboratory_procedure", "isa", "event" ], [ "laboratory_procedure", "isa", "occupational_activity" ], [ "laboratory_procedure", "measures", "quantitative_concept" ], [ "laboratory_procedure", "measures", "temporal_concept" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "machine_activity", "method_of", "laboratory_procedure" ], [ "molecular_sequence", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "laboratory_procedure" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "laboratory_procedure" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "laboratory_procedure" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "laboratory_procedure" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "laboratory_procedure" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "amino_acid_sequence" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "carbohydrate_sequence" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "molecular_sequence" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ], [ "quantitative_concept", "measurement_of", "spatial_concept" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "laboratory_procedure" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "laboratory_procedure" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "spatial_concept", "isa", "conceptual_entity" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "isa", "conceptual_entity" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 69, activity 106, cell_component 48, classification 24, daily_or_recreational_activity 107, educational_activity 91, governmental_or_regulatory_activity 128, health_care_related_organization 55, intellectual_product 113, manufactured_object 31, organization 41, professional_society 111, qualitative_concept 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization src, edge_attr, dst 106, location_of, 95 48, isa, 55 24, associated_with, 95 24, isa, 69 107, associated_with, 95 107, isa, 69 91, associated_with, 95 91, isa, 69 128, carries_out, 107 128, carries_out, 91 128, isa, 31 128, location_of, 107 128, location_of, 91 128, produces, 48 128, produces, 55 128, produces, 66 113, causes, 95 31, carries_out, 107 31, carries_out, 91 31, location_of, 107 31, location_of, 91 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, isa, 31 41, location_of, 107 41, location_of, 91 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 55 67, causes, 95 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, isa, 31 40, location_of, 107 40, location_of, 91 40, produces, 48 40, produces, 55 40, produces, 66 Question: For what reason are acquired_abnormality, cell_component, and professional_society associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "cell_component", "professional_society" ], "valid_edges": [ [ "cell_component", "location_of", "acquired_abnormality" ], [ "classification", "isa", "intellectual_product" ], [ "daily_or_recreational_activity", "associated_with", "acquired_abnormality" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "educational_activity", "associated_with", "acquired_abnormality" ], [ "educational_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "associated_with", "acquired_abnormality" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "manufactured_object", "causes", "acquired_abnormality" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "causes", "acquired_abnormality" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 42, geographic_area 70, idea_or_concept 52, laboratory_or_test_result 80, mental_or_behavioral_dysfunction 79, spatial_concept 108, temporal_concept src, edge_attr, dst 42, associated_with, 80 42, isa, 70 42, isa, 79 52, associated_with, 80 52, evaluation_of, 80 52, indicates, 80 52, manifestation_of, 80 79, isa, 70 108, isa, 70 Question: For what reason are laboratory_or_test_result, mental_or_behavioral_dysfunction, and temporal_concept associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "laboratory_or_test_result", "mental_or_behavioral_dysfunction", "temporal_concept" ], "valid_edges": [ [ "geographic_area", "associated_with", "mental_or_behavioral_dysfunction" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "laboratory_or_test_result", "associated_with", "mental_or_behavioral_dysfunction" ], [ "laboratory_or_test_result", "evaluation_of", "mental_or_behavioral_dysfunction" ], [ "laboratory_or_test_result", "indicates", "mental_or_behavioral_dysfunction" ], [ "laboratory_or_test_result", "manifestation_of", "mental_or_behavioral_dysfunction" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 26, amino_acid_sequence 22, anatomical_structure 64, behavior 94, body_location_or_region 103, body_space_or_junction 132, body_system 3, carbohydrate_sequence 61, clinical_drug 17, conceptual_entity 88, embryonic_structure 50, event 75, food 82, functional_concept 42, geographic_area 10, group_attribute 99, hazardous_or_poisonous_substance 70, idea_or_concept 37, mammal 32, molecular_sequence 134, nucleotide_sequence 111, qualitative_concept 96, quantitative_concept 122, social_behavior 79, spatial_concept 84, substance 108, temporal_concept src, edge_attr, dst 26, isa, 17 26, isa, 70 26, isa, 79 22, part_of, 37 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 94, adjacent_to, 103 94, conceptual_part_of, 132 94, isa, 17 94, isa, 70 94, isa, 79 103, conceptual_part_of, 132 103, isa, 17 103, isa, 70 103, isa, 79 132, isa, 17 132, isa, 82 132, isa, 70 3, isa, 17 3, isa, 70 3, isa, 79 88, isa, 22 88, part_of, 37 75, ingredient_of, 61 75, isa, 84 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 42, isa, 79 10, isa, 17 99, disrupts, 88 99, ingredient_of, 61 99, isa, 84 70, conceptual_part_of, 64 70, isa, 17 37, exhibits, 64 37, exhibits, 122 32, isa, 17 32, isa, 70 32, isa, 79 134, isa, 17 134, isa, 70 134, isa, 79 111, evaluation_of, 64 111, evaluation_of, 122 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 26 96, measurement_of, 94 96, measurement_of, 103 96, measurement_of, 3 96, measurement_of, 42 96, measurement_of, 32 96, measurement_of, 134 96, measurement_of, 79 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 79, isa, 17 79, isa, 70 84, ingredient_of, 61 108, isa, 17 108, isa, 70 Question: For what reason are body_location_or_region, hazardous_or_poisonous_substance, and mammal associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_location_or_region", "hazardous_or_poisonous_substance", "mammal" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "anatomical_structure", "part_of", "mammal" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "isa", "spatial_concept" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "functional_concept" ], [ "body_system", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "conceptual_entity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "part_of", "mammal" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "hazardous_or_poisonous_substance", "disrupts", "embryonic_structure" ], [ "hazardous_or_poisonous_substance", "ingredient_of", "clinical_drug" ], [ "hazardous_or_poisonous_substance", "isa", "substance" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "mammal", "exhibits", "behavior" ], [ "mammal", "exhibits", "social_behavior" ], [ "molecular_sequence", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "amino_acid_sequence" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "body_space_or_junction" ], [ "quantitative_concept", "measurement_of", "carbohydrate_sequence" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "molecular_sequence" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ], [ "quantitative_concept", "measurement_of", "spatial_concept" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "spatial_concept", "isa", "conceptual_entity" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "substance", "ingredient_of", "clinical_drug" ], [ "temporal_concept", "isa", "conceptual_entity" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 130, bacterium 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 124, family_group 91, governmental_or_regulatory_activity 16, group 10, group_attribute 53, health_care_activity 128, health_care_related_organization 55, intellectual_product 85, laboratory_procedure 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 2, patient_or_disabled_group 126, physical_object 66, regulation_or_law 67, research_device 122, social_behavior src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, interacts_with, 16 28, interacts_with, 2 28, isa, 17 28, isa, 16 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 85 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 130, isa, 126 64, associated_with, 28 64, associated_with, 124 64, associated_with, 16 64, associated_with, 2 64, isa, 69 48, isa, 17 48, isa, 55 61, isa, 126 24, isa, 69 68, isa, 126 107, isa, 69 107, isa, 27 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, interacts_with, 16 124, interacts_with, 2 124, isa, 17 124, isa, 16 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 85 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 91, isa, 69 91, isa, 27 16, exhibits, 64 16, exhibits, 122 16, isa, 17 16, performs, 69 16, performs, 64 16, performs, 24 16, performs, 107 16, performs, 91 16, performs, 53 16, performs, 85 16, performs, 36 16, performs, 27 16, performs, 122 16, produces, 48 16, produces, 61 16, produces, 68 16, produces, 55 16, produces, 113 16, produces, 59 16, produces, 66 16, produces, 67 16, uses, 48 16, uses, 61 16, uses, 68 16, uses, 55 16, uses, 113 16, uses, 59 16, uses, 66 16, uses, 67 10, isa, 17 10, property_of, 28 10, property_of, 124 10, property_of, 16 10, property_of, 2 53, isa, 69 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 85 128, carries_out, 27 128, isa, 17 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 85 128, location_of, 27 128, manages, 2 128, produces, 48 128, produces, 55 128, produces, 66 55, isa, 17 85, isa, 69 85, isa, 53 85, isa, 27 36, isa, 69 36, method_of, 85 113, isa, 126 59, isa, 126 27, isa, 69 2, exhibits, 64 2, exhibits, 122 2, interacts_with, 16 2, isa, 17 2, isa, 16 2, performs, 69 2, performs, 64 2, performs, 24 2, performs, 107 2, performs, 91 2, performs, 53 2, performs, 85 2, performs, 36 2, performs, 27 2, performs, 122 2, produces, 48 2, produces, 61 2, produces, 68 2, produces, 55 2, produces, 113 2, produces, 59 2, produces, 66 2, produces, 67 2, uses, 48 2, uses, 61 2, uses, 68 2, uses, 55 2, uses, 113 2, uses, 59 2, uses, 66 2, uses, 67 66, affects, 28 66, affects, 124 66, affects, 16 66, affects, 128 66, affects, 2 66, isa, 17 66, isa, 55 67, isa, 126 122, associated_with, 28 122, associated_with, 124 122, associated_with, 16 122, associated_with, 2 122, isa, 69 Question: For what reason are bacterium, health_care_related_organization, and laboratory_procedure associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bacterium", "health_care_related_organization", "laboratory_procedure" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "interacts_with", "group" ], [ "age_group", "interacts_with", "patient_or_disabled_group" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "isa", "group" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "laboratory_procedure" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "bacterium", "isa", "physical_object" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "group" ], [ "behavior", "associated_with", "patient_or_disabled_group" ], [ "behavior", "isa", "activity" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "clinical_drug", "isa", "physical_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "drug_delivery_device", "isa", "physical_object" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "occupational_activity" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "interacts_with", "group" ], [ "family_group", "interacts_with", "patient_or_disabled_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "isa", "group" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "laboratory_procedure" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group", "exhibits", "behavior" ], [ "group", "exhibits", "social_behavior" ], [ "group", "isa", "conceptual_entity" ], [ "group", "performs", "activity" ], [ "group", "performs", "behavior" ], [ "group", "performs", "daily_or_recreational_activity" ], [ "group", "performs", "educational_activity" ], [ "group", "performs", "governmental_or_regulatory_activity" ], [ "group", "performs", "health_care_activity" ], [ "group", "performs", "laboratory_procedure" ], [ "group", "performs", "machine_activity" ], [ "group", "performs", "occupational_activity" ], [ "group", "performs", "social_behavior" ], [ "group", "produces", "classification" ], [ "group", "produces", "clinical_drug" ], [ "group", "produces", "drug_delivery_device" ], [ "group", "produces", "intellectual_product" ], [ "group", "produces", "manufactured_object" ], [ "group", "produces", "medical_device" ], [ "group", "produces", "regulation_or_law" ], [ "group", "produces", "research_device" ], [ "group", "uses", "classification" ], [ "group", "uses", "clinical_drug" ], [ "group", "uses", "drug_delivery_device" ], [ "group", "uses", "intellectual_product" ], [ "group", "uses", "manufactured_object" ], [ "group", "uses", "medical_device" ], [ "group", "uses", "regulation_or_law" ], [ "group", "uses", "research_device" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "group_attribute", "property_of", "group" ], [ "group_attribute", "property_of", "patient_or_disabled_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "laboratory_procedure" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "laboratory_procedure" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "manages", "patient_or_disabled_group" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "laboratory_procedure", "isa", "activity" ], [ "laboratory_procedure", "isa", "health_care_activity" ], [ "laboratory_procedure", "isa", "occupational_activity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "method_of", "laboratory_procedure" ], [ "manufactured_object", "isa", "physical_object" ], [ "medical_device", "isa", "physical_object" ], [ "occupational_activity", "isa", "activity" ], [ "patient_or_disabled_group", "exhibits", "behavior" ], [ "patient_or_disabled_group", "exhibits", "social_behavior" ], [ "patient_or_disabled_group", "interacts_with", "group" ], [ "patient_or_disabled_group", "isa", "conceptual_entity" ], [ "patient_or_disabled_group", "isa", "group" ], [ "patient_or_disabled_group", "performs", "activity" ], [ "patient_or_disabled_group", "performs", "behavior" ], [ "patient_or_disabled_group", "performs", "daily_or_recreational_activity" ], [ "patient_or_disabled_group", "performs", "educational_activity" ], [ "patient_or_disabled_group", "performs", "governmental_or_regulatory_activity" ], [ "patient_or_disabled_group", "performs", "health_care_activity" ], [ "patient_or_disabled_group", "performs", "laboratory_procedure" ], [ "patient_or_disabled_group", "performs", "machine_activity" ], [ "patient_or_disabled_group", "performs", "occupational_activity" ], [ "patient_or_disabled_group", "performs", "social_behavior" ], [ "patient_or_disabled_group", "produces", "classification" ], [ "patient_or_disabled_group", "produces", "clinical_drug" ], [ "patient_or_disabled_group", "produces", "drug_delivery_device" ], [ "patient_or_disabled_group", "produces", "intellectual_product" ], [ "patient_or_disabled_group", "produces", "manufactured_object" ], [ "patient_or_disabled_group", "produces", "medical_device" ], [ "patient_or_disabled_group", "produces", "regulation_or_law" ], [ "patient_or_disabled_group", "produces", "research_device" ], [ "patient_or_disabled_group", "uses", "classification" ], [ "patient_or_disabled_group", "uses", "clinical_drug" ], [ "patient_or_disabled_group", "uses", "drug_delivery_device" ], [ "patient_or_disabled_group", "uses", "intellectual_product" ], [ "patient_or_disabled_group", "uses", "manufactured_object" ], [ "patient_or_disabled_group", "uses", "medical_device" ], [ "patient_or_disabled_group", "uses", "regulation_or_law" ], [ "patient_or_disabled_group", "uses", "research_device" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "patient_or_disabled_group" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "isa", "physical_object" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "group" ], [ "social_behavior", "associated_with", "patient_or_disabled_group" ], [ "social_behavior", "isa", "activity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 112, alga 22, anatomical_structure 73, archaeon 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 88, embryonic_structure 124, family_group 75, food 91, governmental_or_regulatory_activity 16, group 10, group_attribute 53, health_care_activity 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 118, organophosphorus_compound 2, patient_or_disabled_group 126, physical_object 66, regulation_or_law 67, research_device 122, social_behavior 84, substance src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, interacts_with, 16 28, interacts_with, 2 28, isa, 17 28, isa, 16 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 112, interacts_with, 73 112, isa, 126 22, isa, 126 22, part_of, 112 22, part_of, 73 73, isa, 126 64, associated_with, 28 64, associated_with, 124 64, associated_with, 16 64, associated_with, 2 61, isa, 113 61, isa, 126 68, contains, 61 68, isa, 113 68, isa, 59 68, isa, 126 88, isa, 22 88, isa, 126 88, part_of, 112 88, part_of, 73 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, interacts_with, 16 124, interacts_with, 2 124, isa, 17 124, isa, 16 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 75, ingredient_of, 61 75, isa, 126 75, isa, 84 16, exhibits, 64 16, exhibits, 122 16, isa, 17 16, performs, 69 16, performs, 64 16, performs, 24 16, performs, 107 16, performs, 91 16, performs, 53 16, performs, 36 16, performs, 27 16, performs, 122 16, produces, 48 16, produces, 61 16, produces, 68 16, produces, 55 16, produces, 113 16, produces, 59 16, produces, 66 16, produces, 67 16, uses, 48 16, uses, 61 16, uses, 68 16, uses, 55 16, uses, 113 16, uses, 59 16, uses, 66 16, uses, 67 10, property_of, 28 10, property_of, 124 10, property_of, 16 10, property_of, 2 113, isa, 126 59, isa, 113 59, isa, 126 118, ingredient_of, 61 118, isa, 126 118, isa, 84 2, exhibits, 64 2, exhibits, 122 2, interacts_with, 16 2, isa, 17 2, isa, 16 2, performs, 69 2, performs, 64 2, performs, 24 2, performs, 107 2, performs, 91 2, performs, 53 2, performs, 36 2, performs, 27 2, performs, 122 2, produces, 48 2, produces, 61 2, produces, 68 2, produces, 55 2, produces, 113 2, produces, 59 2, produces, 66 2, produces, 67 2, uses, 48 2, uses, 61 2, uses, 68 2, uses, 55 2, uses, 113 2, uses, 59 2, uses, 66 2, uses, 67 66, affects, 28 66, affects, 124 66, affects, 16 66, affects, 2 67, isa, 113 67, isa, 126 122, associated_with, 28 122, associated_with, 124 122, associated_with, 16 122, associated_with, 2 84, ingredient_of, 61 84, isa, 126 Question: How are alga, medical_device, and organophosphorus_compound related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "alga", "medical_device", "organophosphorus_compound" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "interacts_with", "group" ], [ "age_group", "interacts_with", "patient_or_disabled_group" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "isa", "group" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "alga", "interacts_with", "archaeon" ], [ "alga", "isa", "physical_object" ], [ "anatomical_structure", "isa", "physical_object" ], [ "anatomical_structure", "part_of", "alga" ], [ "anatomical_structure", "part_of", "archaeon" ], [ "archaeon", "isa", "physical_object" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "group" ], [ "behavior", "associated_with", "patient_or_disabled_group" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "clinical_drug", "isa", "physical_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "drug_delivery_device", "isa", "physical_object" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "isa", "physical_object" ], [ "embryonic_structure", "part_of", "alga" ], [ "embryonic_structure", "part_of", "archaeon" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "interacts_with", "group" ], [ "family_group", "interacts_with", "patient_or_disabled_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "isa", "group" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "physical_object" ], [ "food", "isa", "substance" ], [ "group", "exhibits", "behavior" ], [ "group", "exhibits", "social_behavior" ], [ "group", "isa", "conceptual_entity" ], [ "group", "performs", "activity" ], [ "group", "performs", "behavior" ], [ "group", "performs", "daily_or_recreational_activity" ], [ "group", "performs", "educational_activity" ], [ "group", "performs", "governmental_or_regulatory_activity" ], [ "group", "performs", "health_care_activity" ], [ "group", "performs", "machine_activity" ], [ "group", "performs", "occupational_activity" ], [ "group", "performs", "social_behavior" ], [ "group", "produces", "classification" ], [ "group", "produces", "clinical_drug" ], [ "group", "produces", "drug_delivery_device" ], [ "group", "produces", "intellectual_product" ], [ "group", "produces", "manufactured_object" ], [ "group", "produces", "medical_device" ], [ "group", "produces", "regulation_or_law" ], [ "group", "produces", "research_device" ], [ "group", "uses", "classification" ], [ "group", "uses", "clinical_drug" ], [ "group", "uses", "drug_delivery_device" ], [ "group", "uses", "intellectual_product" ], [ "group", "uses", "manufactured_object" ], [ "group", "uses", "medical_device" ], [ "group", "uses", "regulation_or_law" ], [ "group", "uses", "research_device" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "group_attribute", "property_of", "group" ], [ "group_attribute", "property_of", "patient_or_disabled_group" ], [ "manufactured_object", "isa", "physical_object" ], [ "medical_device", "isa", "manufactured_object" ], [ "medical_device", "isa", "physical_object" ], [ "organophosphorus_compound", "ingredient_of", "clinical_drug" ], [ "organophosphorus_compound", "isa", "physical_object" ], [ "organophosphorus_compound", "isa", "substance" ], [ "patient_or_disabled_group", "exhibits", "behavior" ], [ "patient_or_disabled_group", "exhibits", "social_behavior" ], [ "patient_or_disabled_group", "interacts_with", "group" ], [ "patient_or_disabled_group", "isa", "conceptual_entity" ], [ "patient_or_disabled_group", "isa", "group" ], [ "patient_or_disabled_group", "performs", "activity" ], [ "patient_or_disabled_group", "performs", "behavior" ], [ "patient_or_disabled_group", "performs", "daily_or_recreational_activity" ], [ "patient_or_disabled_group", "performs", "educational_activity" ], [ "patient_or_disabled_group", "performs", "governmental_or_regulatory_activity" ], [ "patient_or_disabled_group", "performs", "health_care_activity" ], [ "patient_or_disabled_group", "performs", "machine_activity" ], [ "patient_or_disabled_group", "performs", "occupational_activity" ], [ "patient_or_disabled_group", "performs", "social_behavior" ], [ "patient_or_disabled_group", "produces", "classification" ], [ "patient_or_disabled_group", "produces", "clinical_drug" ], [ "patient_or_disabled_group", "produces", "drug_delivery_device" ], [ "patient_or_disabled_group", "produces", "intellectual_product" ], [ "patient_or_disabled_group", "produces", "manufactured_object" ], [ "patient_or_disabled_group", "produces", "medical_device" ], [ "patient_or_disabled_group", "produces", "regulation_or_law" ], [ "patient_or_disabled_group", "produces", "research_device" ], [ "patient_or_disabled_group", "uses", "classification" ], [ "patient_or_disabled_group", "uses", "clinical_drug" ], [ "patient_or_disabled_group", "uses", "drug_delivery_device" ], [ "patient_or_disabled_group", "uses", "intellectual_product" ], [ "patient_or_disabled_group", "uses", "manufactured_object" ], [ "patient_or_disabled_group", "uses", "medical_device" ], [ "patient_or_disabled_group", "uses", "regulation_or_law" ], [ "patient_or_disabled_group", "uses", "research_device" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "group" ], [ "regulation_or_law", "affects", "patient_or_disabled_group" ], [ "research_device", "isa", "manufactured_object" ], [ "research_device", "isa", "physical_object" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "group" ], [ "social_behavior", "associated_with", "patient_or_disabled_group" ], [ "substance", "ingredient_of", "clinical_drug" ], [ "substance", "isa", "physical_object" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 22, anatomical_structure 127, animal 64, behavior 94, body_location_or_region 103, body_space_or_junction 132, body_system 92, cell 8, chemical_viewed_functionally 61, clinical_drug 17, conceptual_entity 88, embryonic_structure 50, event 124, family_group 42, geographic_area 10, group_attribute 70, idea_or_concept 111, qualitative_concept 122, social_behavior src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, performs, 64 28, performs, 122 28, produces, 61 28, uses, 61 22, part_of, 127 127, exhibits, 64 127, exhibits, 122 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 94, adjacent_to, 103 94, conceptual_part_of, 132 103, conceptual_part_of, 132 103, interconnects, 92 103, isa, 17 103, isa, 70 103, surrounds, 92 132, isa, 17 132, isa, 70 92, conceptual_part_of, 132 92, isa, 22 92, location_of, 103 92, part_of, 127 8, ingredient_of, 61 88, developmental_form_of, 92 88, isa, 22 88, part_of, 127 88, part_of, 92 88, surrounds, 92 124, exhibits, 64 124, exhibits, 122 124, performs, 64 124, performs, 122 124, produces, 61 124, uses, 61 70, conceptual_part_of, 64 111, evaluation_of, 64 111, evaluation_of, 122 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: How are animal, cell, and chemical_viewed_functionally related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "animal", "cell", "chemical_viewed_functionally" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "uses", "clinical_drug" ], [ "anatomical_structure", "part_of", "animal" ], [ "animal", "exhibits", "behavior" ], [ "animal", "exhibits", "social_behavior" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "interconnects", "cell" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "surrounds", "cell" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "idea_or_concept" ], [ "cell", "conceptual_part_of", "body_system" ], [ "cell", "isa", "anatomical_structure" ], [ "cell", "location_of", "body_space_or_junction" ], [ "cell", "part_of", "animal" ], [ "chemical_viewed_functionally", "ingredient_of", "clinical_drug" ], [ "embryonic_structure", "developmental_form_of", "cell" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "part_of", "animal" ], [ "embryonic_structure", "part_of", "cell" ], [ "embryonic_structure", "surrounds", "cell" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "uses", "clinical_drug" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 47, enzyme 74, invertebrate 18, physiologic_function src, edge_attr, dst 47, affects, 18 47, complicates, 18 47, disrupts, 18 18, affects, 74 18, process_of, 74 18, produces, 47 Question: In what context are enzyme, invertebrate, and physiologic_function connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "enzyme", "invertebrate", "physiologic_function" ], "valid_edges": [ [ "enzyme", "affects", "physiologic_function" ], [ "enzyme", "complicates", "physiologic_function" ], [ "enzyme", "disrupts", "physiologic_function" ], [ "physiologic_function", "affects", "invertebrate" ], [ "physiologic_function", "process_of", "invertebrate" ], [ "physiologic_function", "produces", "enzyme" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 26, amino_acid_sequence 3, carbohydrate_sequence 24, daily_or_recreational_activity 42, geographic_area 70, idea_or_concept 36, machine_activity 32, molecular_sequence 134, nucleotide_sequence 1, population_group 111, qualitative_concept 79, spatial_concept src, edge_attr, dst 95, occurs_in, 1 26, isa, 70 26, isa, 32 26, isa, 79 3, isa, 70 3, isa, 32 3, isa, 79 24, associated_with, 95 42, associated_with, 95 42, isa, 70 42, isa, 79 32, isa, 70 32, isa, 79 134, isa, 70 134, isa, 32 134, isa, 79 1, associated_with, 95 1, performs, 24 1, performs, 36 111, evaluation_of, 24 111, evaluation_of, 36 111, isa, 70 79, isa, 70 Question: For what reason are acquired_abnormality, amino_acid_sequence, and population_group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "amino_acid_sequence", "population_group" ], "valid_edges": [ [ "acquired_abnormality", "occurs_in", "population_group" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "daily_or_recreational_activity", "associated_with", "acquired_abnormality" ], [ "geographic_area", "associated_with", "acquired_abnormality" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "population_group", "associated_with", "acquired_abnormality" ], [ "population_group", "performs", "daily_or_recreational_activity" ], [ "population_group", "performs", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "spatial_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28, age_group 3, carbohydrate_sequence 24, daily_or_recreational_activity 70, idea_or_concept 36, machine_activity 111, qualitative_concept 79, spatial_concept src, edge_attr, dst 28, performs, 24 28, performs, 36 3, isa, 70 3, isa, 79 111, evaluation_of, 24 111, evaluation_of, 36 111, isa, 70 79, isa, 70 Question: For what reason are age_group, carbohydrate_sequence, and spatial_concept associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "age_group", "carbohydrate_sequence", "spatial_concept" ], "valid_edges": [ [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "machine_activity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "spatial_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 62, disease_or_syndrome 58, occupation_or_discipline 20, steroid src, edge_attr, dst 62, issue_in, 58 20, affects, 62 20, causes, 62 20, issue_in, 58 Question: For what reason are disease_or_syndrome, occupation_or_discipline, and steroid associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "disease_or_syndrome", "occupation_or_discipline", "steroid" ], "valid_edges": [ [ "disease_or_syndrome", "issue_in", "occupation_or_discipline" ], [ "steroid", "affects", "disease_or_syndrome" ], [ "steroid", "causes", "disease_or_syndrome" ], [ "steroid", "issue_in", "occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 63, lipid 87, plant 0, vitamin src, edge_attr, dst 63, interacts_with, 0 87, location_of, 0 Question: How are lipid, plant, and vitamin related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "lipid", "plant", "vitamin" ], "valid_edges": [ [ "lipid", "interacts_with", "vitamin" ], [ "plant", "location_of", "vitamin" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 69, activity 48, classification 24, daily_or_recreational_activity 107, educational_activity 91, governmental_or_regulatory_activity 128, health_care_related_organization 55, intellectual_product 113, manufactured_object 31, organization 41, professional_society 111, qualitative_concept 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization 101, sign_or_symptom src, edge_attr, dst 48, isa, 55 24, associated_with, 95 24, isa, 69 107, associated_with, 95 107, isa, 69 91, associated_with, 95 91, isa, 69 128, carries_out, 107 128, carries_out, 91 128, isa, 31 128, location_of, 107 128, location_of, 91 128, produces, 48 128, produces, 55 128, produces, 66 113, causes, 95 31, carries_out, 107 31, carries_out, 91 31, location_of, 107 31, location_of, 91 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, isa, 31 41, location_of, 107 41, location_of, 91 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 55 67, causes, 95 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, isa, 31 40, location_of, 107 40, location_of, 91 40, produces, 48 40, produces, 55 40, produces, 66 101, associated_with, 95 101, diagnoses, 95 101, manifestation_of, 95 Question: In what context are acquired_abnormality, self_help_or_relief_organization, and sign_or_symptom connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "self_help_or_relief_organization", "sign_or_symptom" ], "valid_edges": [ [ "classification", "isa", "intellectual_product" ], [ "daily_or_recreational_activity", "associated_with", "acquired_abnormality" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "educational_activity", "associated_with", "acquired_abnormality" ], [ "educational_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "associated_with", "acquired_abnormality" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "manufactured_object", "causes", "acquired_abnormality" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "causes", "acquired_abnormality" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "sign_or_symptom", "associated_with", "acquired_abnormality" ], [ "sign_or_symptom", "diagnoses", "acquired_abnormality" ], [ "sign_or_symptom", "manifestation_of", "acquired_abnormality" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 57, amino_acid_peptide_or_protein 33, eicosanoid src, edge_attr, dst 57, causes, 95 57, interacts_with, 33 33, causes, 95 Question: For what reason are acquired_abnormality, amino_acid_peptide_or_protein, and eicosanoid associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "amino_acid_peptide_or_protein", "eicosanoid" ], "valid_edges": [ [ "amino_acid_peptide_or_protein", "causes", "acquired_abnormality" ], [ "amino_acid_peptide_or_protein", "interacts_with", "eicosanoid" ], [ "eicosanoid", "causes", "acquired_abnormality" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 22, anatomical_structure 64, behavior 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 88, embryonic_structure 50, event 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 70, idea_or_concept 36, machine_activity 37, mammal 27, occupational_activity 111, qualitative_concept 93, rickettsia_or_chlamydia 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 22, location_of, 93 22, part_of, 37 22, part_of, 93 64, affects, 122 64, associated_with, 28 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 107, isa, 27 88, isa, 22 88, location_of, 93 88, part_of, 37 88, part_of, 93 42, isa, 17 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 10, property_of, 28 53, isa, 69 53, isa, 50 53, isa, 27 70, conceptual_part_of, 64 70, isa, 17 36, isa, 69 36, isa, 50 37, exhibits, 64 37, exhibits, 122 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 93, interacts_with, 37 122, affects, 64 122, associated_with, 28 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: For what reason are age_group, mammal, and rickettsia_or_chlamydia associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "age_group", "mammal", "rickettsia_or_chlamydia" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "anatomical_structure", "location_of", "rickettsia_or_chlamydia" ], [ "anatomical_structure", "part_of", "mammal" ], [ "anatomical_structure", "part_of", "rickettsia_or_chlamydia" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "location_of", "rickettsia_or_chlamydia" ], [ "embryonic_structure", "part_of", "mammal" ], [ "embryonic_structure", "part_of", "rickettsia_or_chlamydia" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "mammal", "exhibits", "behavior" ], [ "mammal", "exhibits", "social_behavior" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "rickettsia_or_chlamydia", "interacts_with", "mammal" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 112, alga 98, pathologic_function 114, vertebrate src, edge_attr, dst 112, interacts_with, 114 98, affects, 112 98, affects, 114 98, process_of, 112 98, process_of, 114 Question: For what reason are alga, pathologic_function, and vertebrate associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "alga", "pathologic_function", "vertebrate" ], "valid_edges": [ [ "alga", "interacts_with", "vertebrate" ], [ "pathologic_function", "affects", "alga" ], [ "pathologic_function", "affects", "vertebrate" ], [ "pathologic_function", "process_of", "alga" ], [ "pathologic_function", "process_of", "vertebrate" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 73, archaeon 49, clinical_attribute 17, conceptual_entity 10, group_attribute src, edge_attr, dst 49, isa, 17 49, property_of, 73 10, isa, 17 Question: How are archaeon, clinical_attribute, and group_attribute related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "archaeon", "clinical_attribute", "group_attribute" ], "valid_edges": [ [ "clinical_attribute", "isa", "conceptual_entity" ], [ "clinical_attribute", "property_of", "archaeon" ], [ "group_attribute", "isa", "conceptual_entity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28, age_group 94, body_location_or_region 61, clinical_drug 17, conceptual_entity 124, family_group 42, geographic_area 70, idea_or_concept 34, immunologic_factor 77, neuroreactive_substance_or_biogenic_amine 111, qualitative_concept src, edge_attr, dst 28, isa, 17 28, produces, 61 28, uses, 61 94, isa, 17 94, isa, 70 124, isa, 17 124, produces, 61 124, uses, 61 42, isa, 17 42, isa, 70 70, isa, 17 34, ingredient_of, 61 77, ingredient_of, 61 77, interacts_with, 34 111, isa, 17 111, isa, 70 Question: For what reason are body_location_or_region, immunologic_factor, and neuroreactive_substance_or_biogenic_amine associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_location_or_region", "immunologic_factor", "neuroreactive_substance_or_biogenic_amine" ], "valid_edges": [ [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "uses", "clinical_drug" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "uses", "clinical_drug" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "immunologic_factor", "ingredient_of", "clinical_drug" ], [ "neuroreactive_substance_or_biogenic_amine", "ingredient_of", "clinical_drug" ], [ "neuroreactive_substance_or_biogenic_amine", "interacts_with", "immunologic_factor" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 14, inorganic_chemical 77, neuroreactive_substance_or_biogenic_amine 125, nucleic_acid_nucleoside_or_nucleotide src, edge_attr, dst 14, interacts_with, 77 125, interacts_with, 14 125, interacts_with, 77 Question: For what reason are inorganic_chemical, neuroreactive_substance_or_biogenic_amine, and nucleic_acid_nucleoside_or_nucleotide associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "inorganic_chemical", "neuroreactive_substance_or_biogenic_amine", "nucleic_acid_nucleoside_or_nucleotide" ], "valid_edges": [ [ "inorganic_chemical", "interacts_with", "neuroreactive_substance_or_biogenic_amine" ], [ "nucleic_acid_nucleoside_or_nucleotide", "interacts_with", "inorganic_chemical" ], [ "nucleic_acid_nucleoside_or_nucleotide", "interacts_with", "neuroreactive_substance_or_biogenic_amine" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 121, biomedical_or_dental_material 37, mammal 51, organism_function src, edge_attr, dst 121, affects, 51 51, affects, 37 51, process_of, 37 Question: For what reason are biomedical_or_dental_material, mammal, and organism_function associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biomedical_or_dental_material", "mammal", "organism_function" ], "valid_edges": [ [ "biomedical_or_dental_material", "affects", "organism_function" ], [ "organism_function", "affects", "mammal" ], [ "organism_function", "process_of", "mammal" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 11, cell_or_molecular_dysfunction 39, research_activity 7, therapeutic_or_preventive_procedure src, edge_attr, dst 11, result_of, 7 39, associated_with, 11 39, measures, 11 7, affects, 11 7, associated_with, 11 7, complicates, 11 7, prevents, 11 7, treats, 11 Question: In what context are cell_or_molecular_dysfunction, research_activity, and therapeutic_or_preventive_procedure connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "cell_or_molecular_dysfunction", "research_activity", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "cell_or_molecular_dysfunction", "result_of", "therapeutic_or_preventive_procedure" ], [ "research_activity", "associated_with", "cell_or_molecular_dysfunction" ], [ "research_activity", "measures", "cell_or_molecular_dysfunction" ], [ "therapeutic_or_preventive_procedure", "affects", "cell_or_molecular_dysfunction" ], [ "therapeutic_or_preventive_procedure", "associated_with", "cell_or_molecular_dysfunction" ], [ "therapeutic_or_preventive_procedure", "complicates", "cell_or_molecular_dysfunction" ], [ "therapeutic_or_preventive_procedure", "prevents", "cell_or_molecular_dysfunction" ], [ "therapeutic_or_preventive_procedure", "treats", "cell_or_molecular_dysfunction" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 124, family_group 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, associated_with, 28 64, associated_with, 124 64, isa, 69 64, isa, 50 48, isa, 17 48, isa, 55 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 68, isa, 113 68, isa, 59 107, isa, 69 107, isa, 50 107, isa, 27 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 10, property_of, 28 10, property_of, 124 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 70, isa, 17 55, isa, 17 36, isa, 69 36, isa, 50 59, isa, 113 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 66, affects, 28 66, affects, 124 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 17 66, isa, 55 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 122, associated_with, 28 122, associated_with, 124 122, isa, 69 122, isa, 50 Question: For what reason are drug_delivery_device, educational_activity, and professional_society associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "drug_delivery_device", "educational_activity", "professional_society" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "medical_device", "isa", "manufactured_object" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 64, behavior 17, conceptual_entity 50, event 42, geographic_area 10, group_attribute 70, idea_or_concept 52, laboratory_or_test_result 37, mammal 111, qualitative_concept 122, social_behavior 114, vertebrate src, edge_attr, dst 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 42, isa, 17 10, isa, 17 70, conceptual_part_of, 64 70, isa, 17 52, isa, 17 37, exhibits, 64 37, exhibits, 122 37, isa, 114 111, evaluation_of, 64 111, evaluation_of, 122 111, isa, 17 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 114, exhibits, 64 114, exhibits, 122 114, interacts_with, 37 Question: How are laboratory_or_test_result, mammal, and vertebrate related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "laboratory_or_test_result", "mammal", "vertebrate" ], "valid_edges": [ [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "laboratory_or_test_result", "isa", "conceptual_entity" ], [ "mammal", "exhibits", "behavior" ], [ "mammal", "exhibits", "social_behavior" ], [ "mammal", "isa", "vertebrate" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "vertebrate", "exhibits", "behavior" ], [ "vertebrate", "exhibits", "social_behavior" ], [ "vertebrate", "interacts_with", "mammal" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 26, amino_acid_sequence 127, animal 64, behavior 94, body_location_or_region 103, body_space_or_junction 132, body_system 3, carbohydrate_sequence 17, conceptual_entity 107, educational_activity 50, event 82, functional_concept 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 32, molecular_sequence 134, nucleotide_sequence 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 96, quantitative_concept 40, self_help_or_relief_organization 101, sign_or_symptom 122, social_behavior 79, spatial_concept 108, temporal_concept src, edge_attr, dst 26, isa, 17 26, isa, 70 26, isa, 32 26, isa, 79 127, exhibits, 64 127, exhibits, 122 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 94, adjacent_to, 103 94, conceptual_part_of, 132 94, isa, 17 94, isa, 70 94, isa, 79 103, conceptual_part_of, 132 103, isa, 17 103, isa, 70 103, isa, 79 132, isa, 17 132, isa, 82 132, isa, 70 3, isa, 17 3, isa, 70 3, isa, 32 3, isa, 79 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 42, isa, 79 10, isa, 17 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 70, conceptual_part_of, 64 70, isa, 17 32, isa, 17 32, isa, 70 32, isa, 79 134, isa, 17 134, isa, 70 134, isa, 32 134, isa, 79 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 26 96, measurement_of, 94 96, measurement_of, 103 96, measurement_of, 3 96, measurement_of, 42 96, measurement_of, 32 96, measurement_of, 134 96, measurement_of, 79 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 101, isa, 17 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 79, isa, 17 79, isa, 70 108, isa, 17 108, isa, 70 Question: For what reason are animal, conceptual_entity, and sign_or_symptom associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "animal", "conceptual_entity", "sign_or_symptom" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "animal", "exhibits", "behavior" ], [ "animal", "exhibits", "social_behavior" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "isa", "spatial_concept" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "functional_concept" ], [ "body_system", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "conceptual_entity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "amino_acid_sequence" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "body_space_or_junction" ], [ "quantitative_concept", "measurement_of", "carbohydrate_sequence" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "molecular_sequence" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ], [ "quantitative_concept", "measurement_of", "spatial_concept" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "sign_or_symptom", "isa", "conceptual_entity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "spatial_concept", "isa", "conceptual_entity" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "isa", "conceptual_entity" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 94, body_location_or_region 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 50, event 124, family_group 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 36, machine_activity 27, occupational_activity 31, organization 72, pharmacologic_substance 41, professional_society 111, qualitative_concept 40, self_help_or_relief_organization 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 61 28, uses, 61 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 94, isa, 17 94, isa, 70 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 107, isa, 27 124, exhibits, 64 124, exhibits, 122 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 61 124, uses, 61 42, isa, 17 42, isa, 70 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 70, conceptual_part_of, 64 70, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 72, ingredient_of, 61 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: How are body_location_or_region, pharmacologic_substance, and qualitative_concept related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_location_or_region", "pharmacologic_substance", "qualitative_concept" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "uses", "clinical_drug" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "uses", "clinical_drug" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "pharmacologic_substance", "ingredient_of", "clinical_drug" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 50, event 89, finding 91, governmental_or_regulatory_activity 10, group_attribute 70, idea_or_concept 36, machine_activity 27, occupational_activity 111, qualitative_concept src, edge_attr, dst 69, isa, 50 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 89, isa, 17 91, isa, 69 91, isa, 50 10, isa, 17 70, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 36 111, evaluation_of, 27 111, isa, 17 111, isa, 70 Question: In what context are finding, group_attribute, and machine_activity connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "finding", "group_attribute", "machine_activity" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "finding", "isa", "conceptual_entity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 49, clinical_attribute 61, clinical_drug 17, conceptual_entity 107, educational_activity 50, event 124, family_group 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 27, occupational_activity 31, organization 72, pharmacologic_substance 41, professional_society 111, qualitative_concept 66, regulation_or_law 40, self_help_or_relief_organization 122, social_behavior src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 64 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 55 28, produces, 66 28, uses, 48 28, uses, 61 28, uses, 55 28, uses, 66 64, affects, 122 64, associated_with, 28 64, associated_with, 49 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 48, isa, 17 48, isa, 55 49, isa, 17 107, isa, 69 107, isa, 50 107, isa, 27 124, exhibits, 64 124, exhibits, 122 124, isa, 17 124, performs, 64 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 55 124, produces, 66 124, uses, 48 124, uses, 61 124, uses, 55 124, uses, 66 42, isa, 17 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 70, conceptual_part_of, 64 70, isa, 17 55, isa, 17 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 72, ingredient_of, 61 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 64 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 66, affects, 28 66, affects, 124 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 17 66, isa, 55 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 122, affects, 64 122, associated_with, 28 122, associated_with, 49 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: How are clinical_attribute, organization, and pharmacologic_substance related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "clinical_attribute", "organization", "pharmacologic_substance" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "regulation_or_law" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "clinical_attribute" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "clinical_attribute", "isa", "conceptual_entity" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "regulation_or_law" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "pharmacologic_substance", "ingredient_of", "clinical_drug" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "clinical_attribute" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26, amino_acid_sequence 3, carbohydrate_sequence 24, daily_or_recreational_activity 42, geographic_area 70, idea_or_concept 36, machine_activity 32, molecular_sequence 134, nucleotide_sequence 83, organ_or_tissue_function 1, population_group 111, qualitative_concept 79, spatial_concept 108, temporal_concept src, edge_attr, dst 26, isa, 70 26, isa, 32 26, isa, 79 3, isa, 70 3, isa, 32 3, isa, 79 42, isa, 70 42, isa, 79 32, isa, 70 32, isa, 79 134, isa, 70 134, isa, 32 134, isa, 79 83, conceptual_part_of, 108 83, occurs_in, 108 1, performs, 24 1, performs, 36 111, evaluation_of, 24 111, evaluation_of, 36 111, isa, 70 79, isa, 70 108, conceptual_part_of, 83 108, isa, 70 Question: For what reason are nucleotide_sequence, organ_or_tissue_function, and population_group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "nucleotide_sequence", "organ_or_tissue_function", "population_group" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "organ_or_tissue_function", "conceptual_part_of", "temporal_concept" ], [ "organ_or_tissue_function", "occurs_in", "temporal_concept" ], [ "population_group", "performs", "daily_or_recreational_activity" ], [ "population_group", "performs", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "conceptual_part_of", "organ_or_tissue_function" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 33, eicosanoid 50, event 124, family_group 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 66, regulation_or_law 76, reptile 67, research_device 40, self_help_or_relief_organization 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 107, isa, 69 107, isa, 50 107, isa, 27 33, ingredient_of, 61 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 91, isa, 69 91, isa, 50 91, isa, 27 10, property_of, 28 10, property_of, 124 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 70, conceptual_part_of, 64 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 66, affects, 28 66, affects, 124 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 76, exhibits, 64 76, exhibits, 122 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: In what context are eicosanoid, occupational_activity, and reptile connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "eicosanoid", "occupational_activity", "reptile" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "eicosanoid", "ingredient_of", "clinical_drug" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "reptile", "exhibits", "behavior" ], [ "reptile", "exhibits", "social_behavior" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 25, amphibian 64, behavior 17, conceptual_entity 107, educational_activity 42, geographic_area 10, group_attribute 70, idea_or_concept 125, nucleic_acid_nucleoside_or_nucleotide 134, nucleotide_sequence 111, qualitative_concept 122, social_behavior src, edge_attr, dst 25, exhibits, 64 25, exhibits, 122 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 107, isa, 69 70, conceptual_part_of, 64 134, isa, 17 134, isa, 70 134, property_of, 125 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 107 111, evaluation_of, 122 111, isa, 17 111, isa, 70 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 Question: In what context are amphibian, educational_activity, and nucleic_acid_nucleoside_or_nucleotide connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amphibian", "educational_activity", "nucleic_acid_nucleoside_or_nucleotide" ], "valid_edges": [ [ "amphibian", "exhibits", "behavior" ], [ "amphibian", "exhibits", "social_behavior" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "educational_activity", "isa", "activity" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "property_of", "nucleic_acid_nucleoside_or_nucleotide" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 44, body_part_organ_or_organ_component 80, mental_or_behavioral_dysfunction 56, mental_process src, edge_attr, dst 44, location_of, 80 44, location_of, 56 80, affects, 56 80, manifestation_of, 56 80, process_of, 56 80, result_of, 56 56, affects, 80 56, process_of, 80 56, result_of, 80 Question: In what context are body_part_organ_or_organ_component, mental_or_behavioral_dysfunction, and mental_process connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_part_organ_or_organ_component", "mental_or_behavioral_dysfunction", "mental_process" ], "valid_edges": [ [ "body_part_organ_or_organ_component", "location_of", "mental_or_behavioral_dysfunction" ], [ "body_part_organ_or_organ_component", "location_of", "mental_process" ], [ "mental_or_behavioral_dysfunction", "affects", "mental_process" ], [ "mental_or_behavioral_dysfunction", "manifestation_of", "mental_process" ], [ "mental_or_behavioral_dysfunction", "process_of", "mental_process" ], [ "mental_or_behavioral_dysfunction", "result_of", "mental_process" ], [ "mental_process", "affects", "mental_or_behavioral_dysfunction" ], [ "mental_process", "process_of", "mental_or_behavioral_dysfunction" ], [ "mental_process", "result_of", "mental_or_behavioral_dysfunction" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 121, biomedical_or_dental_material 61, clinical_drug 50, event 124, family_group 42, geographic_area 10, group_attribute 37, mammal 111, qualitative_concept 76, reptile 122, social_behavior src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, performs, 64 28, performs, 122 28, produces, 61 28, uses, 61 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 121, ingredient_of, 61 124, exhibits, 64 124, exhibits, 122 124, performs, 64 124, performs, 122 124, produces, 61 124, uses, 61 37, exhibits, 64 37, exhibits, 122 111, evaluation_of, 64 111, evaluation_of, 122 76, exhibits, 64 76, exhibits, 122 76, interacts_with, 37 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: For what reason are biomedical_or_dental_material, mammal, and reptile associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biomedical_or_dental_material", "mammal", "reptile" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "uses", "clinical_drug" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "biomedical_or_dental_material", "ingredient_of", "clinical_drug" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "uses", "clinical_drug" ], [ "mammal", "exhibits", "behavior" ], [ "mammal", "exhibits", "social_behavior" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "reptile", "exhibits", "behavior" ], [ "reptile", "exhibits", "social_behavior" ], [ "reptile", "interacts_with", "mammal" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 22, anatomical_structure 73, archaeon 61, clinical_drug 68, drug_delivery_device 88, embryonic_structure 75, food 113, manufactured_object 125, nucleic_acid_nucleoside_or_nucleotide 126, physical_object 20, steroid 84, substance src, edge_attr, dst 22, isa, 126 22, part_of, 73 73, isa, 126 61, isa, 113 61, isa, 126 68, contains, 61 68, isa, 126 88, isa, 22 88, isa, 126 88, part_of, 73 75, ingredient_of, 61 75, isa, 126 75, isa, 84 113, isa, 126 125, ingredient_of, 61 125, interacts_with, 20 125, isa, 126 125, isa, 84 20, ingredient_of, 61 20, isa, 126 20, isa, 84 84, ingredient_of, 61 84, isa, 126 Question: How are embryonic_structure, nucleic_acid_nucleoside_or_nucleotide, and steroid related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "embryonic_structure", "nucleic_acid_nucleoside_or_nucleotide", "steroid" ], "valid_edges": [ [ "anatomical_structure", "isa", "physical_object" ], [ "anatomical_structure", "part_of", "archaeon" ], [ "archaeon", "isa", "physical_object" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "clinical_drug", "isa", "physical_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "physical_object" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "isa", "physical_object" ], [ "embryonic_structure", "part_of", "archaeon" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "physical_object" ], [ "food", "isa", "substance" ], [ "manufactured_object", "isa", "physical_object" ], [ "nucleic_acid_nucleoside_or_nucleotide", "ingredient_of", "clinical_drug" ], [ "nucleic_acid_nucleoside_or_nucleotide", "interacts_with", "steroid" ], [ "nucleic_acid_nucleoside_or_nucleotide", "isa", "physical_object" ], [ "nucleic_acid_nucleoside_or_nucleotide", "isa", "substance" ], [ "steroid", "ingredient_of", "clinical_drug" ], [ "steroid", "isa", "physical_object" ], [ "steroid", "isa", "substance" ], [ "substance", "ingredient_of", "clinical_drug" ], [ "substance", "isa", "physical_object" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 124, family_group 75, food 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 13, indicator_reagent_or_diagnostic_aid 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 31, organization 41, professional_society 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization 122, social_behavior 84, substance src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, associated_with, 28 64, associated_with, 124 48, isa, 17 48, isa, 55 61, isa, 113 68, contains, 61 68, isa, 113 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 75, ingredient_of, 61 75, isa, 84 10, isa, 17 10, property_of, 28 10, property_of, 124 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 13, ingredient_of, 61 13, isa, 84 55, isa, 17 59, isa, 113 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 66, affects, 28 66, affects, 124 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 17 66, isa, 55 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 122, associated_with, 28 122, associated_with, 124 84, ingredient_of, 61 Question: For what reason are classification, indicator_reagent_or_diagnostic_aid, and research_device associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "classification", "indicator_reagent_or_diagnostic_aid", "research_device" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "indicator_reagent_or_diagnostic_aid", "ingredient_of", "clinical_drug" ], [ "indicator_reagent_or_diagnostic_aid", "isa", "substance" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "medical_device", "isa", "manufactured_object" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 62, disease_or_syndrome 52, laboratory_or_test_result 38, organic_chemical src, edge_attr, dst 52, associated_with, 62 52, evaluation_of, 62 52, indicates, 62 52, manifestation_of, 62 52, measurement_of, 38 38, affects, 62 38, causes, 62 Question: For what reason are disease_or_syndrome, laboratory_or_test_result, and organic_chemical associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "disease_or_syndrome", "laboratory_or_test_result", "organic_chemical" ], "valid_edges": [ [ "laboratory_or_test_result", "associated_with", "disease_or_syndrome" ], [ "laboratory_or_test_result", "evaluation_of", "disease_or_syndrome" ], [ "laboratory_or_test_result", "indicates", "disease_or_syndrome" ], [ "laboratory_or_test_result", "manifestation_of", "disease_or_syndrome" ], [ "laboratory_or_test_result", "measurement_of", "organic_chemical" ], [ "organic_chemical", "affects", "disease_or_syndrome" ], [ "organic_chemical", "causes", "disease_or_syndrome" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17, conceptual_entity 52, laboratory_or_test_result 84, substance src, edge_attr, dst 52, isa, 17 52, measurement_of, 84 Question: In what context are conceptual_entity, laboratory_or_test_result, and substance connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "conceptual_entity", "laboratory_or_test_result", "substance" ], "valid_edges": [ [ "laboratory_or_test_result", "isa", "conceptual_entity" ], [ "laboratory_or_test_result", "measurement_of", "substance" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 60, biologic_function 103, body_space_or_junction 53, health_care_activity src, edge_attr, dst 103, location_of, 60 53, affects, 60 Question: In what context are biologic_function, body_space_or_junction, and health_care_activity connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biologic_function", "body_space_or_junction", "health_care_activity" ], "valid_edges": [ [ "body_space_or_junction", "location_of", "biologic_function" ], [ "health_care_activity", "affects", "biologic_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 22, anatomical_structure 73, archaeon 130, bacterium 64, behavior 6, chemical_viewed_structurally 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 88, embryonic_structure 124, family_group 75, food 91, governmental_or_regulatory_activity 16, group 10, group_attribute 53, health_care_activity 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 2, patient_or_disabled_group 126, physical_object 66, regulation_or_law 67, research_device 122, social_behavior 84, substance src, edge_attr, dst 28, exhibits, 64 28, exhibits, 122 28, interacts_with, 16 28, interacts_with, 2 28, isa, 17 28, isa, 16 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 22, isa, 126 22, location_of, 130 22, part_of, 73 22, part_of, 130 73, isa, 126 130, interacts_with, 73 130, isa, 126 64, associated_with, 28 64, associated_with, 124 64, associated_with, 16 64, associated_with, 2 6, ingredient_of, 61 6, isa, 126 6, isa, 84 61, isa, 113 61, isa, 126 68, contains, 61 68, isa, 113 68, isa, 59 68, isa, 126 88, isa, 22 88, isa, 126 88, location_of, 130 88, part_of, 73 88, part_of, 130 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, interacts_with, 16 124, interacts_with, 2 124, isa, 17 124, isa, 16 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 75, ingredient_of, 61 75, isa, 126 75, isa, 84 16, exhibits, 64 16, exhibits, 122 16, isa, 17 16, performs, 69 16, performs, 64 16, performs, 24 16, performs, 107 16, performs, 91 16, performs, 53 16, performs, 36 16, performs, 27 16, performs, 122 16, produces, 48 16, produces, 61 16, produces, 68 16, produces, 55 16, produces, 113 16, produces, 59 16, produces, 66 16, produces, 67 16, uses, 48 16, uses, 61 16, uses, 68 16, uses, 55 16, uses, 113 16, uses, 59 16, uses, 66 16, uses, 67 10, property_of, 28 10, property_of, 124 10, property_of, 16 10, property_of, 2 113, isa, 126 59, isa, 113 59, isa, 126 2, exhibits, 64 2, exhibits, 122 2, interacts_with, 16 2, isa, 17 2, isa, 16 2, performs, 69 2, performs, 64 2, performs, 24 2, performs, 107 2, performs, 91 2, performs, 53 2, performs, 36 2, performs, 27 2, performs, 122 2, produces, 48 2, produces, 61 2, produces, 68 2, produces, 55 2, produces, 113 2, produces, 59 2, produces, 66 2, produces, 67 2, uses, 48 2, uses, 61 2, uses, 68 2, uses, 55 2, uses, 113 2, uses, 59 2, uses, 66 2, uses, 67 66, affects, 28 66, affects, 124 66, affects, 16 66, affects, 2 67, isa, 113 67, isa, 126 122, associated_with, 28 122, associated_with, 124 122, associated_with, 16 122, associated_with, 2 84, ingredient_of, 61 84, isa, 126 Question: In what context are bacterium, chemical_viewed_structurally, and clinical_drug connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bacterium", "chemical_viewed_structurally", "clinical_drug" ], "valid_edges": [ [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "interacts_with", "group" ], [ "age_group", "interacts_with", "patient_or_disabled_group" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "isa", "group" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "anatomical_structure", "isa", "physical_object" ], [ "anatomical_structure", "location_of", "bacterium" ], [ "anatomical_structure", "part_of", "archaeon" ], [ "anatomical_structure", "part_of", "bacterium" ], [ "archaeon", "isa", "physical_object" ], [ "bacterium", "interacts_with", "archaeon" ], [ "bacterium", "isa", "physical_object" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "group" ], [ "behavior", "associated_with", "patient_or_disabled_group" ], [ "chemical_viewed_structurally", "ingredient_of", "clinical_drug" ], [ "chemical_viewed_structurally", "isa", "physical_object" ], [ "chemical_viewed_structurally", "isa", "substance" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "clinical_drug", "isa", "physical_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "drug_delivery_device", "isa", "physical_object" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "isa", "physical_object" ], [ "embryonic_structure", "location_of", "bacterium" ], [ "embryonic_structure", "part_of", "archaeon" ], [ "embryonic_structure", "part_of", "bacterium" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "interacts_with", "group" ], [ "family_group", "interacts_with", "patient_or_disabled_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "isa", "group" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "physical_object" ], [ "food", "isa", "substance" ], [ "group", "exhibits", "behavior" ], [ "group", "exhibits", "social_behavior" ], [ "group", "isa", "conceptual_entity" ], [ "group", "performs", "activity" ], [ "group", "performs", "behavior" ], [ "group", "performs", "daily_or_recreational_activity" ], [ "group", "performs", "educational_activity" ], [ "group", "performs", "governmental_or_regulatory_activity" ], [ "group", "performs", "health_care_activity" ], [ "group", "performs", "machine_activity" ], [ "group", "performs", "occupational_activity" ], [ "group", "performs", "social_behavior" ], [ "group", "produces", "classification" ], [ "group", "produces", "clinical_drug" ], [ "group", "produces", "drug_delivery_device" ], [ "group", "produces", "intellectual_product" ], [ "group", "produces", "manufactured_object" ], [ "group", "produces", "medical_device" ], [ "group", "produces", "regulation_or_law" ], [ "group", "produces", "research_device" ], [ "group", "uses", "classification" ], [ "group", "uses", "clinical_drug" ], [ "group", "uses", "drug_delivery_device" ], [ "group", "uses", "intellectual_product" ], [ "group", "uses", "manufactured_object" ], [ "group", "uses", "medical_device" ], [ "group", "uses", "regulation_or_law" ], [ "group", "uses", "research_device" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "group_attribute", "property_of", "group" ], [ "group_attribute", "property_of", "patient_or_disabled_group" ], [ "manufactured_object", "isa", "physical_object" ], [ "medical_device", "isa", "manufactured_object" ], [ "medical_device", "isa", "physical_object" ], [ "patient_or_disabled_group", "exhibits", "behavior" ], [ "patient_or_disabled_group", "exhibits", "social_behavior" ], [ "patient_or_disabled_group", "interacts_with", "group" ], [ "patient_or_disabled_group", "isa", "conceptual_entity" ], [ "patient_or_disabled_group", "isa", "group" ], [ "patient_or_disabled_group", "performs", "activity" ], [ "patient_or_disabled_group", "performs", "behavior" ], [ "patient_or_disabled_group", "performs", "daily_or_recreational_activity" ], [ "patient_or_disabled_group", "performs", "educational_activity" ], [ "patient_or_disabled_group", "performs", "governmental_or_regulatory_activity" ], [ "patient_or_disabled_group", "performs", "health_care_activity" ], [ "patient_or_disabled_group", "performs", "machine_activity" ], [ "patient_or_disabled_group", "performs", "occupational_activity" ], [ "patient_or_disabled_group", "performs", "social_behavior" ], [ "patient_or_disabled_group", "produces", "classification" ], [ "patient_or_disabled_group", "produces", "clinical_drug" ], [ "patient_or_disabled_group", "produces", "drug_delivery_device" ], [ "patient_or_disabled_group", "produces", "intellectual_product" ], [ "patient_or_disabled_group", "produces", "manufactured_object" ], [ "patient_or_disabled_group", "produces", "medical_device" ], [ "patient_or_disabled_group", "produces", "regulation_or_law" ], [ "patient_or_disabled_group", "produces", "research_device" ], [ "patient_or_disabled_group", "uses", "classification" ], [ "patient_or_disabled_group", "uses", "clinical_drug" ], [ "patient_or_disabled_group", "uses", "drug_delivery_device" ], [ "patient_or_disabled_group", "uses", "intellectual_product" ], [ "patient_or_disabled_group", "uses", "manufactured_object" ], [ "patient_or_disabled_group", "uses", "medical_device" ], [ "patient_or_disabled_group", "uses", "regulation_or_law" ], [ "patient_or_disabled_group", "uses", "research_device" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "affects", "group" ], [ "regulation_or_law", "affects", "patient_or_disabled_group" ], [ "research_device", "isa", "manufactured_object" ], [ "research_device", "isa", "physical_object" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "group" ], [ "social_behavior", "associated_with", "patient_or_disabled_group" ], [ "substance", "ingredient_of", "clinical_drug" ], [ "substance", "isa", "physical_object" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 81, element_ion_or_isotope 83, organ_or_tissue_function 39, research_activity src, edge_attr, dst 81, affects, 83 39, measures, 81 39, measures, 83 Question: For what reason are element_ion_or_isotope, organ_or_tissue_function, and research_activity associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "element_ion_or_isotope", "organ_or_tissue_function", "research_activity" ], "valid_edges": [ [ "element_ion_or_isotope", "affects", "organ_or_tissue_function" ], [ "research_activity", "measures", "element_ion_or_isotope" ], [ "research_activity", "measures", "organ_or_tissue_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 132, body_system 62, disease_or_syndrome 42, geographic_area 70, idea_or_concept 18, physiologic_function 79, spatial_concept src, edge_attr, dst 132, isa, 70 62, affects, 18 62, manifestation_of, 18 62, process_of, 18 62, result_of, 18 42, associated_with, 62 42, isa, 70 42, isa, 79 18, affects, 62 18, process_of, 62 18, result_of, 62 79, isa, 70 Question: For what reason are body_system, disease_or_syndrome, and physiologic_function associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_system", "disease_or_syndrome", "physiologic_function" ], "valid_edges": [ [ "body_system", "isa", "idea_or_concept" ], [ "disease_or_syndrome", "affects", "physiologic_function" ], [ "disease_or_syndrome", "manifestation_of", "physiologic_function" ], [ "disease_or_syndrome", "process_of", "physiologic_function" ], [ "disease_or_syndrome", "result_of", "physiologic_function" ], [ "geographic_area", "associated_with", "disease_or_syndrome" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "physiologic_function", "affects", "disease_or_syndrome" ], [ "physiologic_function", "process_of", "disease_or_syndrome" ], [ "physiologic_function", "result_of", "disease_or_syndrome" ], [ "spatial_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 62, disease_or_syndrome 104, fish 119, organism src, edge_attr, dst 62, affects, 104 62, affects, 119 62, process_of, 104 62, process_of, 119 104, interacts_with, 119 104, isa, 119 Question: How are disease_or_syndrome, fish, and organism related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "disease_or_syndrome", "fish", "organism" ], "valid_edges": [ [ "disease_or_syndrome", "affects", "fish" ], [ "disease_or_syndrome", "affects", "organism" ], [ "disease_or_syndrome", "process_of", "fish" ], [ "disease_or_syndrome", "process_of", "organism" ], [ "fish", "interacts_with", "organism" ], [ "fish", "isa", "organism" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 123, diagnostic_procedure 58, occupation_or_discipline 111, qualitative_concept src, edge_attr, dst 123, issue_in, 58 123, method_of, 58 111, evaluation_of, 123 111, issue_in, 58 Question: In what context are diagnostic_procedure, occupation_or_discipline, and qualitative_concept connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "diagnostic_procedure", "occupation_or_discipline", "qualitative_concept" ], "valid_edges": [ [ "diagnostic_procedure", "issue_in", "occupation_or_discipline" ], [ "diagnostic_procedure", "method_of", "occupation_or_discipline" ], [ "qualitative_concept", "evaluation_of", "diagnostic_procedure" ], [ "qualitative_concept", "issue_in", "occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 112, alga 97, injury_or_poisoning 83, organ_or_tissue_function src, edge_attr, dst 97, disrupts, 83 97, result_of, 83 83, affects, 112 83, process_of, 112 83, result_of, 97 Question: In what context are alga, injury_or_poisoning, and organ_or_tissue_function connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "alga", "injury_or_poisoning", "organ_or_tissue_function" ], "valid_edges": [ [ "injury_or_poisoning", "disrupts", "organ_or_tissue_function" ], [ "injury_or_poisoning", "result_of", "organ_or_tissue_function" ], [ "organ_or_tissue_function", "affects", "alga" ], [ "organ_or_tissue_function", "process_of", "alga" ], [ "organ_or_tissue_function", "result_of", "injury_or_poisoning" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 121, biomedical_or_dental_material 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 124, family_group 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 70, idea_or_concept 55, intellectual_product 30, language 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 111, qualitative_concept 66, regulation_or_law 67, research_device 122, social_behavior src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, associated_with, 28 64, associated_with, 124 64, isa, 69 64, isa, 50 121, ingredient_of, 61 48, isa, 17 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 107, isa, 69 107, isa, 50 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 91, isa, 69 91, isa, 50 10, isa, 17 10, property_of, 28 10, property_of, 124 53, isa, 69 53, isa, 50 70, isa, 17 55, isa, 17 30, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 66, affects, 28 66, affects, 124 66, isa, 17 122, associated_with, 28 122, associated_with, 124 122, isa, 69 122, isa, 50 Question: How are biomedical_or_dental_material, language, and machine_activity related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biomedical_or_dental_material", "language", "machine_activity" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "biomedical_or_dental_material", "ingredient_of", "clinical_drug" ], [ "classification", "isa", "conceptual_entity" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "language", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 15, cell_function 61, clinical_drug 75, food 109, genetic_function 70, idea_or_concept 96, quantitative_concept 108, temporal_concept src, edge_attr, dst 15, affects, 109 15, co-occurs_with, 109 15, occurs_in, 108 15, precedes, 109 15, process_of, 109 15, result_of, 109 75, affects, 15 75, affects, 109 75, ingredient_of, 61 109, affects, 15 109, occurs_in, 108 109, precedes, 15 109, process_of, 15 109, result_of, 15 96, isa, 70 96, measurement_of, 15 96, measurement_of, 109 108, conceptual_part_of, 15 108, isa, 70 Question: In what context are cell_function, clinical_drug, and genetic_function connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "cell_function", "clinical_drug", "genetic_function" ], "valid_edges": [ [ "cell_function", "affects", "genetic_function" ], [ "cell_function", "co-occurs_with", "genetic_function" ], [ "cell_function", "occurs_in", "temporal_concept" ], [ "cell_function", "precedes", "genetic_function" ], [ "cell_function", "process_of", "genetic_function" ], [ "cell_function", "result_of", "genetic_function" ], [ "food", "affects", "cell_function" ], [ "food", "affects", "genetic_function" ], [ "food", "ingredient_of", "clinical_drug" ], [ "genetic_function", "affects", "cell_function" ], [ "genetic_function", "occurs_in", "temporal_concept" ], [ "genetic_function", "precedes", "cell_function" ], [ "genetic_function", "process_of", "cell_function" ], [ "genetic_function", "result_of", "cell_function" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "cell_function" ], [ "quantitative_concept", "measurement_of", "genetic_function" ], [ "temporal_concept", "conceptual_part_of", "cell_function" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 60, biologic_function 48, classification 24, daily_or_recreational_activity 70, idea_or_concept 55, intellectual_product 36, machine_activity 41, professional_society 111, qualitative_concept 96, quantitative_concept 7, therapeutic_or_preventive_procedure src, edge_attr, dst 48, isa, 55 24, isa, 69 36, isa, 69 36, method_of, 7 41, carries_out, 7 41, location_of, 7 41, produces, 48 41, produces, 55 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 36 111, evaluation_of, 7 111, isa, 70 96, conceptual_part_of, 7 96, isa, 70 7, affects, 60 7, complicates, 60 7, isa, 69 Question: How are biologic_function, intellectual_product, and therapeutic_or_preventive_procedure related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biologic_function", "intellectual_product", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "classification", "isa", "intellectual_product" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "method_of", "therapeutic_or_preventive_procedure" ], [ "professional_society", "carries_out", "therapeutic_or_preventive_procedure" ], [ "professional_society", "location_of", "therapeutic_or_preventive_procedure" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "therapeutic_or_preventive_procedure" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "conceptual_part_of", "therapeutic_or_preventive_procedure" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "therapeutic_or_preventive_procedure", "affects", "biologic_function" ], [ "therapeutic_or_preventive_procedure", "complicates", "biologic_function" ], [ "therapeutic_or_preventive_procedure", "isa", "activity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 65, biomedical_occupation_or_discipline 72, pharmacologic_substance 96, quantitative_concept src, edge_attr, dst 72, issue_in, 65 96, issue_in, 65 Question: For what reason are biomedical_occupation_or_discipline, pharmacologic_substance, and quantitative_concept associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biomedical_occupation_or_discipline", "pharmacologic_substance", "quantitative_concept" ], "valid_edges": [ [ "pharmacologic_substance", "issue_in", "biomedical_occupation_or_discipline" ], [ "quantitative_concept", "issue_in", "biomedical_occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26, amino_acid_sequence 29, neoplastic_process 58, occupation_or_discipline src, edge_attr, dst 26, issue_in, 58 29, issue_in, 58 Question: How are amino_acid_sequence, neoplastic_process, and occupation_or_discipline related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_sequence", "neoplastic_process", "occupation_or_discipline" ], "valid_edges": [ [ "amino_acid_sequence", "issue_in", "occupation_or_discipline" ], [ "neoplastic_process", "issue_in", "occupation_or_discipline" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 129, body_substance 62, disease_or_syndrome 87, plant src, edge_attr, dst 129, causes, 62 62, affects, 87 62, process_of, 87 62, produces, 129 Question: In what context are body_substance, disease_or_syndrome, and plant connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_substance", "disease_or_syndrome", "plant" ], "valid_edges": [ [ "body_substance", "causes", "disease_or_syndrome" ], [ "disease_or_syndrome", "affects", "plant" ], [ "disease_or_syndrome", "process_of", "plant" ], [ "disease_or_syndrome", "produces", "body_substance" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 112, alga 94, body_location_or_region 103, body_space_or_junction 129, body_substance 132, body_system 61, clinical_drug 17, conceptual_entity 88, embryonic_structure 75, food 16, group 70, idea_or_concept 84, substance src, edge_attr, dst 94, adjacent_to, 103 94, conceptual_part_of, 132 94, isa, 17 103, conceptual_part_of, 132 103, contains, 129 103, isa, 17 103, isa, 70 103, location_of, 129 129, conceptual_part_of, 132 129, ingredient_of, 61 129, isa, 84 129, surrounds, 88 132, isa, 17 132, isa, 70 88, contains, 129 88, part_of, 112 75, ingredient_of, 61 75, isa, 84 16, isa, 17 16, produces, 61 16, uses, 61 70, isa, 17 84, ingredient_of, 61 Question: For what reason are alga, body_substance, and group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "alga", "body_substance", "group" ], "valid_edges": [ [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "contains", "body_substance" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "location_of", "body_substance" ], [ "body_substance", "conceptual_part_of", "body_system" ], [ "body_substance", "ingredient_of", "clinical_drug" ], [ "body_substance", "isa", "substance" ], [ "body_substance", "surrounds", "embryonic_structure" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "idea_or_concept" ], [ "embryonic_structure", "contains", "body_substance" ], [ "embryonic_structure", "part_of", "alga" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "group", "isa", "conceptual_entity" ], [ "group", "produces", "clinical_drug" ], [ "group", "uses", "clinical_drug" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 124, family_group 75, food 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 111, qualitative_concept 117, receptor 66, regulation_or_law 67, research_device 122, social_behavior 84, substance src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 48, isa, 17 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 107, isa, 69 107, isa, 50 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 75, ingredient_of, 61 75, isa, 84 42, isa, 17 91, isa, 69 91, isa, 50 10, isa, 17 10, property_of, 28 10, property_of, 124 53, isa, 69 53, isa, 50 70, conceptual_part_of, 64 70, isa, 17 55, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 117, ingredient_of, 61 117, isa, 84 66, affects, 28 66, affects, 124 66, isa, 17 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 84, ingredient_of, 61 Question: How are group_attribute, machine_activity, and receptor related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "group_attribute", "machine_activity", "receptor" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "classification", "isa", "conceptual_entity" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "receptor", "ingredient_of", "clinical_drug" ], [ "receptor", "isa", "substance" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28, age_group 22, anatomical_structure 130, bacterium 61, clinical_drug 17, conceptual_entity 68, drug_delivery_device 88, embryonic_structure 124, family_group 75, food 82, functional_concept 42, geographic_area 70, idea_or_concept 113, manufactured_object 59, medical_device 126, physical_object 111, qualitative_concept 67, research_device 84, substance src, edge_attr, dst 28, isa, 17 28, produces, 61 28, produces, 68 28, produces, 113 28, produces, 59 28, produces, 67 28, uses, 61 28, uses, 68 28, uses, 113 28, uses, 59 28, uses, 67 22, isa, 126 22, location_of, 130 22, part_of, 130 130, isa, 126 61, isa, 113 61, isa, 126 68, contains, 61 68, isa, 113 68, isa, 59 68, isa, 126 88, isa, 22 88, isa, 126 88, location_of, 130 88, part_of, 130 124, isa, 17 124, produces, 61 124, produces, 68 124, produces, 113 124, produces, 59 124, produces, 67 124, uses, 61 124, uses, 68 124, uses, 113 124, uses, 59 124, uses, 67 75, ingredient_of, 61 75, isa, 126 75, isa, 84 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 70, isa, 17 113, isa, 126 59, isa, 113 59, isa, 126 111, isa, 17 111, isa, 70 67, isa, 113 67, isa, 126 84, ingredient_of, 61 84, isa, 126 Question: In what context are bacterium, functional_concept, and physical_object connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bacterium", "functional_concept", "physical_object" ], "valid_edges": [ [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "research_device" ], [ "anatomical_structure", "isa", "physical_object" ], [ "anatomical_structure", "location_of", "bacterium" ], [ "anatomical_structure", "part_of", "bacterium" ], [ "bacterium", "isa", "physical_object" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "clinical_drug", "isa", "physical_object" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "drug_delivery_device", "isa", "physical_object" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "isa", "physical_object" ], [ "embryonic_structure", "location_of", "bacterium" ], [ "embryonic_structure", "part_of", "bacterium" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "research_device" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "physical_object" ], [ "food", "isa", "substance" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "manufactured_object", "isa", "physical_object" ], [ "medical_device", "isa", "manufactured_object" ], [ "medical_device", "isa", "physical_object" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "research_device", "isa", "manufactured_object" ], [ "research_device", "isa", "physical_object" ], [ "substance", "ingredient_of", "clinical_drug" ], [ "substance", "isa", "physical_object" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 86, experimental_model_of_disease 35, gene_or_genome 59, medical_device src, edge_attr, dst 35, location_of, 86 59, causes, 86 59, prevents, 86 59, treats, 86 Question: How are experimental_model_of_disease, gene_or_genome, and medical_device related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "experimental_model_of_disease", "gene_or_genome", "medical_device" ], "valid_edges": [ [ "gene_or_genome", "location_of", "experimental_model_of_disease" ], [ "medical_device", "causes", "experimental_model_of_disease" ], [ "medical_device", "prevents", "experimental_model_of_disease" ], [ "medical_device", "treats", "experimental_model_of_disease" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 121, biomedical_or_dental_material 92, cell 110, molecular_function src, edge_attr, dst 121, affects, 110 92, location_of, 110 Question: In what context are biomedical_or_dental_material, cell, and molecular_function connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biomedical_or_dental_material", "cell", "molecular_function" ], "valid_edges": [ [ "biomedical_or_dental_material", "affects", "molecular_function" ], [ "cell", "location_of", "molecular_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 24, daily_or_recreational_activity 42, geographic_area 45, human_caused_phenomenon_or_process 70, idea_or_concept 36, machine_activity 98, pathologic_function 111, qualitative_concept src, edge_attr, dst 24, associated_with, 98 24, isa, 69 42, associated_with, 98 42, isa, 70 45, result_of, 98 36, isa, 69 98, result_of, 45 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 36 111, isa, 70 Question: How are activity, human_caused_phenomenon_or_process, and pathologic_function related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "activity", "human_caused_phenomenon_or_process", "pathologic_function" ], "valid_edges": [ [ "daily_or_recreational_activity", "associated_with", "pathologic_function" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "geographic_area", "associated_with", "pathologic_function" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "human_caused_phenomenon_or_process", "result_of", "pathologic_function" ], [ "machine_activity", "isa", "activity" ], [ "pathologic_function", "result_of", "human_caused_phenomenon_or_process" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 130, bacterium 132, body_system 133, fully_formed_anatomical_structure 82, functional_concept 70, idea_or_concept 96, quantitative_concept src, edge_attr, dst 132, conceptual_part_of, 133 132, isa, 82 132, isa, 70 133, location_of, 130 133, part_of, 130 82, isa, 70 96, isa, 70 Question: How are bacterium, fully_formed_anatomical_structure, and quantitative_concept related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bacterium", "fully_formed_anatomical_structure", "quantitative_concept" ], "valid_edges": [ [ "body_system", "conceptual_part_of", "fully_formed_anatomical_structure" ], [ "body_system", "isa", "functional_concept" ], [ "body_system", "isa", "idea_or_concept" ], [ "fully_formed_anatomical_structure", "location_of", "bacterium" ], [ "fully_formed_anatomical_structure", "part_of", "bacterium" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 80, mental_or_behavioral_dysfunction 98, pathologic_function 67, research_device src, edge_attr, dst 80, affects, 98 80, associated_with, 98 80, co-occurs_with, 98 80, complicates, 98 80, degree_of, 98 80, isa, 98 80, manifestation_of, 98 80, precedes, 98 80, process_of, 98 80, result_of, 98 98, affects, 80 98, complicates, 80 98, degree_of, 80 98, manifestation_of, 80 98, occurs_in, 80 98, precedes, 80 98, process_of, 80 98, result_of, 80 67, causes, 80 67, causes, 98 Question: In what context are mental_or_behavioral_dysfunction, pathologic_function, and research_device connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "mental_or_behavioral_dysfunction", "pathologic_function", "research_device" ], "valid_edges": [ [ "mental_or_behavioral_dysfunction", "affects", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "associated_with", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "co-occurs_with", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "complicates", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "degree_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "isa", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "manifestation_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "precedes", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "process_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "result_of", "pathologic_function" ], [ "pathologic_function", "affects", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "complicates", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "degree_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "manifestation_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "occurs_in", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "precedes", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "process_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "result_of", "mental_or_behavioral_dysfunction" ], [ "research_device", "causes", "mental_or_behavioral_dysfunction" ], [ "research_device", "causes", "pathologic_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 15, cell_function 37, mammal 72, pharmacologic_substance src, edge_attr, dst 15, affects, 37 15, process_of, 37 72, affects, 15 72, complicates, 15 72, disrupts, 15 Question: In what context are cell_function, mammal, and pharmacologic_substance connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "cell_function", "mammal", "pharmacologic_substance" ], "valid_edges": [ [ "cell_function", "affects", "mammal" ], [ "cell_function", "process_of", "mammal" ], [ "pharmacologic_substance", "affects", "cell_function" ], [ "pharmacologic_substance", "complicates", "cell_function" ], [ "pharmacologic_substance", "disrupts", "cell_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28, age_group 64, behavior 6, chemical_viewed_structurally 61, clinical_drug 17, conceptual_entity 124, family_group 42, geographic_area 70, idea_or_concept 134, nucleotide_sequence 111, qualitative_concept 96, quantitative_concept src, edge_attr, dst 28, isa, 17 28, produces, 61 28, uses, 61 64, associated_with, 42 6, ingredient_of, 61 124, isa, 17 124, produces, 61 124, uses, 61 42, isa, 17 42, isa, 70 70, conceptual_part_of, 64 70, isa, 17 134, isa, 17 134, isa, 70 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 42 96, measurement_of, 134 Question: In what context are chemical_viewed_structurally, nucleotide_sequence, and quantitative_concept connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "chemical_viewed_structurally", "nucleotide_sequence", "quantitative_concept" ], "valid_edges": [ [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "uses", "clinical_drug" ], [ "behavior", "associated_with", "geographic_area" ], [ "chemical_viewed_structurally", "ingredient_of", "clinical_drug" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "uses", "clinical_drug" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 22, anatomical_structure 90, antibiotic 64, behavior 88, embryonic_structure 114, vertebrate src, edge_attr, dst 22, part_of, 114 90, disrupts, 88 88, isa, 22 88, part_of, 114 114, exhibits, 64 Question: For what reason are antibiotic, behavior, and vertebrate associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "antibiotic", "behavior", "vertebrate" ], "valid_edges": [ [ "anatomical_structure", "part_of", "vertebrate" ], [ "antibiotic", "disrupts", "embryonic_structure" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "part_of", "vertebrate" ], [ "vertebrate", "exhibits", "behavior" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 12, individual_behavior 80, mental_or_behavioral_dysfunction 98, pathologic_function src, edge_attr, dst 12, associated_with, 80 12, associated_with, 98 12, manifestation_of, 80 80, affects, 12 80, affects, 98 80, associated_with, 98 80, co-occurs_with, 98 80, complicates, 98 80, degree_of, 98 80, isa, 98 80, manifestation_of, 98 80, precedes, 98 80, process_of, 98 80, result_of, 12 80, result_of, 98 98, affects, 80 98, complicates, 80 98, degree_of, 80 98, manifestation_of, 80 98, occurs_in, 80 98, precedes, 80 98, process_of, 80 98, result_of, 12 98, result_of, 80 Question: For what reason are individual_behavior, mental_or_behavioral_dysfunction, and pathologic_function associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "individual_behavior", "mental_or_behavioral_dysfunction", "pathologic_function" ], "valid_edges": [ [ "individual_behavior", "associated_with", "mental_or_behavioral_dysfunction" ], [ "individual_behavior", "associated_with", "pathologic_function" ], [ "individual_behavior", "manifestation_of", "mental_or_behavioral_dysfunction" ], [ "mental_or_behavioral_dysfunction", "affects", "individual_behavior" ], [ "mental_or_behavioral_dysfunction", "affects", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "associated_with", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "co-occurs_with", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "complicates", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "degree_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "isa", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "manifestation_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "precedes", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "process_of", "pathologic_function" ], [ "mental_or_behavioral_dysfunction", "result_of", "individual_behavior" ], [ "mental_or_behavioral_dysfunction", "result_of", "pathologic_function" ], [ "pathologic_function", "affects", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "complicates", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "degree_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "manifestation_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "occurs_in", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "precedes", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "process_of", "mental_or_behavioral_dysfunction" ], [ "pathologic_function", "result_of", "individual_behavior" ], [ "pathologic_function", "result_of", "mental_or_behavioral_dysfunction" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 57, amino_acid_peptide_or_protein 26, amino_acid_sequence 24, daily_or_recreational_activity 70, idea_or_concept 36, machine_activity 2, patient_or_disabled_group 111, qualitative_concept 7, therapeutic_or_preventive_procedure src, edge_attr, dst 26, isa, 70 26, property_of, 57 36, method_of, 7 2, performs, 24 2, performs, 36 2, performs, 7 111, evaluation_of, 24 111, evaluation_of, 36 111, evaluation_of, 7 111, isa, 70 7, affects, 2 Question: For what reason are amino_acid_peptide_or_protein, patient_or_disabled_group, and therapeutic_or_preventive_procedure associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_peptide_or_protein", "patient_or_disabled_group", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "property_of", "amino_acid_peptide_or_protein" ], [ "machine_activity", "method_of", "therapeutic_or_preventive_procedure" ], [ "patient_or_disabled_group", "performs", "daily_or_recreational_activity" ], [ "patient_or_disabled_group", "performs", "machine_activity" ], [ "patient_or_disabled_group", "performs", "therapeutic_or_preventive_procedure" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "therapeutic_or_preventive_procedure" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "therapeutic_or_preventive_procedure", "affects", "patient_or_disabled_group" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 26, amino_acid_sequence 64, behavior 94, body_location_or_region 103, body_space_or_junction 132, body_system 3, carbohydrate_sequence 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 104, fish 82, functional_concept 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 32, molecular_sequence 134, nucleotide_sequence 27, occupational_activity 31, organization 23, professional_or_occupational_group 41, professional_society 111, qualitative_concept 96, quantitative_concept 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization 122, social_behavior 79, spatial_concept 108, temporal_concept src, edge_attr, dst 69, isa, 50 26, isa, 17 26, isa, 70 26, isa, 32 26, isa, 79 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, associated_with, 23 64, isa, 69 64, isa, 50 94, isa, 17 94, isa, 70 94, isa, 79 103, isa, 17 103, isa, 70 103, isa, 79 132, isa, 17 132, isa, 70 3, isa, 17 3, isa, 70 3, isa, 32 3, isa, 79 48, isa, 17 48, isa, 55 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 68, isa, 113 68, isa, 59 107, isa, 69 107, isa, 50 107, isa, 27 104, exhibits, 64 104, exhibits, 122 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 42, isa, 79 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 10, property_of, 23 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, isa, 31 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 128, produces, 48 128, produces, 55 128, produces, 66 70, conceptual_part_of, 64 70, isa, 17 55, isa, 17 36, isa, 69 36, isa, 50 59, isa, 113 32, isa, 17 32, isa, 70 32, isa, 79 134, isa, 17 134, isa, 70 134, isa, 32 134, isa, 79 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 31, produces, 48 31, produces, 55 31, produces, 66 23, exhibits, 64 23, exhibits, 122 23, isa, 17 23, manages, 128 23, manages, 31 23, manages, 41 23, manages, 40 23, performs, 69 23, performs, 64 23, performs, 24 23, performs, 107 23, performs, 91 23, performs, 53 23, performs, 36 23, performs, 27 23, performs, 122 23, produces, 48 23, produces, 61 23, produces, 68 23, produces, 55 23, produces, 113 23, produces, 59 23, produces, 66 23, produces, 67 23, uses, 48 23, uses, 61 23, uses, 68 23, uses, 55 23, uses, 113 23, uses, 59 23, uses, 66 23, uses, 67 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, isa, 31 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 26 96, measurement_of, 94 96, measurement_of, 103 96, measurement_of, 3 96, measurement_of, 42 96, measurement_of, 32 96, measurement_of, 134 96, measurement_of, 79 66, affects, 128 66, affects, 31 66, affects, 23 66, affects, 41 66, affects, 40 66, isa, 17 66, isa, 55 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, isa, 31 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 40, produces, 48 40, produces, 55 40, produces, 66 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, associated_with, 23 122, isa, 69 122, isa, 64 122, isa, 50 79, isa, 17 79, isa, 70 108, isa, 17 108, isa, 70 Question: In what context are amino_acid_sequence, fish, and professional_or_occupational_group connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_sequence", "fish", "professional_or_occupational_group" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "associated_with", "professional_or_occupational_group" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "isa", "spatial_concept" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "conceptual_entity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "classification", "isa", "conceptual_entity" ], [ "classification", "isa", "intellectual_product" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "fish", "exhibits", "behavior" ], [ "fish", "exhibits", "social_behavior" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "professional_or_occupational_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "medical_device", "isa", "manufactured_object" ], [ "molecular_sequence", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_or_occupational_group", "exhibits", "behavior" ], [ "professional_or_occupational_group", "exhibits", "social_behavior" ], [ "professional_or_occupational_group", "isa", "conceptual_entity" ], [ "professional_or_occupational_group", "manages", "health_care_related_organization" ], [ "professional_or_occupational_group", "manages", "organization" ], [ "professional_or_occupational_group", "manages", "professional_society" ], [ "professional_or_occupational_group", "manages", "self_help_or_relief_organization" ], [ "professional_or_occupational_group", "performs", "activity" ], [ "professional_or_occupational_group", "performs", "behavior" ], [ "professional_or_occupational_group", "performs", "daily_or_recreational_activity" ], [ "professional_or_occupational_group", "performs", "educational_activity" ], [ "professional_or_occupational_group", "performs", "governmental_or_regulatory_activity" ], [ "professional_or_occupational_group", "performs", "health_care_activity" ], [ "professional_or_occupational_group", "performs", "machine_activity" ], [ "professional_or_occupational_group", "performs", "occupational_activity" ], [ "professional_or_occupational_group", "performs", "social_behavior" ], [ "professional_or_occupational_group", "produces", "classification" ], [ "professional_or_occupational_group", "produces", "clinical_drug" ], [ "professional_or_occupational_group", "produces", "drug_delivery_device" ], [ "professional_or_occupational_group", "produces", "intellectual_product" ], [ "professional_or_occupational_group", "produces", "manufactured_object" ], [ "professional_or_occupational_group", "produces", "medical_device" ], [ "professional_or_occupational_group", "produces", "regulation_or_law" ], [ "professional_or_occupational_group", "produces", "research_device" ], [ "professional_or_occupational_group", "uses", "classification" ], [ "professional_or_occupational_group", "uses", "clinical_drug" ], [ "professional_or_occupational_group", "uses", "drug_delivery_device" ], [ "professional_or_occupational_group", "uses", "intellectual_product" ], [ "professional_or_occupational_group", "uses", "manufactured_object" ], [ "professional_or_occupational_group", "uses", "medical_device" ], [ "professional_or_occupational_group", "uses", "regulation_or_law" ], [ "professional_or_occupational_group", "uses", "research_device" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "amino_acid_sequence" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "body_space_or_junction" ], [ "quantitative_concept", "measurement_of", "carbohydrate_sequence" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "molecular_sequence" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ], [ "quantitative_concept", "measurement_of", "spatial_concept" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_or_occupational_group" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "associated_with", "professional_or_occupational_group" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "spatial_concept", "isa", "conceptual_entity" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "isa", "conceptual_entity" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 22, anatomical_structure 94, body_location_or_region 103, body_space_or_junction 132, body_system 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 88, embryonic_structure 43, environmental_effect_of_humans 50, event 89, finding 75, food 42, geographic_area 91, governmental_or_regulatory_activity 128, health_care_related_organization 45, human_caused_phenomenon_or_process 70, idea_or_concept 97, injury_or_poisoning 14, inorganic_chemical 37, mammal 113, manufactured_object 59, medical_device 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 96, quantitative_concept 67, research_device 40, self_help_or_relief_organization 79, spatial_concept 84, substance src, edge_attr, dst 69, isa, 50 22, part_of, 37 94, adjacent_to, 103 94, conceptual_part_of, 132 94, isa, 17 94, isa, 70 94, isa, 79 94, location_of, 97 103, conceptual_part_of, 132 103, isa, 17 103, isa, 70 103, isa, 79 103, location_of, 97 61, causes, 97 61, isa, 113 24, associated_with, 97 24, isa, 69 24, isa, 50 68, causes, 97 68, contains, 61 68, isa, 113 68, isa, 59 68, prevents, 97 68, treats, 97 107, associated_with, 97 107, isa, 69 107, isa, 50 107, isa, 27 88, isa, 22 88, part_of, 37 43, isa, 50 43, isa, 45 43, result_of, 45 43, result_of, 97 89, associated_with, 97 89, isa, 17 89, manifestation_of, 97 75, causes, 97 75, ingredient_of, 61 75, isa, 84 42, associated_with, 97 42, isa, 17 42, isa, 70 42, isa, 79 91, associated_with, 97 91, isa, 69 91, isa, 50 91, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 27 128, location_of, 107 128, location_of, 91 128, location_of, 27 45, isa, 50 45, result_of, 43 45, result_of, 97 97, disrupts, 88 97, isa, 50 97, result_of, 43 97, result_of, 45 14, causes, 97 14, ingredient_of, 61 14, isa, 84 113, causes, 97 59, causes, 97 59, isa, 113 59, prevents, 97 59, treats, 97 27, associated_with, 97 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 27 31, location_of, 107 31, location_of, 91 31, location_of, 27 41, carries_out, 107 41, carries_out, 91 41, carries_out, 27 41, location_of, 107 41, location_of, 91 41, location_of, 27 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 27 96, measurement_of, 94 96, measurement_of, 103 96, measurement_of, 42 67, causes, 97 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, carries_out, 27 40, location_of, 107 40, location_of, 91 40, location_of, 27 84, causes, 97 84, ingredient_of, 61 Question: In what context are injury_or_poisoning, inorganic_chemical, and mammal connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "injury_or_poisoning", "inorganic_chemical", "mammal" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "anatomical_structure", "part_of", "mammal" ], [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_location_or_region", "location_of", "injury_or_poisoning" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "isa", "spatial_concept" ], [ "body_space_or_junction", "location_of", "injury_or_poisoning" ], [ "clinical_drug", "causes", "injury_or_poisoning" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "associated_with", "injury_or_poisoning" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "causes", "injury_or_poisoning" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "drug_delivery_device", "prevents", "injury_or_poisoning" ], [ "drug_delivery_device", "treats", "injury_or_poisoning" ], [ "educational_activity", "associated_with", "injury_or_poisoning" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "part_of", "mammal" ], [ "environmental_effect_of_humans", "isa", "event" ], [ "environmental_effect_of_humans", "isa", "human_caused_phenomenon_or_process" ], [ "environmental_effect_of_humans", "result_of", "human_caused_phenomenon_or_process" ], [ "environmental_effect_of_humans", "result_of", "injury_or_poisoning" ], [ "finding", "associated_with", "injury_or_poisoning" ], [ "finding", "isa", "conceptual_entity" ], [ "finding", "manifestation_of", "injury_or_poisoning" ], [ "food", "causes", "injury_or_poisoning" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "geographic_area", "associated_with", "injury_or_poisoning" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "governmental_or_regulatory_activity", "associated_with", "injury_or_poisoning" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "human_caused_phenomenon_or_process", "isa", "event" ], [ "human_caused_phenomenon_or_process", "result_of", "environmental_effect_of_humans" ], [ "human_caused_phenomenon_or_process", "result_of", "injury_or_poisoning" ], [ "injury_or_poisoning", "disrupts", "embryonic_structure" ], [ "injury_or_poisoning", "isa", "event" ], [ "injury_or_poisoning", "result_of", "environmental_effect_of_humans" ], [ "injury_or_poisoning", "result_of", "human_caused_phenomenon_or_process" ], [ "inorganic_chemical", "causes", "injury_or_poisoning" ], [ "inorganic_chemical", "ingredient_of", "clinical_drug" ], [ "inorganic_chemical", "isa", "substance" ], [ "manufactured_object", "causes", "injury_or_poisoning" ], [ "medical_device", "causes", "injury_or_poisoning" ], [ "medical_device", "isa", "manufactured_object" ], [ "medical_device", "prevents", "injury_or_poisoning" ], [ "medical_device", "treats", "injury_or_poisoning" ], [ "occupational_activity", "associated_with", "injury_or_poisoning" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "body_space_or_junction" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "research_device", "causes", "injury_or_poisoning" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "substance", "causes", "injury_or_poisoning" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 132, body_system 37, mammal 4, tissue src, edge_attr, dst 4, conceptual_part_of, 132 4, part_of, 37 Question: For what reason are body_system, mammal, and tissue associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "body_system", "mammal", "tissue" ], "valid_edges": [ [ "tissue", "conceptual_part_of", "body_system" ], [ "tissue", "part_of", "mammal" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 28, age_group 64, behavior 48, classification 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 50, event 124, family_group 82, functional_concept 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 70, idea_or_concept 55, intellectual_product 36, machine_activity 113, manufactured_object 59, medical_device 27, occupational_activity 111, qualitative_concept 66, regulation_or_law 67, research_device 122, social_behavior 0, vitamin src, edge_attr, dst 69, isa, 50 28, exhibits, 64 28, exhibits, 122 28, isa, 17 28, performs, 69 28, performs, 64 28, performs, 24 28, performs, 107 28, performs, 91 28, performs, 53 28, performs, 36 28, performs, 27 28, performs, 122 28, produces, 48 28, produces, 61 28, produces, 68 28, produces, 55 28, produces, 113 28, produces, 59 28, produces, 66 28, produces, 67 28, uses, 48 28, uses, 61 28, uses, 68 28, uses, 55 28, uses, 113 28, uses, 59 28, uses, 66 28, uses, 67 64, affects, 122 64, associated_with, 28 64, associated_with, 124 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 48, isa, 17 61, isa, 113 24, isa, 69 24, isa, 50 68, contains, 61 107, isa, 69 107, isa, 50 124, exhibits, 64 124, exhibits, 122 124, interacts_with, 28 124, isa, 17 124, performs, 69 124, performs, 64 124, performs, 24 124, performs, 107 124, performs, 91 124, performs, 53 124, performs, 36 124, performs, 27 124, performs, 122 124, produces, 48 124, produces, 61 124, produces, 68 124, produces, 55 124, produces, 113 124, produces, 59 124, produces, 66 124, produces, 67 124, uses, 48 124, uses, 61 124, uses, 68 124, uses, 55 124, uses, 113 124, uses, 59 124, uses, 66 124, uses, 67 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 91, isa, 69 91, isa, 50 10, isa, 17 10, property_of, 28 10, property_of, 124 53, isa, 69 53, isa, 50 70, conceptual_part_of, 64 70, isa, 17 55, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 111, isa, 70 66, affects, 28 66, affects, 124 66, isa, 17 122, affects, 64 122, associated_with, 28 122, associated_with, 124 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 0, ingredient_of, 61 Question: For what reason are functional_concept, social_behavior, and vitamin associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "functional_concept", "social_behavior", "vitamin" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "age_group", "exhibits", "behavior" ], [ "age_group", "exhibits", "social_behavior" ], [ "age_group", "isa", "conceptual_entity" ], [ "age_group", "performs", "activity" ], [ "age_group", "performs", "behavior" ], [ "age_group", "performs", "daily_or_recreational_activity" ], [ "age_group", "performs", "educational_activity" ], [ "age_group", "performs", "governmental_or_regulatory_activity" ], [ "age_group", "performs", "health_care_activity" ], [ "age_group", "performs", "machine_activity" ], [ "age_group", "performs", "occupational_activity" ], [ "age_group", "performs", "social_behavior" ], [ "age_group", "produces", "classification" ], [ "age_group", "produces", "clinical_drug" ], [ "age_group", "produces", "drug_delivery_device" ], [ "age_group", "produces", "intellectual_product" ], [ "age_group", "produces", "manufactured_object" ], [ "age_group", "produces", "medical_device" ], [ "age_group", "produces", "regulation_or_law" ], [ "age_group", "produces", "research_device" ], [ "age_group", "uses", "classification" ], [ "age_group", "uses", "clinical_drug" ], [ "age_group", "uses", "drug_delivery_device" ], [ "age_group", "uses", "intellectual_product" ], [ "age_group", "uses", "manufactured_object" ], [ "age_group", "uses", "medical_device" ], [ "age_group", "uses", "regulation_or_law" ], [ "age_group", "uses", "research_device" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "age_group" ], [ "behavior", "associated_with", "family_group" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "classification", "isa", "conceptual_entity" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "family_group", "exhibits", "behavior" ], [ "family_group", "exhibits", "social_behavior" ], [ "family_group", "interacts_with", "age_group" ], [ "family_group", "isa", "conceptual_entity" ], [ "family_group", "performs", "activity" ], [ "family_group", "performs", "behavior" ], [ "family_group", "performs", "daily_or_recreational_activity" ], [ "family_group", "performs", "educational_activity" ], [ "family_group", "performs", "governmental_or_regulatory_activity" ], [ "family_group", "performs", "health_care_activity" ], [ "family_group", "performs", "machine_activity" ], [ "family_group", "performs", "occupational_activity" ], [ "family_group", "performs", "social_behavior" ], [ "family_group", "produces", "classification" ], [ "family_group", "produces", "clinical_drug" ], [ "family_group", "produces", "drug_delivery_device" ], [ "family_group", "produces", "intellectual_product" ], [ "family_group", "produces", "manufactured_object" ], [ "family_group", "produces", "medical_device" ], [ "family_group", "produces", "regulation_or_law" ], [ "family_group", "produces", "research_device" ], [ "family_group", "uses", "classification" ], [ "family_group", "uses", "clinical_drug" ], [ "family_group", "uses", "drug_delivery_device" ], [ "family_group", "uses", "intellectual_product" ], [ "family_group", "uses", "manufactured_object" ], [ "family_group", "uses", "medical_device" ], [ "family_group", "uses", "regulation_or_law" ], [ "family_group", "uses", "research_device" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "group_attribute", "property_of", "age_group" ], [ "group_attribute", "property_of", "family_group" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "intellectual_product", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "regulation_or_law", "affects", "age_group" ], [ "regulation_or_law", "affects", "family_group" ], [ "regulation_or_law", "isa", "conceptual_entity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "age_group" ], [ "social_behavior", "associated_with", "family_group" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "vitamin", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 123, diagnostic_procedure 16, group 21, hormone src, edge_attr, dst 123, analyzes, 21 123, assesses_effect_of, 21 123, measures, 21 16, performs, 123 Question: How are diagnostic_procedure, group, and hormone related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "diagnostic_procedure", "group", "hormone" ], "valid_edges": [ [ "diagnostic_procedure", "analyzes", "hormone" ], [ "diagnostic_procedure", "assesses_effect_of", "hormone" ], [ "diagnostic_procedure", "measures", "hormone" ], [ "group", "performs", "diagnostic_procedure" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 9, entity 52, laboratory_or_test_result 77, neuroreactive_substance_or_biogenic_amine src, edge_attr, dst 52, isa, 9 52, measurement_of, 77 77, isa, 9 Question: How are entity, laboratory_or_test_result, and neuroreactive_substance_or_biogenic_amine related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "entity", "laboratory_or_test_result", "neuroreactive_substance_or_biogenic_amine" ], "valid_edges": [ [ "laboratory_or_test_result", "isa", "entity" ], [ "laboratory_or_test_result", "measurement_of", "neuroreactive_substance_or_biogenic_amine" ], [ "neuroreactive_substance_or_biogenic_amine", "isa", "entity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36, machine_activity 31, organization 23, professional_or_occupational_group 111, qualitative_concept src, edge_attr, dst 23, manages, 31 23, performs, 36 111, evaluation_of, 36 Question: For what reason are organization, professional_or_occupational_group, and qualitative_concept associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "organization", "professional_or_occupational_group", "qualitative_concept" ], "valid_edges": [ [ "professional_or_occupational_group", "manages", "organization" ], [ "professional_or_occupational_group", "performs", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 116, bird 47, enzyme 4, tissue src, edge_attr, dst 47, disrupts, 4 4, part_of, 116 4, produces, 47 Question: In what context are bird, enzyme, and tissue connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bird", "enzyme", "tissue" ], "valid_edges": [ [ "enzyme", "disrupts", "tissue" ], [ "tissue", "part_of", "bird" ], [ "tissue", "produces", "enzyme" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 22, anatomical_structure 64, behavior 116, bird 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 88, embryonic_structure 43, environmental_effect_of_humans 50, event 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 128, health_care_related_organization 45, human_caused_phenomenon_or_process 70, idea_or_concept 36, machine_activity 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 40, self_help_or_relief_organization 122, social_behavior src, edge_attr, dst 69, isa, 50 22, part_of, 116 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 116, exhibits, 64 116, exhibits, 122 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 107, isa, 27 88, isa, 22 88, part_of, 116 43, isa, 50 43, isa, 45 43, result_of, 45 42, isa, 17 91, isa, 69 91, isa, 50 91, isa, 27 10, isa, 17 53, isa, 69 53, isa, 50 53, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 53 128, carries_out, 27 128, isa, 17 128, location_of, 107 128, location_of, 91 128, location_of, 53 128, location_of, 27 45, isa, 50 45, result_of, 43 70, conceptual_part_of, 64 70, isa, 17 36, isa, 69 36, isa, 50 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 53 31, carries_out, 27 31, isa, 17 31, location_of, 107 31, location_of, 91 31, location_of, 53 31, location_of, 27 41, carries_out, 107 41, carries_out, 91 41, carries_out, 53 41, carries_out, 27 41, isa, 17 41, location_of, 107 41, location_of, 91 41, location_of, 53 41, location_of, 27 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, isa, 17 40, carries_out, 107 40, carries_out, 91 40, carries_out, 53 40, carries_out, 27 40, isa, 17 40, location_of, 107 40, location_of, 91 40, location_of, 53 40, location_of, 27 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 Question: For what reason are bird, event, and group_attribute associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bird", "event", "group_attribute" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "anatomical_structure", "part_of", "bird" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "bird", "exhibits", "behavior" ], [ "bird", "exhibits", "social_behavior" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "part_of", "bird" ], [ "environmental_effect_of_humans", "isa", "event" ], [ "environmental_effect_of_humans", "isa", "human_caused_phenomenon_or_process" ], [ "environmental_effect_of_humans", "result_of", "human_caused_phenomenon_or_process" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "group_attribute", "isa", "conceptual_entity" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "health_care_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "isa", "conceptual_entity" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "health_care_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "human_caused_phenomenon_or_process", "isa", "event" ], [ "human_caused_phenomenon_or_process", "result_of", "environmental_effect_of_humans" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "health_care_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "isa", "conceptual_entity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "health_care_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "health_care_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "isa", "conceptual_entity" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "health_care_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "health_care_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "isa", "conceptual_entity" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "health_care_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 109, genetic_function 117, receptor 20, steroid src, edge_attr, dst 109, produces, 117 117, affects, 109 117, complicates, 109 117, disrupts, 109 20, affects, 109 20, interacts_with, 117 Question: For what reason are genetic_function, receptor, and steroid associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "genetic_function", "receptor", "steroid" ], "valid_edges": [ [ "genetic_function", "produces", "receptor" ], [ "receptor", "affects", "genetic_function" ], [ "receptor", "complicates", "genetic_function" ], [ "receptor", "disrupts", "genetic_function" ], [ "steroid", "affects", "genetic_function" ], [ "steroid", "interacts_with", "receptor" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 57, amino_acid_peptide_or_protein 24, daily_or_recreational_activity 107, educational_activity 50, event 109, genetic_function 91, governmental_or_regulatory_activity 128, health_care_related_organization 36, machine_activity 31, organization 23, professional_or_occupational_group 41, professional_society 111, qualitative_concept 40, self_help_or_relief_organization src, edge_attr, dst 69, isa, 50 57, affects, 109 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 109, isa, 50 91, isa, 69 91, isa, 50 128, carries_out, 107 128, carries_out, 91 128, isa, 31 128, location_of, 107 128, location_of, 91 36, isa, 69 36, isa, 50 31, carries_out, 107 31, carries_out, 91 31, location_of, 107 31, location_of, 91 23, manages, 128 23, manages, 31 23, manages, 41 23, manages, 40 23, performs, 69 23, performs, 24 23, performs, 107 23, performs, 91 23, performs, 36 41, carries_out, 107 41, carries_out, 91 41, isa, 31 41, location_of, 107 41, location_of, 91 111, evaluation_of, 69 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 36 40, carries_out, 107 40, carries_out, 91 40, isa, 31 40, location_of, 107 40, location_of, 91 Question: For what reason are amino_acid_peptide_or_protein, genetic_function, and professional_or_occupational_group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "amino_acid_peptide_or_protein", "genetic_function", "professional_or_occupational_group" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "amino_acid_peptide_or_protein", "affects", "genetic_function" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "genetic_function", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "professional_or_occupational_group", "manages", "health_care_related_organization" ], [ "professional_or_occupational_group", "manages", "organization" ], [ "professional_or_occupational_group", "manages", "professional_society" ], [ "professional_or_occupational_group", "manages", "self_help_or_relief_organization" ], [ "professional_or_occupational_group", "performs", "activity" ], [ "professional_or_occupational_group", "performs", "daily_or_recreational_activity" ], [ "professional_or_occupational_group", "performs", "educational_activity" ], [ "professional_or_occupational_group", "performs", "governmental_or_regulatory_activity" ], [ "professional_or_occupational_group", "performs", "machine_activity" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26, amino_acid_sequence 94, body_location_or_region 132, body_system 3, carbohydrate_sequence 17, conceptual_entity 82, functional_concept 42, geographic_area 70, idea_or_concept 32, molecular_sequence 134, nucleotide_sequence 131, organism_attribute 111, qualitative_concept 96, quantitative_concept 79, spatial_concept 108, temporal_concept src, edge_attr, dst 26, isa, 17 26, isa, 70 26, isa, 32 26, isa, 79 94, isa, 17 94, isa, 70 94, isa, 79 132, isa, 17 132, isa, 70 3, isa, 17 3, isa, 70 3, isa, 32 3, isa, 79 82, isa, 17 82, isa, 70 42, isa, 17 42, isa, 70 42, isa, 79 70, isa, 17 32, isa, 17 32, isa, 70 32, isa, 79 134, isa, 17 134, isa, 70 134, isa, 32 134, isa, 79 131, isa, 17 111, isa, 17 111, isa, 70 96, isa, 17 96, isa, 70 96, measurement_of, 26 96, measurement_of, 94 96, measurement_of, 3 96, measurement_of, 42 96, measurement_of, 32 96, measurement_of, 134 96, measurement_of, 79 79, isa, 17 79, isa, 70 108, isa, 17 108, isa, 70 Question: How are molecular_sequence, nucleotide_sequence, and organism_attribute related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "molecular_sequence", "nucleotide_sequence", "organism_attribute" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "conceptual_entity" ], [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_system", "isa", "conceptual_entity" ], [ "body_system", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "conceptual_entity" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "functional_concept", "isa", "conceptual_entity" ], [ "functional_concept", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "idea_or_concept", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "conceptual_entity" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "conceptual_entity" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "organism_attribute", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "amino_acid_sequence" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "carbohydrate_sequence" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "quantitative_concept", "measurement_of", "molecular_sequence" ], [ "quantitative_concept", "measurement_of", "nucleotide_sequence" ], [ "quantitative_concept", "measurement_of", "spatial_concept" ], [ "spatial_concept", "isa", "conceptual_entity" ], [ "spatial_concept", "isa", "idea_or_concept" ], [ "temporal_concept", "isa", "conceptual_entity" ], [ "temporal_concept", "isa", "idea_or_concept" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 112, alga 64, behavior 17, conceptual_entity 24, daily_or_recreational_activity 107, educational_activity 50, event 42, geographic_area 91, governmental_or_regulatory_activity 10, group_attribute 53, health_care_activity 100, human 70, idea_or_concept 36, machine_activity 27, occupational_activity 111, qualitative_concept 96, quantitative_concept 122, social_behavior 7, therapeutic_or_preventive_procedure src, edge_attr, dst 69, isa, 50 112, interacts_with, 100 64, affects, 122 64, associated_with, 42 64, associated_with, 10 64, isa, 69 64, isa, 50 24, isa, 69 24, isa, 50 107, isa, 69 107, isa, 50 107, isa, 27 91, isa, 69 91, isa, 50 91, isa, 27 53, isa, 69 53, isa, 50 53, isa, 27 100, exhibits, 64 100, exhibits, 122 70, conceptual_part_of, 64 36, isa, 69 36, isa, 50 36, method_of, 7 27, isa, 69 27, isa, 50 111, evaluation_of, 69 111, evaluation_of, 64 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 53 111, evaluation_of, 36 111, evaluation_of, 27 111, evaluation_of, 122 111, evaluation_of, 7 111, isa, 17 111, isa, 70 96, conceptual_part_of, 7 96, isa, 17 96, isa, 70 96, measurement_of, 42 122, affects, 64 122, associated_with, 42 122, associated_with, 10 122, isa, 69 122, isa, 64 122, isa, 50 7, isa, 69 7, isa, 50 7, isa, 53 7, isa, 27 Question: How are alga, human, and therapeutic_or_preventive_procedure related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "alga", "human", "therapeutic_or_preventive_procedure" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "alga", "interacts_with", "human" ], [ "behavior", "affects", "social_behavior" ], [ "behavior", "associated_with", "geographic_area" ], [ "behavior", "associated_with", "group_attribute" ], [ "behavior", "isa", "activity" ], [ "behavior", "isa", "event" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "health_care_activity", "isa", "activity" ], [ "health_care_activity", "isa", "event" ], [ "health_care_activity", "isa", "occupational_activity" ], [ "human", "exhibits", "behavior" ], [ "human", "exhibits", "social_behavior" ], [ "idea_or_concept", "conceptual_part_of", "behavior" ], [ "machine_activity", "isa", "activity" ], [ "machine_activity", "isa", "event" ], [ "machine_activity", "method_of", "therapeutic_or_preventive_procedure" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "qualitative_concept", "evaluation_of", "activity" ], [ "qualitative_concept", "evaluation_of", "behavior" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "health_care_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "social_behavior" ], [ "qualitative_concept", "evaluation_of", "therapeutic_or_preventive_procedure" ], [ "qualitative_concept", "isa", "conceptual_entity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "conceptual_part_of", "therapeutic_or_preventive_procedure" ], [ "quantitative_concept", "isa", "conceptual_entity" ], [ "quantitative_concept", "isa", "idea_or_concept" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "social_behavior", "affects", "behavior" ], [ "social_behavior", "associated_with", "geographic_area" ], [ "social_behavior", "associated_with", "group_attribute" ], [ "social_behavior", "isa", "activity" ], [ "social_behavior", "isa", "behavior" ], [ "social_behavior", "isa", "event" ], [ "therapeutic_or_preventive_procedure", "isa", "activity" ], [ "therapeutic_or_preventive_procedure", "isa", "event" ], [ "therapeutic_or_preventive_procedure", "isa", "health_care_activity" ], [ "therapeutic_or_preventive_procedure", "isa", "occupational_activity" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 9, entity 38, organic_chemical 4, tissue src, edge_attr, dst 38, isa, 9 4, isa, 9 4, produces, 38 Question: For what reason are entity, organic_chemical, and tissue associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "entity", "organic_chemical", "tissue" ], "valid_edges": [ [ "organic_chemical", "isa", "entity" ], [ "tissue", "isa", "entity" ], [ "tissue", "produces", "organic_chemical" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 116, bird 97, injury_or_poisoning 126, physical_object 67, research_device src, edge_attr, dst 116, isa, 126 67, causes, 97 67, isa, 126 Question: For what reason are bird, injury_or_poisoning, and physical_object associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "bird", "injury_or_poisoning", "physical_object" ], "valid_edges": [ [ "bird", "isa", "physical_object" ], [ "research_device", "causes", "injury_or_poisoning" ], [ "research_device", "isa", "physical_object" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 60, biologic_function 100, human 19, molecular_biology_research_technique src, edge_attr, dst 60, affects, 100 60, process_of, 100 19, measures, 60 Question: How are biologic_function, human, and molecular_biology_research_technique related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "biologic_function", "human", "molecular_biology_research_technique" ], "valid_edges": [ [ "biologic_function", "affects", "human" ], [ "biologic_function", "process_of", "human" ], [ "molecular_biology_research_technique", "measures", "biologic_function" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 69, activity 90, antibiotic 48, classification 24, daily_or_recreational_activity 107, educational_activity 91, governmental_or_regulatory_activity 128, health_care_related_organization 55, intellectual_product 113, manufactured_object 31, organization 41, professional_society 111, qualitative_concept 66, regulation_or_law 67, research_device 40, self_help_or_relief_organization src, edge_attr, dst 90, causes, 95 90, complicates, 95 90, treats, 95 48, isa, 55 24, associated_with, 95 24, isa, 69 107, associated_with, 95 107, isa, 69 91, associated_with, 95 91, isa, 69 128, carries_out, 107 128, carries_out, 91 128, isa, 31 128, location_of, 107 128, location_of, 91 128, produces, 48 128, produces, 55 128, produces, 66 113, causes, 95 31, carries_out, 107 31, carries_out, 91 31, location_of, 107 31, location_of, 91 31, produces, 48 31, produces, 55 31, produces, 66 41, carries_out, 107 41, carries_out, 91 41, isa, 31 41, location_of, 107 41, location_of, 91 41, produces, 48 41, produces, 55 41, produces, 66 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 66, affects, 128 66, affects, 31 66, affects, 41 66, affects, 40 66, isa, 55 67, causes, 95 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, isa, 31 40, location_of, 107 40, location_of, 91 40, produces, 48 40, produces, 55 40, produces, 66 Question: How are acquired_abnormality, antibiotic, and self_help_or_relief_organization related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "antibiotic", "self_help_or_relief_organization" ], "valid_edges": [ [ "antibiotic", "causes", "acquired_abnormality" ], [ "antibiotic", "complicates", "acquired_abnormality" ], [ "antibiotic", "treats", "acquired_abnormality" ], [ "classification", "isa", "intellectual_product" ], [ "daily_or_recreational_activity", "associated_with", "acquired_abnormality" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "educational_activity", "associated_with", "acquired_abnormality" ], [ "educational_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "associated_with", "acquired_abnormality" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "isa", "organization" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "produces", "classification" ], [ "health_care_related_organization", "produces", "intellectual_product" ], [ "health_care_related_organization", "produces", "regulation_or_law" ], [ "manufactured_object", "causes", "acquired_abnormality" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "produces", "classification" ], [ "organization", "produces", "intellectual_product" ], [ "organization", "produces", "regulation_or_law" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "isa", "organization" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "produces", "classification" ], [ "professional_society", "produces", "intellectual_product" ], [ "professional_society", "produces", "regulation_or_law" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "regulation_or_law", "affects", "health_care_related_organization" ], [ "regulation_or_law", "affects", "organization" ], [ "regulation_or_law", "affects", "professional_society" ], [ "regulation_or_law", "affects", "self_help_or_relief_organization" ], [ "regulation_or_law", "isa", "intellectual_product" ], [ "research_device", "causes", "acquired_abnormality" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "isa", "organization" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "produces", "classification" ], [ "self_help_or_relief_organization", "produces", "intellectual_product" ], [ "self_help_or_relief_organization", "produces", "regulation_or_law" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 95, acquired_abnormality 116, bird 100, human src, edge_attr, dst 95, affects, 116 95, affects, 100 95, part_of, 116 95, part_of, 100 116, interacts_with, 100 Question: In what context are acquired_abnormality, bird, and human connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "acquired_abnormality", "bird", "human" ], "valid_edges": [ [ "acquired_abnormality", "affects", "bird" ], [ "acquired_abnormality", "affects", "human" ], [ "acquired_abnormality", "part_of", "bird" ], [ "acquired_abnormality", "part_of", "human" ], [ "bird", "interacts_with", "human" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 105, anatomical_abnormality 92, cell 67, research_device src, edge_attr, dst 92, location_of, 105 67, causes, 105 Question: How are anatomical_abnormality, cell, and research_device related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "anatomical_abnormality", "cell", "research_device" ], "valid_edges": [ [ "cell", "location_of", "anatomical_abnormality" ], [ "research_device", "causes", "anatomical_abnormality" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 69, activity 22, anatomical_structure 94, body_location_or_region 103, body_space_or_junction 132, body_system 61, clinical_drug 17, conceptual_entity 24, daily_or_recreational_activity 68, drug_delivery_device 107, educational_activity 88, embryonic_structure 43, environmental_effect_of_humans 50, event 89, finding 75, food 46, fungus 42, geographic_area 91, governmental_or_regulatory_activity 128, health_care_related_organization 45, human_caused_phenomenon_or_process 70, idea_or_concept 97, injury_or_poisoning 113, manufactured_object 59, medical_device 27, occupational_activity 31, organization 41, professional_society 111, qualitative_concept 96, quantitative_concept 67, research_device 40, self_help_or_relief_organization 79, spatial_concept 84, substance src, edge_attr, dst 69, isa, 50 22, location_of, 46 22, part_of, 46 94, adjacent_to, 103 94, conceptual_part_of, 132 94, isa, 17 94, isa, 70 94, isa, 79 94, location_of, 97 103, conceptual_part_of, 132 103, isa, 17 103, isa, 70 103, isa, 79 103, location_of, 97 61, causes, 97 61, isa, 113 24, associated_with, 97 24, isa, 69 24, isa, 50 68, causes, 97 68, contains, 61 68, isa, 113 68, isa, 59 68, prevents, 97 68, treats, 97 107, associated_with, 97 107, isa, 69 107, isa, 50 107, isa, 27 88, isa, 22 88, location_of, 46 88, part_of, 46 43, isa, 50 43, isa, 45 43, result_of, 45 43, result_of, 97 89, associated_with, 97 89, isa, 17 89, manifestation_of, 97 75, causes, 97 75, ingredient_of, 61 75, isa, 84 42, associated_with, 97 42, isa, 17 42, isa, 70 42, isa, 79 91, associated_with, 97 91, isa, 69 91, isa, 50 91, isa, 27 128, carries_out, 107 128, carries_out, 91 128, carries_out, 27 128, location_of, 107 128, location_of, 91 128, location_of, 27 45, isa, 50 45, result_of, 43 45, result_of, 97 97, disrupts, 88 97, isa, 50 97, result_of, 43 97, result_of, 45 113, causes, 97 59, causes, 97 59, isa, 113 59, prevents, 97 59, treats, 97 27, associated_with, 97 27, isa, 69 27, isa, 50 31, carries_out, 107 31, carries_out, 91 31, carries_out, 27 31, location_of, 107 31, location_of, 91 31, location_of, 27 41, carries_out, 107 41, carries_out, 91 41, carries_out, 27 41, location_of, 107 41, location_of, 91 41, location_of, 27 111, evaluation_of, 24 111, evaluation_of, 107 111, evaluation_of, 91 111, evaluation_of, 27 96, measurement_of, 94 96, measurement_of, 103 96, measurement_of, 42 67, causes, 97 67, isa, 113 40, carries_out, 107 40, carries_out, 91 40, carries_out, 27 40, location_of, 107 40, location_of, 91 40, location_of, 27 84, causes, 97 84, ingredient_of, 61 Question: In what context are anatomical_structure, fungus, and injury_or_poisoning connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "anatomical_structure", "fungus", "injury_or_poisoning" ], "valid_edges": [ [ "activity", "isa", "event" ], [ "anatomical_structure", "location_of", "fungus" ], [ "anatomical_structure", "part_of", "fungus" ], [ "body_location_or_region", "adjacent_to", "body_space_or_junction" ], [ "body_location_or_region", "conceptual_part_of", "body_system" ], [ "body_location_or_region", "isa", "conceptual_entity" ], [ "body_location_or_region", "isa", "idea_or_concept" ], [ "body_location_or_region", "isa", "spatial_concept" ], [ "body_location_or_region", "location_of", "injury_or_poisoning" ], [ "body_space_or_junction", "conceptual_part_of", "body_system" ], [ "body_space_or_junction", "isa", "conceptual_entity" ], [ "body_space_or_junction", "isa", "idea_or_concept" ], [ "body_space_or_junction", "isa", "spatial_concept" ], [ "body_space_or_junction", "location_of", "injury_or_poisoning" ], [ "clinical_drug", "causes", "injury_or_poisoning" ], [ "clinical_drug", "isa", "manufactured_object" ], [ "daily_or_recreational_activity", "associated_with", "injury_or_poisoning" ], [ "daily_or_recreational_activity", "isa", "activity" ], [ "daily_or_recreational_activity", "isa", "event" ], [ "drug_delivery_device", "causes", "injury_or_poisoning" ], [ "drug_delivery_device", "contains", "clinical_drug" ], [ "drug_delivery_device", "isa", "manufactured_object" ], [ "drug_delivery_device", "isa", "medical_device" ], [ "drug_delivery_device", "prevents", "injury_or_poisoning" ], [ "drug_delivery_device", "treats", "injury_or_poisoning" ], [ "educational_activity", "associated_with", "injury_or_poisoning" ], [ "educational_activity", "isa", "activity" ], [ "educational_activity", "isa", "event" ], [ "educational_activity", "isa", "occupational_activity" ], [ "embryonic_structure", "isa", "anatomical_structure" ], [ "embryonic_structure", "location_of", "fungus" ], [ "embryonic_structure", "part_of", "fungus" ], [ "environmental_effect_of_humans", "isa", "event" ], [ "environmental_effect_of_humans", "isa", "human_caused_phenomenon_or_process" ], [ "environmental_effect_of_humans", "result_of", "human_caused_phenomenon_or_process" ], [ "environmental_effect_of_humans", "result_of", "injury_or_poisoning" ], [ "finding", "associated_with", "injury_or_poisoning" ], [ "finding", "isa", "conceptual_entity" ], [ "finding", "manifestation_of", "injury_or_poisoning" ], [ "food", "causes", "injury_or_poisoning" ], [ "food", "ingredient_of", "clinical_drug" ], [ "food", "isa", "substance" ], [ "geographic_area", "associated_with", "injury_or_poisoning" ], [ "geographic_area", "isa", "conceptual_entity" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "governmental_or_regulatory_activity", "associated_with", "injury_or_poisoning" ], [ "governmental_or_regulatory_activity", "isa", "activity" ], [ "governmental_or_regulatory_activity", "isa", "event" ], [ "governmental_or_regulatory_activity", "isa", "occupational_activity" ], [ "health_care_related_organization", "carries_out", "educational_activity" ], [ "health_care_related_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "carries_out", "occupational_activity" ], [ "health_care_related_organization", "location_of", "educational_activity" ], [ "health_care_related_organization", "location_of", "governmental_or_regulatory_activity" ], [ "health_care_related_organization", "location_of", "occupational_activity" ], [ "human_caused_phenomenon_or_process", "isa", "event" ], [ "human_caused_phenomenon_or_process", "result_of", "environmental_effect_of_humans" ], [ "human_caused_phenomenon_or_process", "result_of", "injury_or_poisoning" ], [ "injury_or_poisoning", "disrupts", "embryonic_structure" ], [ "injury_or_poisoning", "isa", "event" ], [ "injury_or_poisoning", "result_of", "environmental_effect_of_humans" ], [ "injury_or_poisoning", "result_of", "human_caused_phenomenon_or_process" ], [ "manufactured_object", "causes", "injury_or_poisoning" ], [ "medical_device", "causes", "injury_or_poisoning" ], [ "medical_device", "isa", "manufactured_object" ], [ "medical_device", "prevents", "injury_or_poisoning" ], [ "medical_device", "treats", "injury_or_poisoning" ], [ "occupational_activity", "associated_with", "injury_or_poisoning" ], [ "occupational_activity", "isa", "activity" ], [ "occupational_activity", "isa", "event" ], [ "organization", "carries_out", "educational_activity" ], [ "organization", "carries_out", "governmental_or_regulatory_activity" ], [ "organization", "carries_out", "occupational_activity" ], [ "organization", "location_of", "educational_activity" ], [ "organization", "location_of", "governmental_or_regulatory_activity" ], [ "organization", "location_of", "occupational_activity" ], [ "professional_society", "carries_out", "educational_activity" ], [ "professional_society", "carries_out", "governmental_or_regulatory_activity" ], [ "professional_society", "carries_out", "occupational_activity" ], [ "professional_society", "location_of", "educational_activity" ], [ "professional_society", "location_of", "governmental_or_regulatory_activity" ], [ "professional_society", "location_of", "occupational_activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "educational_activity" ], [ "qualitative_concept", "evaluation_of", "governmental_or_regulatory_activity" ], [ "qualitative_concept", "evaluation_of", "occupational_activity" ], [ "quantitative_concept", "measurement_of", "body_location_or_region" ], [ "quantitative_concept", "measurement_of", "body_space_or_junction" ], [ "quantitative_concept", "measurement_of", "geographic_area" ], [ "research_device", "causes", "injury_or_poisoning" ], [ "research_device", "isa", "manufactured_object" ], [ "self_help_or_relief_organization", "carries_out", "educational_activity" ], [ "self_help_or_relief_organization", "carries_out", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "carries_out", "occupational_activity" ], [ "self_help_or_relief_organization", "location_of", "educational_activity" ], [ "self_help_or_relief_organization", "location_of", "governmental_or_regulatory_activity" ], [ "self_help_or_relief_organization", "location_of", "occupational_activity" ], [ "substance", "causes", "injury_or_poisoning" ], [ "substance", "ingredient_of", "clinical_drug" ] ] }
UMLS
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT β€” no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs β†’ node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26, amino_acid_sequence 3, carbohydrate_sequence 11, cell_or_molecular_dysfunction 24, daily_or_recreational_activity 42, geographic_area 70, idea_or_concept 36, machine_activity 32, molecular_sequence 134, nucleotide_sequence 23, professional_or_occupational_group 111, qualitative_concept 79, spatial_concept src, edge_attr, dst 26, isa, 70 26, isa, 32 26, isa, 79 3, isa, 70 3, isa, 32 3, isa, 79 11, occurs_in, 23 24, associated_with, 11 42, associated_with, 11 42, isa, 70 42, isa, 79 32, isa, 70 32, isa, 79 134, isa, 70 134, isa, 32 134, isa, 79 23, diagnoses, 11 23, performs, 24 23, performs, 36 111, evaluation_of, 24 111, evaluation_of, 36 111, isa, 70 79, isa, 70 Question: For what reason are cell_or_molecular_dysfunction, molecular_sequence, and professional_or_occupational_group associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "cell_or_molecular_dysfunction", "molecular_sequence", "professional_or_occupational_group" ], "valid_edges": [ [ "amino_acid_sequence", "isa", "idea_or_concept" ], [ "amino_acid_sequence", "isa", "molecular_sequence" ], [ "amino_acid_sequence", "isa", "spatial_concept" ], [ "carbohydrate_sequence", "isa", "idea_or_concept" ], [ "carbohydrate_sequence", "isa", "molecular_sequence" ], [ "carbohydrate_sequence", "isa", "spatial_concept" ], [ "cell_or_molecular_dysfunction", "occurs_in", "professional_or_occupational_group" ], [ "daily_or_recreational_activity", "associated_with", "cell_or_molecular_dysfunction" ], [ "geographic_area", "associated_with", "cell_or_molecular_dysfunction" ], [ "geographic_area", "isa", "idea_or_concept" ], [ "geographic_area", "isa", "spatial_concept" ], [ "molecular_sequence", "isa", "idea_or_concept" ], [ "molecular_sequence", "isa", "spatial_concept" ], [ "nucleotide_sequence", "isa", "idea_or_concept" ], [ "nucleotide_sequence", "isa", "molecular_sequence" ], [ "nucleotide_sequence", "isa", "spatial_concept" ], [ "professional_or_occupational_group", "diagnoses", "cell_or_molecular_dysfunction" ], [ "professional_or_occupational_group", "performs", "daily_or_recreational_activity" ], [ "professional_or_occupational_group", "performs", "machine_activity" ], [ "qualitative_concept", "evaluation_of", "daily_or_recreational_activity" ], [ "qualitative_concept", "evaluation_of", "machine_activity" ], [ "qualitative_concept", "isa", "idea_or_concept" ], [ "spatial_concept", "isa", "idea_or_concept" ] ] }