thomaswmitch's picture
Update README.md
2ce5d0a verified
metadata
license: mit
pretty_name: Kalshi Trades (Aug 2023–Aug 2025)
tags:
  - prediction-markets
  - kalshi
  - trades
  - economics
  - finance
  - time-series
language:
  - en
task_categories:
  - other
size_categories:
  - 1M<n<10M

Kalshi Prediction Markets — Trades

High-volume trade-level data from Kalshi prediction markets spanning Aug 2023–Aug 2025, suitable for market microstructure, liquidity, and price-impact analysis.

Rows: ~5.08M trades (single split)
Schema stability: stable
Privacy: public market data, no PII


Dataset Structure

Split

  • train — all trades

Features (columns)

name dtype description
trade_id string Unique trade identifier
ticker string Contract/series symbol at the trade level
market_ticker string Parent market symbol
count int64 Matched quantity (units/contracts)
created_time string UTC timestamp of trade (ISO-8601 string)
yes_price int64 Price for YES leg (integer; typically cents or ticks)
no_price int64 Price for NO leg (integer; typically cents or ticks)
taker_side string Aggressor side for the trade (string enum; e.g., "buy"/"sell" or similar)

Note: yes_price/no_price are stored as integers. If your downstream pipeline expects dollars, convert as needed (e.g., divide by 100 if prices are in cents).


Usage

Load with datasets

from datasets import load_dataset

ds = load_dataset("thomaswmitch/kalshi-prediction-markets-trades")  # update to your repo name if different
print(ds)
print(ds["train"].features)