metadata
license: mit
pretty_name: Kalshi Trades (Aug 2023–Aug 2025)
tags:
- prediction-markets
- kalshi
- trades
- economics
- finance
- time-series
language:
- en
task_categories:
- other
size_categories:
- 1M<n<10M
Kalshi Prediction Markets — Trades
High-volume trade-level data from Kalshi prediction markets spanning Aug 2023–Aug 2025, suitable for market microstructure, liquidity, and price-impact analysis.
Rows: ~5.08M trades (single split)
Schema stability: stable
Privacy: public market data, no PII
Dataset Structure
Split
- train — all trades
Features (columns)
name | dtype | description |
---|---|---|
trade_id |
string | Unique trade identifier |
ticker |
string | Contract/series symbol at the trade level |
market_ticker |
string | Parent market symbol |
count |
int64 | Matched quantity (units/contracts) |
created_time |
string | UTC timestamp of trade (ISO-8601 string) |
yes_price |
int64 | Price for YES leg (integer; typically cents or ticks) |
no_price |
int64 | Price for NO leg (integer; typically cents or ticks) |
taker_side |
string | Aggressor side for the trade (string enum; e.g., "buy" /"sell" or similar) |
Note:
yes_price
/no_price
are stored as integers. If your downstream pipeline expects dollars, convert as needed (e.g., divide by100
if prices are in cents).
Usage
Load with datasets
from datasets import load_dataset
ds = load_dataset("thomaswmitch/kalshi-prediction-markets-trades") # update to your repo name if different
print(ds)
print(ds["train"].features)