File size: 6,679 Bytes
5dbb8a7 facdff9 a1093ca facdff9 a1093ca 929d03f facdff9 6fd7f2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
dataset_info:
features:
- name: analysis_sample_rate
dtype: int32
- name: artist_7digitalid
dtype: int32
- name: artist_familiarity
dtype: float64
- name: artist_hotttnesss
dtype: float64
- name: artist_id
dtype: string
- name: artist_latitude
dtype: float64
- name: artist_location
dtype: string
- name: artist_longitude
dtype: float64
- name: artist_mbid
dtype: string
- name: artist_mbtags
sequence: binary
- name: artist_mbtags_count
sequence: int64
- name: artist_name
dtype: string
- name: artist_playmeid
dtype: int32
- name: artist_terms
sequence: binary
- name: artist_terms_freq
sequence: float64
- name: artist_terms_weight
sequence: float64
- name: audio_md5
dtype: string
- name: bars_confidence
sequence: float64
- name: bars_start
sequence: float64
- name: beats_confidence
sequence: float64
- name: beats_start
sequence: float64
- name: danceability
dtype: float64
- name: duration
dtype: float64
- name: end_of_fade_in
dtype: float64
- name: energy
dtype: float64
- name: key
dtype: int32
- name: key_confidence
dtype: float64
- name: loudness
dtype: float64
- name: mode
dtype: int32
- name: mode_confidence
dtype: float64
- name: num_songs
dtype: int64
- name: release
dtype: string
- name: release_7digitalid
dtype: int32
- name: sections_confidence
sequence: float64
- name: sections_start
sequence: float64
- name: segments_confidence
sequence: float64
- name: segments_loudness_max
sequence: float64
- name: segments_loudness_max_time
sequence: float64
- name: segments_loudness_start
sequence: float64
- name: segments_pitches
sequence:
sequence: float64
- name: segments_start
sequence: float64
- name: segments_timbre
sequence:
sequence: float64
- name: similar_artists
sequence: binary
- name: song_hotttnesss
dtype: float64
- name: song_id
dtype: string
- name: start_of_fade_out
dtype: float64
- name: tatums_confidence
sequence: float64
- name: tatums_start
sequence: float64
- name: tempo
dtype: float64
- name: time_signature
dtype: int32
- name: time_signature_confidence
dtype: float64
- name: title
dtype: string
- name: track_7digitalid
dtype: int32
- name: track_id
dtype: string
- name: year
dtype: int32
splits:
- name: train
num_bytes: 2365768621
num_examples: 10000
download_size: 1041881893
dataset_size: 2365768621
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Million Song Subset (Processed Version)
## Overview
This dataset is a structured extraction of the [Million Song Subset](http://millionsongdataset.com/pages/getting-dataset/#subset), derived from HDF5 files into a tabular format for easier accessibility and analysis.
## Source
- Original dataset: **Million Song Dataset** (LabROSA, Columbia University & The Echo Nest)
- Subset used: **Million Song Subset** (10,000 songs)
- URL: [http://millionsongdataset.com](http://millionsongdataset.com)
## Processing Steps
1. **Extraction**: Used `hdf5_getters.py` to retrieve all available fields.
2. **Parallel Processing**: Optimized extraction with `ProcessPoolExecutor` for speed.
3. **Conversion**: Structured into a Pandas DataFrame.
4. **Storage**: Saved as a Parquet file for efficient usage.
## Format
- **Columns**: Contains all available attributes from the original dataset, including artist metadata, song features, and audio analysis.
- **File Format**: Parquet (optimized for efficient querying & storage).
## Usage
- Load the dataset with Datasets:
```python
from datasets import load_dataset
ds = load_dataset("trojblue/million-song-subset")
```
- Explore and analyze various musical attributes easily.
## License
- **Original License**: Refer to the [Million Song Dataset license](http://millionsongdataset.com/pages/terms-of-use/)
- **Processed Version**: Shared for research and non-commercial purposes.
For more details, visit the [Million Song Dataset website](http://millionsongdataset.com).
## Appendix: Processing Code
The dataset was converted using the following snippet:
```python
import os
import unibox as ub
import pandas as pd
import numpy as np
import h5py
from tqdm import tqdm
from concurrent.futures import ProcessPoolExecutor
# https://github.com/tbertinmahieux/MSongsDB/blob/0c276e289606d5bd6f3991f713e7e9b1d4384e44/PythonSrc/hdf5_getters.py
import hdf5_getters
# Define dataset path
dataset_path = "/lv0/yada/dataproc5/data/MillionSongSubset"
# Function to extract all available fields from an HDF5 file
def extract_song_data(file_path):
"""Extracts all available fields from an HDF5 song file using hdf5_getters."""
song_data = {}
try:
with hdf5_getters.open_h5_file_read(file_path) as h5:
# Get all getter functions from hdf5_getters
getters = [func for func in dir(hdf5_getters) if func.startswith("get_")]
for getter in getters:
try:
# Dynamically call each getter function
value = getattr(hdf5_getters, getter)(h5)
# Optimize conversions
if isinstance(value, np.ndarray):
value = value.tolist()
elif isinstance(value, bytes):
value = value.decode()
# Store in dictionary with a cleaned-up key name
song_data[getter[4:]] = value
except Exception:
continue # Skip errors but don't slow down
except Exception as e:
print(f"Error processing {file_path}: {e}")
return song_data
# Function to process multiple files in parallel
def process_files_in_parallel(h5_files, num_workers=8):
"""Processes multiple .h5 files in parallel."""
all_songs = []
with ProcessPoolExecutor(max_workers=num_workers) as executor:
for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)):
if song_data:
all_songs.append(song_data)
return all_songs
# Find all .h5 files
h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(".h5")]
# Process files in parallel
all_songs = process_files_in_parallel(h5_files, num_workers=24)
# Convert to Pandas DataFrame
df = pd.DataFrame(all_songs)
ub.saves(df, "hf://trojblue/million-song-subset", private=False)
```
|