vLLM Inference Scripts
Ready-to-run UV scripts for GPU-accelerated inference using vLLM.
These scripts use UV's inline script metadata to automatically manage dependencies - just run with uv run
and everything installs automatically!
π Available Scripts
classify-dataset.py
Batch text classification using BERT-style encoder models with vLLM's optimized inference engine.
Note: This script is specifically for encoder-only classification models, not generative LLMs.
Features:
- π High-throughput batch processing
- π·οΈ Automatic label mapping from model config
- π Confidence scores for predictions
- π€ Direct integration with Hugging Face Hub
Usage:
# Local execution (requires GPU)
uv run classify-dataset.py \
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
username/input-dataset \
username/output-dataset \
--inference-column text \
--batch-size 10000
HF Jobs execution:
hfjobs run \
--flavor l4x1 \
--secret HF_TOKEN=$(python -c "from huggingface_hub import HfFolder; print(HfFolder.get_token())") \
vllm/vllm-openai:latest \
/bin/bash -c '
uv run https://huggingface.co/datasets/uv-scripts/vllm/resolve/main/classify-dataset.py \
davanstrien/ModernBERT-base-is-new-arxiv-dataset \
username/input-dataset \
username/output-dataset \
--inference-column text \
--batch-size 100000
' \
--project vllm-classify \
--name my-classification-job
π― Requirements
All scripts in this collection require:
- NVIDIA GPU with CUDA support
- Python 3.10+
- UV package manager (install UV)
π Performance Tips
GPU Selection
- L4 GPU (
--flavor l4x1
): Best value for classification tasks - A10 GPU (
--flavor a10
): Higher memory for larger models - Adjust batch size based on GPU memory
Batch Sizes
- Local GPUs: Start with 10,000 and adjust based on memory
- HF Jobs: Can use larger batches (50,000-100,000) with cloud GPUs
π About vLLM
vLLM is a high-throughput inference engine optimized for:
- Fast model serving with PagedAttention
- Efficient batch processing
- Support for various model architectures
- Seamless integration with Hugging Face models
π§ Technical Details
UV Script Benefits
- Zero setup: Dependencies install automatically on first run
- Reproducible: Locked dependencies ensure consistent behavior
- Self-contained: Everything needed is in the script file
- Direct execution: Run from local files or URLs
Dependencies
Scripts use UV's inline metadata with custom package indexes for vLLM's optimized builds:
# /// script
# requires-python = ">=3.10"
# dependencies = ["vllm", "datasets", "torch", ...]
#
# [[tool.uv.index]]
# url = "https://flashinfer.ai/whl/cu126/torch2.6"
#
# [[tool.uv.index]]
# url = "https://wheels.vllm.ai/nightly"
# ///
Docker Image
For HF Jobs, we use the official vLLM Docker image: vllm/vllm-openai:latest
This image includes:
- Pre-installed CUDA libraries
- vLLM and all dependencies
- UV package manager
- Optimized for GPU inference
π Contributing
Have a vLLM script to share? We welcome contributions that:
- Solve real inference problems
- Include clear documentation
- Follow UV script best practices
- Include HF Jobs examples
π Resources
- Downloads last month
- 49