id
stringlengths 6
57
| question
null | answer
stringlengths 3
13k
|
---|---|---|
scifact-corpus-12827098 | null | Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes.
Despite accumulating evidence suggesting local self-maintenance of tissue macrophages in the steady state, the dogma remains that tissue macrophages derive from monocytes. Using parabiosis and fate-mapping approaches, we confirmed that monocytes do not show significant contribution to tissue macrophages in the steady state. Similarly, we found that after depletion of lung macrophages, the majority of repopulation occurred by stochastic cellular proliferation in situ in a macrophage colony-stimulating factor (M-Csf)- and granulocyte macrophage (GM)-CSF-dependent manner but independently of interleukin-4. We also found that after bone marrow transplantation, host macrophages retained the capacity to expand when the development of donor macrophages was compromised. Expansion of host macrophages was functional and prevented the development of alveolar proteinosis in mice transplanted with GM-Csf-receptor-deficient progenitors. Collectively, these results indicate that tissue-resident macrophages and circulating monocytes should be classified as mononuclear phagocyte lineages that are independently maintained in the steady state. |
scifact-queries-183 | null | Bone marrow cells contribute to adult macrophage compartments. |
scifact-corpus-18340282 | null | Gene–environment interactions in 7610 women with breast cancer: prospective evidence from the Million Women Study
BACKGROUND Information is scarce about the combined effects on breast cancer incidence of low-penetrance genetic susceptibility polymorphisms and environmental factors (reproductive, behavioural, and anthropometric risk factors for breast cancer). To test for evidence of gene-environment interactions, we compared genotypic relative risks for breast cancer across the other risk factors in a large UK prospective study. METHODS We tested gene-environment interactions in 7610 women who developed breast cancer and 10 196 controls without the disease, studying the effects of 12 polymorphisms (FGFR2-rs2981582, TNRC9-rs3803662, 2q35-rs13387042, MAP3K1-rs889312, 8q24-rs13281615, 2p-rs4666451, 5p12-rs981782, CASP8-rs1045485, LSP1-rs3817198, 5q-rs30099, TGFB1-rs1982073, and ATM-rs1800054) in relation to prospectively collected information about ten established environmental risk factors (age at menarche, parity, age at first birth, breastfeeding, menopausal status, age at menopause, use of hormone replacement therapy, body-mass index, height, and alcohol consumption). FINDINGS After allowance for multiple testing none of the 120 comparisons yielded significant evidence of a gene-environment interaction. By contrast with previous suggestions, there was little evidence that the genotypic relative risks were affected by use of hormone replacement therapy, either overall or for oestrogen-receptor-positive disease. Only one of the 12 polymorphisms was correlated with any of the ten other risk factors: carriers of the high-risk C allele of MAP3K1-rs889312 were significantly shorter than non-carriers (mean height 162.4 cm [95% CI 162.1-162.7] vs 163.1 cm [162.9-163.2]; p=0.01 after allowance for multiple testing). INTERPRETATION Risks of breast cancer associated with low-penetrance susceptibility polymorphisms do not vary significantly with these ten established environmental risk factors. FUNDING Cancer Research UK and the UK Medical Research Council. |
scifact-queries-185 | null | Breast cancer development is determined exclusively by genetic factors. |
scifact-corpus-2177022 | null | Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells.
Chemokines orchestrate immune cell trafficking by eliciting either directed or random migration and by activating integrins in order to induce cell adhesion. Analyzing dendritic cell (DC) migration, we showed that these distinct cellular responses depended on the mode of chemokine presentation within tissues. The surface-immobilized form of the chemokine CCL21, the heparan sulfate-anchoring ligand of the CC-chemokine receptor 7 (CCR7), caused random movement of DCs that was confined to the chemokine-presenting surface because it triggered integrin-mediated adhesion. Upon direct contact with CCL21, DCs truncated the anchoring residues of CCL21, thereby releasing it from the solid phase. Soluble CCL21 functionally resembles the second CCR7 ligand, CCL19, which lacks anchoring residues and forms soluble gradients. Both soluble CCR7 ligands triggered chemotactic movement, but not surface adhesion. Adhesive random migration and directional steering cooperate to produce dynamic but spatially restricted locomotion patterns closely resembling the cellular dynamics observed in secondary lymphoid organs. |
scifact-queries-198 | null | CCL19 is absent within dLNs. |
scifact-corpus-13519661 | null | Linkage Disequilibrium Mapping of CHEK2: Common Variation and Breast Cancer Risk
Background Checkpoint kinase 2 (CHEK2) averts cancer development by promoting cell cycle arrest and activating DNA repair in genetically damaged cells. Previous investigation has established a role for the CHEK2 gene in breast cancer aetiology, but studies have largely been limited to the rare 1100delC mutation. Whether common polymorphisms in this gene influence breast cancer risk remains unknown. In this study, we aimed to assess the importance of common CHEK2 variants on population risk for breast cancer by capturing the majority of diversity in the gene using haplotype tagging single nucleotide polymorphisms (tagSNPs). Methods and Findings We analyzed 14 common SNPs spanning 52 kilobases (kb) of the CHEK2 gene in 92 Swedish women. Coverage evaluation indicated that these typed SNPs would efficiently convey association signal also from untyped SNPs in the same region. Six of the 14 SNPs predicted well both the haplotypic and single SNP variations within CHEK2. We genotyped these six tagSNPs in 1,577 postmenopausal breast cancer cases and 1,513 population controls, but found no convincing association between any common CHEK2 haplotype and breast cancer risk. The 1100delC mutation was rare in our Swedish population—0.7% in cases and 0.4% in controls— with a corresponding odds ratio for carriers versus noncarriers of 2.26 (95% confidence interval, 0.99–5.15). Estimates of the population frequency and the odds ratio of 1100delC indicate that our sample is representative of a Northern European population. |
scifact-queries-208 | null | CHEK2 is not associated with breast cancer. |
scifact-corpus-22038539 | null | Caloric restriction delays age-related methylation drift
In mammals, caloric restriction consistently results in extended lifespan. Epigenetic information encoded by DNA methylation is tightly regulated, but shows a striking drift associated with age that includes both gains and losses of DNA methylation at various sites. Here, we report that epigenetic drift is conserved across species and the rate of drift correlates with lifespan when comparing mice, rhesus monkeys, and humans. Twenty-two to 30-year-old rhesus monkeys exposed to 30% caloric restriction since 7-14 years of age showed attenuation of age-related methylation drift compared to ad libitum-fed controls such that their blood methylation age appeared 7 years younger than their chronologic age. Even more pronounced effects were seen in 2.7-3.2-year-old mice exposed to 40% caloric restriction starting at 0.3 years of age. The effects of caloric restriction on DNA methylation were detectable across different tissues and correlated with gene expression. We propose that epigenetic drift is a determinant of lifespan in mammals. Caloric restriction has been shown to increase lifespan in mammals. Here, the authors provide evidence that age-related methylation drift correlates with lifespan and that caloric restriction in mice and rhesus monkeys results in attenuation of age-related methylation drift. |
scifact-queries-212 | null | CR is associated with higher methylation age. |
scifact-corpus-13625993 | null | Assessing the cost effectiveness of using prognostic biomarkers with decision models: case study in prioritising patients waiting for coronary artery surgery
OBJECTIVE To determine the effectiveness and cost effectiveness of using information from circulating biomarkers to inform the prioritisation process of patients with stable angina awaiting coronary artery bypass graft surgery. DESIGN Decision analytical model comparing four prioritisation strategies without biomarkers (no formal prioritisation, two urgency scores, and a risk score) and three strategies based on a risk score using biomarkers: a routinely assessed biomarker (estimated glomerular filtration rate), a novel biomarker (C reactive protein), or both. The order in which to perform coronary artery bypass grafting in a cohort of patients was determined by each prioritisation strategy, and mean lifetime costs and quality adjusted life years (QALYs) were compared. DATA SOURCES Swedish Coronary Angiography and Angioplasty Registry (9935 patients with stable angina awaiting coronary artery bypass grafting and then followed up for cardiovascular events after the procedure for 3.8 years), and meta-analyses of prognostic effects (relative risks) of biomarkers. RESULTS The observed risk of cardiovascular events while on the waiting list for coronary artery bypass grafting was 3 per 10,000 patients per day within the first 90 days (184 events in 9935 patients). Using a cost effectiveness threshold of pound20,000- pound30,000 (euro22,000-euro33,000; $32,000-$48,000) per additional QALY, a prioritisation strategy using a risk score with estimated glomerular filtration rate was the most cost effective strategy (cost per additional QALY was < pound410 compared with the Ontario urgency score). The impact on population health of implementing this strategy was 800 QALYs per 100,000 patients at an additional cost of pound 245,000 to the National Health Service. The prioritisation strategy using a risk score with C reactive protein was associated with lower QALYs and higher costs compared with a risk score using estimated glomerular filtration rate. CONCLUSION Evaluating the cost effectiveness of prognostic biomarkers is important even when effects at an individual level are small. Formal prioritisation of patients awaiting coronary artery bypass grafting using a routinely assessed biomarker (estimated glomerular filtration rate) along with simple, routinely collected clinical information was cost effective. Prioritisation strategies based on the prognostic information conferred by C reactive protein, which is not currently measured in this context, or a combination of C reactive protein and estimated glomerular filtration rate, is unlikely to be cost effective. The widespread practice of using only implicit or informal means of clinically ordering the waiting list may be harmful and should be replaced with formal prioritisation approaches. |
scifact-queries-213 | null | CRP is not predictive of postoperative mortality following Coronary Artery Bypass Graft (CABG) surgery. |
scifact-corpus-21366394 | null | CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma. |
scifact-queries-216 | null | CX3CR1 on the Th2 cells impairs T cell survival |
scifact-corpus-21366394 | null | CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma. |
scifact-queries-217 | null | CX3CR1 on the Th2 cells promotes T cell survival |
scifact-corpus-21366394 | null | CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma. |
scifact-queries-218 | null | CX3CR1 on the Th2 cells promotes airway inflammation. |
scifact-corpus-21366394 | null | CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung
Allergic asthma is a T helper type 2 (T(H)2)-dominated disease of the lung. In people with asthma, a fraction of CD4(+) T cells express the CX3CL1 receptor, CX3CR1, and CX3CL1 expression is increased in airway smooth muscle, lung endothelium and epithelium upon allergen challenge. Here we found that untreated CX3CR1-deficient mice or wild-type (WT) mice treated with CX3CR1-blocking reagents show reduced lung disease upon allergen sensitization and challenge. Transfer of WT CD4(+) T cells into CX3CR1-deficient mice restored the cardinal features of asthma, and CX3CR1-blocking reagents prevented airway inflammation in CX3CR1-deficient recipients injected with WT T(H)2 cells. We found that CX3CR1 signaling promoted T(H)2 survival in the inflamed lungs, and injection of B cell leukemia/lymphoma-2 protein (BCl-2)-transduced CX3CR1-deficient T(H)2 cells into CX3CR1-deficient mice restored asthma. CX3CR1-induced survival was also observed for T(H)1 cells upon airway inflammation but not under homeostatic conditions or upon peripheral inflammation. Therefore, CX3CR1 and CX3CL1 may represent attractive therapeutic targets in asthma. |
scifact-queries-219 | null | CX3CR1 on the Th2 cells suppresses airway inflammation. |
scifact-corpus-3067015 | null | Alcohol Intake and Blood Pressure: A Systematic Review Implementing a Mendelian Randomization Approach
BACKGROUND Alcohol has been reported to be a common and modifiable risk factor for hypertension. However, observational studies are subject to confounding by other behavioural and sociodemographic factors, while clinical trials are difficult to implement and have limited follow-up time. Mendelian randomization can provide robust evidence on the nature of this association by use of a common polymorphism in aldehyde dehydrogenase 2 (ALDH2) as a surrogate for measuring alcohol consumption. ALDH2 encodes a major enzyme involved in alcohol metabolism. Individuals homozygous for the null variant (*2*2) experience adverse symptoms when drinking alcohol and consequently drink considerably less alcohol than wild-type homozygotes (*1*1) or heterozygotes. We hypothesise that this polymorphism may influence the risk of hypertension by affecting alcohol drinking behaviour. METHODS AND FINDINGS We carried out fixed effect meta-analyses of the ALDH2 genotype with blood pressure (five studies, n = 7,658) and hypertension (three studies, n = 4,219) using studies identified via systematic review. In males, we obtained an overall odds ratio of 2.42 (95% confidence interval [CI] 1.66-3.55, p = 4.8 x 10(-6)) for hypertension comparing *1*1 with *2*2 homozygotes and an odds ratio of 1.72 (95% CI 1.17-2.52, p = 0.006) comparing heterozygotes (surrogate for moderate drinkers) with *2*2 homozygotes. Systolic blood pressure was 7.44 mmHg (95% CI 5.39-9.49, p = 1.1 x 10(-12)) greater among *1*1 than among *2*2 homozygotes, and 4.24 mmHg (95% CI 2.18-6.31, p = 0.00005) greater among heterozygotes than among *2*2 homozygotes. CONCLUSIONS These findings support the hypothesis that alcohol intake has a marked effect on blood pressure and the risk of hypertension. |
scifact-queries-230 | null | Carriers of the alcohol aldehyde dehydrogenase deficiency mutation drink less that non-carries. |
scifact-corpus-10536636 | null | Prevalence and Causes of Blindness and Low Vision in Southern Sudan
Background Blindness and low vision are thought to be common in southern Sudan. However, the magnitude and geographical distribution are largely unknown. We aimed to estimate the prevalence of blindness and low vision, identify the main causes of blindness and low vision, and estimate targets for blindness prevention programs in Mankien payam (district), southern Sudan. |
scifact-queries-232 | null | Cataract and trachoma are the primary cause of blindness in Southern Sudan. |
scifact-corpus-4388470 | null | Somatic sex identity is cell-autonomous in the chicken
In the mammalian model of sex determination, embryos are considered to be sexually indifferent until the transient action of a sex-determining gene initiates gonadal differentiation. Although this model is thought to apply to all vertebrates, this has yet to be established. Here we have examined three lateral gynandromorph chickens (a rare, naturally occurring phenomenon in which one side of the animal appears male and the other female) to investigate the sex-determining mechanism in birds. These studies demonstrated that gynandromorph birds are genuine male:female chimaeras, and indicated that male and female avian somatic cells may have an inherent sex identity. To test this hypothesis, we transplanted presumptive mesoderm between embryos of reciprocal sexes to generate embryos containing male:female chimaeric gonads. In contrast to the outcome for mammalian mixed-sex chimaeras, in chicken mixed-sex chimaeras the donor cells were excluded from the functional structures of the host gonad. In an example where female tissue was transplanted into a male host, donor cells contributing to the developing testis retained a female identity and expressed a marker of female function. Our study demonstrates that avian somatic cells possess an inherent sex identity and that, in birds, sexual differentiation is substantively cell autonomous. |
scifact-queries-233 | null | Cell autonomous sex determination in somatic cells does not occur in Galliformes. |
scifact-corpus-4388470 | null | Somatic sex identity is cell-autonomous in the chicken
In the mammalian model of sex determination, embryos are considered to be sexually indifferent until the transient action of a sex-determining gene initiates gonadal differentiation. Although this model is thought to apply to all vertebrates, this has yet to be established. Here we have examined three lateral gynandromorph chickens (a rare, naturally occurring phenomenon in which one side of the animal appears male and the other female) to investigate the sex-determining mechanism in birds. These studies demonstrated that gynandromorph birds are genuine male:female chimaeras, and indicated that male and female avian somatic cells may have an inherent sex identity. To test this hypothesis, we transplanted presumptive mesoderm between embryos of reciprocal sexes to generate embryos containing male:female chimaeric gonads. In contrast to the outcome for mammalian mixed-sex chimaeras, in chicken mixed-sex chimaeras the donor cells were excluded from the functional structures of the host gonad. In an example where female tissue was transplanted into a male host, donor cells contributing to the developing testis retained a female identity and expressed a marker of female function. Our study demonstrates that avian somatic cells possess an inherent sex identity and that, in birds, sexual differentiation is substantively cell autonomous. |
scifact-queries-236 | null | Cell autonomous sex determination in somatic cells occurs in Passeriformes. |
scifact-corpus-4942718 | null | High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis
The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell-cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. |
scifact-queries-237 | null | Cells lacking clpC have a defect in sporulation efficiency in Bacillus subtilis. |
scifact-corpus-2251426 | null | microRNAs: A Safeguard against Turmoil?
Emerging data suggest that microRNAs (miRNAs) are instrumental in a variety of stress responses in addition to their more recognized role in development. Surprisingly, miRNAs, which normally suppress expression of target transcripts, may become activators of expression during stress. This might be partially explained by new interactions of miRNA/Argonaute complexes with RNA-binding proteins that relocate from different subcellular compartments during stress. |
scifact-queries-238 | null | Cells undergoing methionine restriction may activate miRNAs. |
scifact-corpus-14079881 | null | Perceived age as clinically useful biomarker of ageing: cohort study.
OBJECTIVE To determine whether perceived age correlates with survival and important age related phenotypes. DESIGN Follow-up study, with survival of twins determined up to January 2008, by which time 675 (37%) had died. SETTING Population based twin cohort in Denmark. PARTICIPANTS 20 nurses, 10 young men, and 11 older women (assessors); 1826 twins aged >or=70. MAIN OUTCOME MEASURES Assessors: perceived age of twins from photographs. Twins: physical and cognitive tests and molecular biomarker of ageing (leucocyte telomere length). RESULTS For all three groups of assessors, perceived age was significantly associated with survival, even after adjustment for chronological age, sex, and rearing environment. Perceived age was still significantly associated with survival after further adjustment for physical and cognitive functioning. The likelihood that the older looking twin of the pair died first increased with increasing discordance in perceived age within the twin pair-that is, the bigger the difference in perceived age within the pair, the more likely that the older looking twin died first. Twin analyses suggested that common genetic factors influence both perceived age and survival. Perceived age, controlled for chronological age and sex, also correlated significantly with physical and cognitive functioning as well as with leucocyte telomere length. CONCLUSION Perceived age-which is widely used by clinicians as a general indication of a patient's health-is a robust biomarker of ageing that predicts survival among those aged >or=70 and correlates with important functional and molecular ageing phenotypes. |
scifact-queries-239 | null | Cellular aging closely links to an older appearance. |
scifact-corpus-1568684 | null | The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. |
scifact-queries-248 | null | Chenodeosycholic acid treatment increases whole-body energy expenditure. |
scifact-corpus-1568684 | null | The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity.
The interest in brown adipose tissue (BAT) as a target to combat metabolic disease has recently been renewed with the discovery of functional BAT in humans. In rodents, BAT can be activated by bile acids, which activate type 2 iodothyronine deiodinase (D2) in BAT via the G-coupled protein receptor TGR5, resulting in increased oxygen consumption and energy expenditure. Here we examined the effects of oral supplementation of the bile acid chenodeoxycholic acid (CDCA) on human BAT activity. Treatment of 12 healthy female subjects with CDCA for 2 days resulted in increased BAT activity. Whole-body energy expenditure was also increased upon CDCA treatment. In vitro treatment of primary human brown adipocytes derived with CDCA or specific TGR5 agonists increased mitochondrial uncoupling and D2 expression, an effect that was absent in human primary white adipocytes. These findings identify bile acids as a target to activate BAT in humans. |
scifact-queries-249 | null | Chenodeosycholic acid treatment reduces whole-body energy expenditure. |
scifact-corpus-1122279 | null | Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training.
BACKGROUND Endothelium-dependent modulation of coronary tone is impaired in the collateral-dependent coronary microcirculation. We used a porcine model of chronic coronary occlusion and collateral development to evaluate the hypothesis that exercise training enhances endothelium-mediated relaxation and increases endothelial nitric oxide synthase (ecNOS) mRNA levels of collateral-dependent microvasculature. METHODS AND RESULTS Adult female miniature swine were subjected to chronic, progressive ameroid occlusion of the proximal left circumflex coronary artery (LCx); after 2 months, animals were randomly exposed to 16-week exercise-training (EX group; treadmill running) or sedentary (SED group; cage confinement) protocols. After completion of EX or SED programs, coronary arterioles ( approximately 100 microm in diameter) were isolated from collateral-dependent LCx (distal to occlusion) and nonoccluded left anterior descending coronary artery (LAD) regions of each heart. Arterioles were studied by in vitro videomicroscopy or frozen for ecNOS mRNA analysis (RT-PCR techniques). Relaxation to the endothelium-dependent vasodilator bradykinin was decreased (P<0.05) in arterioles isolated from collateral-dependent LCx versus nonoccluded LAD regions of SED animals. Bradykinin-mediated relaxation, however, was not different in LCx versus LAD arterioles isolated from EX animals. Nitroprusside-induced relaxation was unaffected by either chronic occlusion or exercise. Importantly, ecNOS mRNA expression was significantly decreased in arterioles isolated from LCx versus LAD regions of SED animals. After training, ecNOS mRNA expression was not different between LAD and LCx arterioles. CONCLUSIONS These data indicate that exercise training enhances bradykinin-mediated relaxation of collateral-dependent LCx arterioles isolated after chronic coronary occlusion, most likely because of effects on ecNOS mRNA expression and increased production of NO. |
scifact-queries-261 | null | Chronic aerobic exercise alters endothelial function, improving vasodilating mechanisms mediated by NO. |
scifact-corpus-10697096 | null | Vasodilator responses of coronary resistance arteries of exercise-trained pigs.
BACKGROUND The purpose of this study was to test the hypothesis that vasodilator responses of porcine coronary resistance arteries are increased by exercise training. METHODS AND RESULTS Yucatan miniature swine were randomly divided into groups of exercise-trained (ET) and sedentary (SED) control pigs. ET pigs were placed on a progressive treadmill training program lasting 16 to 20 weeks, and SED pigs remained inactive during the same time period. Coronary resistance arteries 64 to 157 microns in diameter were isolated for in vitro evaluation of relaxation responses to the endothelium-independent dilators sodium nitroprusside (1 x 10(-10) to 1 x 10(-4) mol/L) and adenosine (1 x 10(-10) to 1 x 10(-5) mol/L) and to bradykinin (1 x 10(-13) to 3 x 10(-7) mol/L), an endothelium-dependent agent. Relaxation responses to adenosine and sodium nitroprusside were not altered by exercise training. Endothelium-dependent relaxation to bradykinin was enhanced in coronary resistance arteries from ET pigs (IC50: ET, 0.07 +/- 0.02 nmol/L; SED, 1.59 +/- 0.09 nmol/L). To determine whether prostanoids and/or the nitric oxide synthase pathway were involved in the ET-induced changes in bradykinin-induced vasodilation, responses to bradykinin were examined in coronary resistance arteries from both ET and SED pigs in the presence of indomethacin and in the presence of nitro-monomethyl L-arginine (L-NMMA). Both indomethacin and L-NMMA produced significant inhibition of the bradykinin-induced relaxation in vessels from both groups. Despite decreased bradykinin-induced relaxation after indomethacin, bradykinin-induced vasodilation was still enhanced in vessels from the ET group. L-NMMA caused greater inhibition of the bradykinin-induced relaxation in coronary resistance arteries from ET pigs relative to arteries from SED pigs and eliminated the training-induced enhancement of the bradykinin responses. CONCLUSIONS These results suggest that exercise training enhances bradykinin-induced vasodilation through increased endothelium-derived relaxing factor/nitric oxide production by the L-arginine/nitric oxide synthase pathway. |
scifact-queries-261 | null | Chronic aerobic exercise alters endothelial function, improving vasodilating mechanisms mediated by NO. |
scifact-corpus-970012 | null | Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis
Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks. |
scifact-queries-268 | null | Cold exposure increases BAT recruitment. |
scifact-corpus-970012 | null | Cold Exposure Promotes Atherosclerotic Plaque Growth and Instability via UCP1-Dependent Lipolysis
Molecular mechanisms underlying the cold-associated high cardiovascular risk remain unknown. Here, we show that the cold-triggered food-intake-independent lipolysis significantly increased plasma levels of small low-density lipoprotein (LDL) remnants, leading to accelerated development of atherosclerotic lesions in mice. In two genetic mouse knockout models (apolipoprotein E(-/-) [ApoE(-/-)] and LDL receptor(-/-) [Ldlr(-/-)] mice), persistent cold exposure stimulated atherosclerotic plaque growth by increasing lipid deposition. Furthermore, marked increase of inflammatory cells and plaque-associated microvessels were detected in the cold-acclimated ApoE(-/-) and Ldlr(-/-) mice, leading to plaque instability. Deletion of uncoupling protein 1 (UCP1), a key mitochondrial protein involved in thermogenesis in brown adipose tissue (BAT), in the ApoE(-/-) strain completely protected mice from the cold-induced atherosclerotic lesions. Cold acclimation markedly reduced plasma levels of adiponectin, and systemic delivery of adiponectin protected ApoE(-/-) mice from plaque development. These findings provide mechanistic insights on low-temperature-associated cardiovascular risks. |
scifact-queries-269 | null | Cold exposure reduces BAT recruitment. |
scifact-corpus-11614737 | null | Combination varenicline and bupropion SR for tobacco-dependence treatment in cigarette smokers: a randomized trial.
IMPORTANCE Combining pharmacotherapies for tobacco-dependence treatment may increase smoking abstinence. OBJECTIVE To determine efficacy and safety of varenicline and bupropion sustained-release (SR; combination therapy) compared with varenicline (monotherapy) in cigarette smokers. DESIGN, SETTING, AND PARTICIPANTS Randomized, blinded, placebo-controlled multicenter clinical trial with a 12-week treatment period and follow-up through week 52 conducted between October 2009 and April 2013 at 3 midwestern clinical research sites. Five hundred six adult (≥18 years) cigarette smokers were randomly assigned and 315 (62%) completed the study. INTERVENTIONS Twelve weeks of varenicline and bupropion SR or varenicline and placebo. MAIN OUTCOMES AND MEASURES Primary outcome was abstinence rates at week 12, defined as prolonged (no smoking from 2 weeks after the target quit date) abstinence and 7-day point-prevalence (no smoking past 7 days) abstinence. Secondary outcomes were prolonged and point-prevalence smoking abstinence rates at weeks 26 and 52. Outcomes were biochemically confirmed. RESULTS At 12 weeks, 53.0% of the combination therapy group achieved prolonged smoking abstinence and 56.2% achieved 7-day point-prevalence smoking abstinence compared with 43.2% and 48.6% in varenicline monotherapy (odds ratio [OR], 1.49; 95% CI, 1.05-2.12; P = .03 and OR, 1.36; 95% CI, 0.95-1.93; P = .09, respectively). At 26 weeks, 36.6% of the combination therapy group achieved prolonged and 38.2% achieved 7-day point-prevalence smoking abstinence compared with 27.6% and 31.9% in varenicline monotherapy (OR, 1.52; 95% CI, 1.04-2.22; P = .03 and OR, 1.32; 95% CI, 0.91-1.91; P = .14, respectively). At 52 weeks, 30.9% of the combination therapy group achieved prolonged and 36.6% achieved 7-day point-prevalence smoking abstinence compared with 24.5% and 29.2% in varenicline monotherapy (OR, 1.39; 95% CI, 0.93-2.07; P = .11 and OR, 1.40; 95% CI, 0.96-2.05; P = .08, respectively). Participants receiving combination therapy reported more anxiety (7.2% vs 3.1%; P = .04) and depressive symptoms (3.6% vs 0.8%; P = .03). CONCLUSIONS AND RELEVANCE Among cigarette smokers, combined use of varenicline and bupropion, compared with varenicline alone, increased prolonged abstinence but not 7-day point prevalence at 12 and 26 weeks. Neither outcome was significantly different at 52 weeks. Further research is required to determine the role of combination therapy in smoking cessation. TRIAL REGISTRATION clinicaltrials.gov Identifier: http://clinicaltrials.gov/show/NCT00935818. |
scifact-queries-274 | null | Combination nicotine replacement therapies with varenicline or bupropion lead to significantly higher long-term abstinence rates at 52 weeks than varenicline monotherapy. |
scifact-corpus-4961038 | null | Effective Use of PI3K and MEK Inhibitors to Treat Mutant K-Ras G12D and PIK3CA H1047R Murine Lung Cancers
Somatic mutations that activate phosphoinositide 3-kinase (PI3K) have been identified in the p110-alpha catalytic subunit (encoded by PIK3CA). They are most frequently observed in two hotspots: the helical domain (E545K and E542K) and the kinase domain (H1047R). Although the p110-alpha mutants are transforming in vitro, their oncogenic potential has not been assessed in genetically engineered mouse models. Furthermore, clinical trials with PI3K inhibitors have recently been initiated, and it is unknown if their efficacy will be restricted to specific, genetically defined malignancies. In this study, we engineered a mouse model of lung adenocarcinomas initiated and maintained by expression of p110-alpha H1047R. Treatment of these tumors with NVP-BEZ235, a dual pan-PI3K and mammalian target of rapamycin (mTOR) inhibitor in clinical development, led to marked tumor regression as shown by positron emission tomography-computed tomography, magnetic resonance imaging and microscopic examination. In contrast, mouse lung cancers driven by mutant Kras did not substantially respond to single-agent NVP-BEZ235. However, when NVP-BEZ235 was combined with a mitogen-activated protein kinase kinase (MEK) inhibitor, ARRY-142886, there was marked synergy in shrinking these Kras-mutant cancers. These in vivo studies suggest that inhibitors of the PI3K-mTOR pathway may be active in cancers with PIK3CA mutations and, when combined with MEK inhibitors, may effectively treat KRAS mutated lung cancers. |
scifact-queries-275 | null | Combining phosphatidylinositide 3-kinase and MEK 1/2 inhibitors is effective at treating KRAS mutant tumors. |
scifact-corpus-14241418 | null | NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations.
Phosphatidylinositol-3-kinase (PI3K) pathway deregulation is a common event in human cancer, either through inactivation of the tumor suppressor phosphatase and tensin homologue deleted from chromosome 10 or activating mutations of p110-alpha. These hotspot mutations result in oncogenic activity of the enzyme and contribute to therapeutic resistance to the anti-HER2 antibody trastuzumab. The PI3K pathway is, therefore, an attractive target for cancer therapy. We have studied NVP-BEZ235, a dual inhibitor of the PI3K and the downstream mammalian target of rapamycin (mTOR). NVP-BEZ235 inhibited the activation of the downstream effectors Akt, S6 ribosomal protein, and 4EBP1 in breast cancer cells. The antiproliferative activity of NVP-BEZ235 was superior to the allosteric selective mTOR complex inhibitor everolimus in a panel of 21 cancer cell lines of different origin and mutation status. The described Akt activation due to mTOR inhibition was prevented by higher doses of NVP-BEZ235. NVP-BEZ235 reversed the hyperactivation of the PI3K/mTOR pathway caused by the oncogenic mutations of p110-alpha, E545K, and H1047R, and inhibited the proliferation of HER2-amplified BT474 cells exogenously expressing these mutations that render them resistant to trastuzumab. In trastuzumab-resistant BT474 H1047R breast cancer xenografts, NVP-BEZ235 inhibited PI3K signaling and had potent antitumor activity. In treated animals, there was complete inhibition of PI3K signaling in the skin at pharmacologically active doses, suggesting that skin may serve as surrogate tissue for pharmacodynamic studies. In summary, NVP-BEZ235 inhibits the PI3K/mTOR axis and results in antiproliferative and antitumoral activity in cancer cells with both wild-type and mutated p110-alpha. |
scifact-queries-275 | null | Combining phosphatidylinositide 3-kinase and MEK 1/2 inhibitors is effective at treating KRAS mutant tumors. |
scifact-corpus-14819804 | null | Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance.
The novel phosphatidylinositol-3-kinase (PI3K) inhibitor PX-866 was tested against 13 experimental human tumor xenografts derived from cell lines of various tissue origins. Mutant PI3K (PIK3CA) and loss of PTEN activity were sufficient, but not necessary, as predictors of sensitivity to the antitumor activity of the PI3K inhibitor PX-866 in the presence of wild-type Ras, whereas mutant oncogenic Ras was a dominant determinant of resistance, even in tumors with coexisting mutations in PIK3CA. The level of activation of PI3K signaling measured by tumor phosphorylated Ser(473)-Akt was insufficient to predict in vivo antitumor response to PX-866. Reverse-phase protein array revealed that the Ras-dependent downstream targets c-Myc and cyclin B were elevated in cell lines resistant to PX-866 in vivo. Studies using an H-Ras construct to constitutively and preferentially activate the three best-defined downstream targets of Ras, i.e., Raf, RalGDS, and PI3K, showed that mutant Ras mediates resistance through its ability to use multiple pathways for tumorigenesis. The identification of Ras and downstream signaling pathways driving resistance to PI3K inhibition might serve as an important guide for patient selection as inhibitors enter clinical trials and for the development of rational combinations with other molecularly targeted agents. |
scifact-queries-275 | null | Combining phosphatidylinositide 3-kinase and MEK 1/2 inhibitors is effective at treating KRAS mutant tumors. |
scifact-corpus-14376683 | null | Properties of Commelina yellow mottle virus's complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus.
The non-enveloped bacilliform viruses are the second group of plant viruses known to possess a genome consisting of circular double-stranded DNA. We have characterized the viral transcript and determined the complete sequence of the genome of Commelina mellow mottle virus (CoYMV), a member of this group. Analysis of the viral transcript indicates that the virus encodes a single terminally-redundant genome-length plus 120 nucleotide transcript. A fraction of the transcripts is polyadenylated, although the majority of the transcript is not polyadenylated. Analysis of the genome sequence indicates that the genome is 7489 bp in size and that the transcribed strand contains three open reading frames capable of encoding proteins of 23, 15 and 216 kd. The function of the 25 and 15 kd proteins is unknown. Similarities between the 216 kd polypeptide and the cauliflower mosaic virus coat protein and protease/reverse transcriptase polyprotein suggest that the 216 kd polypeptide is a polyprotein that is proteolytically processed to yield the virion coat protein, a protease, and replicase (reverse transcriptase and ribonuclease H). Each strand of the CoYMV genome is interrupted by site-specific discontinuities. The locations of the 5'-ends of these discontinuities, and the presence and location of a region on the CoYMV transcript capable of annealing with the 3'-end of cytosolic initiator methionine tRNA are consistent with replication by reverse transcription. We have demonstrated that a construct containing 1.3 CoYMV genomes is infective when introduced into Commelina diffusa, the host for CoYMV, using Agrobacterium-mediated infection. |
scifact-queries-279 | null | Commelina yellow mottle virus' (ComYMV) genome consists of 7489 baise pairs. |
scifact-corpus-10874408 | null | Mapping Meiotic Single-Strand DNA Reveals a New Landscape of DNA Double-Strand Breaks in Saccharomyces cerevisiae
DNA double-strand breaks (DSBs), which are formed by the Spo11 protein, initiate meiotic recombination. Previous DSB-mapping studies have used rad50S or sae2Δ mutants, which are defective in break processing, to accumulate Spo11-linked DSBs, and report large (≥ 50 kb) “DSB-hot” regions that are separated by “DSB-cold” domains of similar size. Substantial recombination occurs in some DSB-cold regions, suggesting that DSB patterns are not normal in rad50S or sae2Δ mutants. We therefore developed a novel method to map genome-wide, single-strand DNA (ssDNA)–associated DSBs that accumulate in processing-capable, repair-defective dmc1Δ and dmc1Δ rad51Δ mutants. DSBs were observed at known hot spots, but also in most previously identified “DSB-cold” regions, including near centromeres and telomeres. Although approximately 40% of the genome is DSB-cold in rad50S mutants, analysis of meiotic ssDNA from dmc1Δ shows that most of these regions have substantial DSB activity. Southern blot assays of DSBs in selected regions in dmc1Δ, rad50S, and wild-type cells confirm these findings. Thus, DSBs are distributed much more uniformly than was previously believed. Comparisons of DSB signals in dmc1, dmc1 rad51, and dmc1 spo11 mutant strains identify Dmc1 as a critical strand-exchange activity genome-wide, and confirm previous conclusions that Spo11-induced lesions initiate all meiotic recombination. |
scifact-queries-294 | null | Crossover hot spots are not found within gene promoters in Saccharomyces cerevisiae. |
scifact-corpus-20310709 | null | The Transcription Factor T-bet Regulates Intestinal Inflammation Mediated by Interleukin-7 Receptor+ Innate Lymphoid Cells
Mice lacking the transcription factor T-bet in the innate immune system develop microbiota-dependent colitis. Here, we show that interleukin-17A (IL-17A)-producing IL-7Rα(+) innate lymphoid cells (ILCs) were potent promoters of disease in Tbx21(-/-)Rag2(-/-) ulcerative colitis (TRUC) mice. TNF-α produced by CD103(-)CD11b(+) dendritic cells synergized with IL-23 to drive IL-17A production by ILCs, demonstrating a previously unrecognized layer of cellular crosstalk between dendritic cells and ILCs. We have identified Helicobacter typhlonius as a key disease trigger driving excess TNF-α production and promoting colitis in TRUC mice. Crucially, T-bet also suppressed the expression of IL-7R, a key molecule involved in controlling intestinal ILC homeostasis. The importance of IL-7R signaling in TRUC disease was highlighted by the dramatic reduction in intestinal ILCs and attenuated colitis following IL-7R blockade. Taken together, these data demonstrate the mechanism by which T-bet regulates the complex interplay between mucosal dendritic cells, ILCs, and the intestinal microbiota. |
scifact-queries-295 | null | Crosstalk between dendritic cells (DCs) and innate lymphoid cells (ILCs) is important in the regulation of intestinal homeostasis. |
scifact-corpus-39381118 | null | At the gates of death.
Apoptosis that proceeds via the mitochondrial pathway involves mitochondrial outer membrane permeabilization (MOMP), responsible for the release of cytochrome c and other proteins of the mitochondrial intermembrane space. This essential step is controlled and mediated by proteins of the Bcl-2 family. The proapoptotic proteins Bax and Bak are required for MOMP, while the antiapoptotic Bcl-2 proteins, including Bcl-2, Bcl-xL, Mcl-1, and others, prevent MOMP. Different proapoptotic BH3-only proteins act to interfere with the function of the antiapoptotic Bcl-2 members and/or activate Bax and Bak. Here, we discuss an emerging view, proposed by Certo et al. in this issue of Cancer Cell, on how these interactions result in MOMP and apoptosis. |
scifact-queries-298 | null | Cytochrome c is released from the mitochondrial intermembrane space to cytosol during apoptosis. |
scifact-corpus-3553087 | null | Mitochondrial iron chelation ameliorates cigarette-smoke induced bronchitis and emphysema in mice
Chronic obstructive pulmonary disease (COPD) is linked to both cigarette smoking and genetic determinants. We have previously identified iron-responsive element-binding protein 2 (IRP2) as an important COPD susceptibility gene and have shown that IRP2 protein is increased in the lungs of individuals with COPD. Here we demonstrate that mice deficient in Irp2 were protected from cigarette smoke (CS)-induced experimental COPD. By integrating RNA immunoprecipitation followed by sequencing (RIP-seq), RNA sequencing (RNA-seq), and gene expression and functional enrichment clustering analysis, we identified Irp2 as a regulator of mitochondrial function in the lungs of mice. Irp2 increased mitochondrial iron loading and levels of cytochrome c oxidase (COX), which led to mitochondrial dysfunction and subsequent experimental COPD. Frataxin-deficient mice, which had higher mitochondrial iron loading, showed impaired airway mucociliary clearance (MCC) and higher pulmonary inflammation at baseline, whereas mice deficient in the synthesis of cytochrome c oxidase, which have reduced COX, were protected from CS-induced pulmonary inflammation and impairment of MCC. Mice treated with a mitochondrial iron chelator or mice fed a low-iron diet were protected from CS-induced COPD. Mitochondrial iron chelation also alleviated CS-induced impairment of MCC, CS-induced pulmonary inflammation and CS-associated lung injury in mice with established COPD, suggesting a critical functional role and potential therapeutic intervention for the mitochondrial-iron axis in COPD. |
scifact-queries-300 | null | Cytosolic proteins bind to iron-responsive elements on mRNAs coding for DMT1. Cytosolic proteins bind to iron-responsive elements on mRNAs coding for proteins involved in iron uptake. |
scifact-corpus-4388470 | null | Somatic sex identity is cell-autonomous in the chicken
In the mammalian model of sex determination, embryos are considered to be sexually indifferent until the transient action of a sex-determining gene initiates gonadal differentiation. Although this model is thought to apply to all vertebrates, this has yet to be established. Here we have examined three lateral gynandromorph chickens (a rare, naturally occurring phenomenon in which one side of the animal appears male and the other female) to investigate the sex-determining mechanism in birds. These studies demonstrated that gynandromorph birds are genuine male:female chimaeras, and indicated that male and female avian somatic cells may have an inherent sex identity. To test this hypothesis, we transplanted presumptive mesoderm between embryos of reciprocal sexes to generate embryos containing male:female chimaeric gonads. In contrast to the outcome for mammalian mixed-sex chimaeras, in chicken mixed-sex chimaeras the donor cells were excluded from the functional structures of the host gonad. In an example where female tissue was transplanted into a male host, donor cells contributing to the developing testis retained a female identity and expressed a marker of female function. Our study demonstrates that avian somatic cells possess an inherent sex identity and that, in birds, sexual differentiation is substantively cell autonomous. |
scifact-queries-303 | null | DMRT1 is a sex-determining gene that is epigenetically regulated by the MHM region. |
scifact-corpus-6173523 | null | A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4.
IMPORTANCE Identification of the bacterium responsible for an outbreak can aid in disease management. However, traditional culture-based diagnosis can be difficult, particularly if no specific diagnostic test is available for an outbreak strain. OBJECTIVE To explore the potential of metagenomics, which is the direct sequencing of DNA extracted from microbiologically complex samples, as an open-ended clinical discovery platform capable of identifying and characterizing bacterial strains from an outbreak without laboratory culture. DESIGN, SETTING, AND PATIENTS In a retrospective investigation, 45 samples were selected from fecal specimens obtained from patients with diarrhea during the 2011 outbreak of Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany. Samples were subjected to high-throughput sequencing (August-September 2012), followed by a 3-phase analysis (November 2012-February 2013). In phase 1, a de novo assembly approach was developed to obtain a draft genome of the outbreak strain. In phase 2, the depth of coverage of the outbreak strain genome was determined in each sample. In phase 3, sequences from each sample were compared with sequences from known bacteria to identify pathogens other than the outbreak strain. MAIN OUTCOMES AND MEASURES The recovery of genome sequence data for the purposes of identification and characterization of the outbreak strain and other pathogens from fecal samples. RESULTS During phase 1, a draft genome of the STEC outbreak strain was obtained. During phase 2, the outbreak strain genome was recovered from 10 samples at greater than 10-fold coverage and from 26 samples at greater than 1-fold coverage. Sequences from the Shiga-toxin genes were detected in 27 of 40 STEC-positive samples (67%). In phase 3, sequences from Clostridium difficile, Campylobacter jejuni, Campylobacter concisus, and Salmonella enterica were recovered. CONCLUSIONS AND RELEVANCE These results suggest the potential of metagenomics as a culture-independent approach for the identification of bacterial pathogens during an outbreak of diarrheal disease. Challenges include improving diagnostic sensitivity, speeding up and simplifying workflows, and reducing costs. |
scifact-queries-312 | null | De novo assembly of sequence data has more specific contigs than unassembled sequence data. |
scifact-corpus-4347374 | null | Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts
Viral replication usually requires that innate intracellular lines of defence be overcome, a task usually accomplished by specialized viral gene products. The virion infectivity factor (Vif) protein of human immunodeficiency virus (HIV) is required during the late stages of viral production to counter the antiviral activity of APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; also known as CEM15), a protein expressed notably in human T lymphocytes. When produced in the presence of APOBEC3G, vif-defective virus is non-infectious. APOBEC3G is closely related to APOBEC1, the central component of an RNA-editing complex that deaminates a cytosine residue in apoB messenger RNA. APOBEC family members also have potent DNA mutator activity through dC deamination; however, whether the editing potential of APOBEC3G has any relevance to HIV inhibition is unknown. Here, we demonstrate that it does, as APOBEC3G exerts its antiviral effect during reverse transcription to trigger G-to-A hypermutation in the nascent retroviral DNA. We also find that APOBEC3G can act on a broad range of retroviruses in addition to HIV, suggesting that hypermutation by editing is a general innate defence mechanism against this important group of pathogens. |
scifact-queries-314 | null | Deamination of cytidine to uridine on the minus strand of viral DNA results in catastrophic G-to-A mutations in the viral genome. |
scifact-corpus-2014909 | null | Oncogenic mTOR signaling recruits myeloid-derived suppressor cells to promote tumor initiation
Myeloid-derived suppressor cells (MDSCs) play critical roles in primary and metastatic cancer progression. MDSC regulation is widely variable even among patients harbouring the same type of malignancy, and the mechanisms governing such heterogeneity are largely unknown. Here, integrating human tumour genomics and syngeneic mammary tumour models, we demonstrate that mTOR signalling in cancer cells dictates a mammary tumour's ability to stimulate MDSC accumulation through regulating G-CSF. Inhibiting this pathway or its activators (for example, FGFR) impairs tumour progression, which is partially rescued by restoring MDSCs or G-CSF. Tumour-initiating cells (TICs) exhibit elevated G-CSF. MDSCs reciprocally increase TIC frequency through activating Notch in tumour cells, forming a feedforward loop. Analyses of primary breast cancers and patient-derived xenografts corroborate these mechanisms in patients. These findings establish a non-canonical oncogenic role of mTOR signalling in recruiting pro-tumorigenic MDSCs and show how defined cancer subsets may evolve to promote and depend on a distinct immune microenvironment. |
scifact-queries-324 | null | Deleting Raptor reduces G-CSF levels. |
scifact-corpus-17997584 | null | Integrin αvβ8-Mediated TGF-β Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation
Regulatory T (Treg) cells play a pivotal role in suppressing self-harmful T cell responses, but how Treg cells mediate suppression to maintain immune homeostasis and limit responses during inflammation is unclear. Here we show that effector Treg cells express high amounts of the integrin αvβ8, which enables them to activate latent transforming growth factor-β (TGF-β). Treg-cell-specific deletion of integrin αvβ8 did not result in a spontaneous inflammatory phenotype, suggesting that this pathway is not important in Treg-cell-mediated maintenance of immune homeostasis. However, Treg cells lacking expression of integrin αvβ8 were unable to suppress pathogenic T cell responses during active inflammation. Thus, our results identify a mechanism by which Treg cells suppress exuberant immune responses, highlighting a key role for effector Treg-cell-mediated activation of latent TGF-β in suppression of self-harmful T cell responses during active inflammation. |
scifact-queries-327 | null | Deletion of αvβ8 does not result in a spontaneous inflammatory phenotype. |
scifact-corpus-23349986 | null | Dexamethasone and risk of nausea and vomiting and postoperative bleeding after tonsillectomy in children: a randomized trial.
CONTEXT Dexamethasone is widely used to prevent postoperative nausea and vomiting (PONV) in pediatric tonsillectomy. OBJECTIVE To assess whether dexamethasone dose-dependently reduces the risk of PONV at 24 hours after tonsillectomy. DESIGN, SETTING, AND PATIENTS Randomized placebo-controlled trial conducted among 215 children undergoing elective tonsillectomy at a major public teaching hospital in Switzerland from February 2005 to December 2007. INTERVENTIONS Children were randomly assigned to receive dexamethasone (0.05, 0.15, or 0.5 mg/kg) or placebo intravenously after induction of anesthesia. Acetaminophen-codeine and ibuprofen were given as postoperative analgesia. Follow-up continued until the 10th postoperative day. MAIN OUTCOME MEASURES The primary end point was prevention of PONV at 24 hours; secondary end points were decrease in the need for ibuprofen at 24 hours and evaluation of adverse effects. RESULTS At 24 hours, 24 of 54 participants who received placebo (44%; 95% confidence interval [CI], 31%-59%) had experienced PONV compared with 20 of 53 (38%; 95% CI, 25%-52%), 13 of 54 (24%; 95% CI, 13%-38%), and 6 of 52 (12%; 95% CI, 4%-23%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P<.001 for linear trend). Children who received dexamethasone received significantly less ibuprofen. There were 26 postoperative bleeding episodes in 22 children. Two of 53 (4%; 95% CI, 0.5%-13%) children who received placebo had bleeding compared with 6 of 53 (11%; 95% CI, 4%-23%), 2 of 51 (4%; 95% CI, 0.5%-13%), and 12 of 50 (24%; 95% CI, 13%-38%) who received dexamethasone at 0.05, 0.15, and 0.5 mg/kg, respectively (P = .003). Dexamethasone, 0.5 mg/kg, was associated with the highest bleeding risk (adjusted relative risk, 6.80; 95% CI, 1.77-16.5). Eight children had to undergo emergency reoperation because of bleeding, all of whom had received dexamethasone. The trial was stopped early for safety reasons. CONCLUSION In this study of children undergoing tonsillectomy, dexamethasone decreased the risk of PONV dose dependently but was associated with an increased risk of postoperative bleeding. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00403806. |
scifact-queries-338 | null | Dexamethasone decreases risk of postoperative bleeding. |
scifact-corpus-7873737 | null | Platelet glycoprotein IIb/IIIa inhibitors reduce mortality in diabetic patients with non-ST-segment-elevation acute coronary syndromes.
BACKGROUND Diabetes mellitus is a major risk factor for adverse outcomes after acute coronary syndromes (ACS). Because this disease may be associated with increased platelet aggregation, we investigated whether diabetic patients with ACS derive particular benefit from platelet glycoprotein (GP) IIb/IIIa receptor inhibition. METHODS AND RESULTS We performed a meta-analysis of the diabetic populations enrolled in the 6 large-scale platelet GP IIb/IIIa inhibitor ACS trials: PRISM, PRISM-PLUS, PARAGON A, PARAGON B, PURSUIT, and GUSTO IV. Among 6458 diabetic patients, platelet GP IIb/IIIa inhibition was associated with a significant mortality reduction at 30 days, from 6.2% to 4.6% (OR 0.74; 95% CI 0.59 to 0.92; P=0.007). Conversely, 23 072 nondiabetic patients had no survival benefit (3.0% versus 3.0%). The interaction between platelet GP IIb/IIIa inhibition and diabetic status was statistically significant (P=0.036). Among 1279 diabetic patients undergoing percutaneous coronary intervention (PCI) during index hospitalization, the use of these agents was associated with a mortality reduction at 30 days from 4.0% to 1.2% (OR 0.30; 95% CI 0.14 to 0.69; P=0.002). CONCLUSIONS This meta-analysis, including the entire large-scale trial experience of intravenous platelet GP IIb/IIIa inhibitors for the medical management of non-ST-segment-elevation ACS, shows that these agents may significantly reduce mortality at 30 days in diabetic patients. Although not based on a randomized assessment, the survival benefit appears to be of greater magnitude in patients undergoing PCI. Therefore, the use of platelet GP IIb/IIIa inhibitors should be strongly considered in diabetic patients with ACS. |
scifact-queries-343 | null | Diabetic patients with acute coronary syndrome experience increased short-term and long-term risk for bleeding events. |
scifact-corpus-5884524 | null | Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry.
BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. METHODS AND RESULTS Prospectively collected data from 6 different countries in the Organization to Assess Strategies for Ischemic Syndromes (OASIS) registry were analyzed to determine the 2-year prognosis of diabetic and nondiabetic patients who were hospitalized with unstable angina or non-Q-wave myocardial infarction. Overall, 1718 of 8013 registry patients (21%) had diabetes. Diabetic patients had a higher rate of coronary bypass surgery than nondiabetic patients (23% versus 20%, P:<0.001) but had similar rates of catheterization and angioplasty. Diabetes independently predicted mortality (relative risk [RR], 1.57; 95% CI, 1.38 to 1.81; P:<0.001), as well as cardiovascular death, new myocardial infarction, stroke, and new congestive heart failure. Moreover, compared with their nondiabetic counterparts, women had a significantly higher risk than men (RR, 1.98; 95% CI, 1.60 to 2.44; and RR, 1.28; 95% CI, 1.06 to 1.56, respectively). Interestingly, diabetic patients without prior cardiovascular disease had the same event rates for all outcomes as nondiabetic patients with previous vascular disease. CONCLUSIONS Hospitalization for unstable angina or non-Q-wave myocardial infarction predicts a high 2-year morbidity and mortality; this is especially evident for patients with diabetes. Diabetic patients with no previous cardiovascular disease have the same long-term morbidity and mortality as nondiabetic patients with established cardiovascular disease after hospitalization for unstable coronary artery disease. |
scifact-queries-343 | null | Diabetic patients with acute coronary syndrome experience increased short-term and long-term risk for bleeding events. |
scifact-corpus-16927286 | null | Large-Scale Movements of IF3 and tRNA during Bacterial Translation Initiation
In bacterial translational initiation, three initiation factors (IFs 1-3) enable the selection of initiator tRNA and the start codon in the P site of the 30S ribosomal subunit. Here, we report 11 single-particle cryo-electron microscopy (cryoEM) reconstructions of the complex of bacterial 30S subunit with initiator tRNA, mRNA, and IFs 1-3, representing different steps along the initiation pathway. IF1 provides key anchoring points for IF2 and IF3, thereby enhancing their activities. IF2 positions a domain in an extended conformation appropriate for capturing the formylmethionyl moiety charged on tRNA. IF3 and tRNA undergo large conformational changes to facilitate the accommodation of the formylmethionyl-tRNA (fMet-tRNA(fMet)) into the P site for start codon recognition. |
scifact-queries-350 | null | Discrimination between the initiator and elongation tRNAs depends on the translation initiation factor IF3. |
scifact-corpus-8774475 | null | Deregulation of Scribble Promotes Mammary Tumorigenesis and Reveals a Role for Cell Polarity in Carcinoma
Loss of cell polarity proteins such as Scribble induces neoplasia in Drosophila by promoting uncontrolled proliferation. In mammals, the role that polarity proteins play during tumorigenesis is not well understood. Here, we demonstrate that depletion of Scribble in mammary epithelia disrupts cell polarity, blocks three-dimensional morphogenesis, inhibits apoptosis, and induces dysplasia in vivo that progress to tumors after long latency. Loss of Scribble cooperates with oncogenes such as c-myc to transform epithelial cells and induce tumors in vivo by blocking activation of an apoptosis pathway. Like depletion, mislocalization of Scribble from cell-cell junction was sufficient to promote cell transformation. Interestingly, spontaneous mammary tumors in mice and humans possess both downregulated and mislocalized Scribble. Thus, we demonstrate that scribble inhibits breast cancer formation and that deregulation of polarity pathways promotes dysplastic and neoplastic growth in mammals by disrupting morphogenesis and inhibiting cell death. |
scifact-queries-354 | null | Downregulation and mislocalization of Scribble prevents cell transformation and mammary tumorigenesis. |
scifact-corpus-38587347 | null | Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses.
Humoral immune responses depend on B cells encountering antigen, interacting with helper T cells, proliferating and differentiating into low-affinity plasma cells or, after organizing into a germinal center (GC), high-affinity plasma cells and memory B cells. Remarkably, each of these events occurs in association with distinct stromal cells in separate subcompartments of the lymphoid tissue. B cells must migrate from niche to niche in a rapid and highly regulated manner to successfully mount a response. The chemokine, CXCL13, plays a central role in guiding B cells to follicles whereas T-zone chemokines guide activated B cells to the T zone. Sphingosine-1-phosphate (S1P) promotes cell egress from the tissue, as well as marginal-zone B-cell positioning in the spleen. Recent studies have identified a role for the orphan receptor, EBV-induced molecule 2 (EBI2; GPR183), in guiding activated B cells to inter and outer follicular niche(s) and down-regulation of this receptor is essential for organizing cells into GCs. In this review, we discuss current understanding of the roles played by chemokines, S1P and EBI2 in the migration events that underlie humoral immune responses. |
scifact-queries-362 | null | During the primary early antibody response activated B cells migrate toward the inner-and outer paracortical areas where oxysterol accumulation is generated by stromal cells. |
scifact-corpus-19005293 | null | Memory CD4+ T cells induce innate responses independently of pathogen
Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens. |
scifact-queries-380 | null | Enhanced early production of inflammatory chemokines improves viral control in the lung. |
scifact-corpus-13770184 | null | Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015
BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. FUNDING Bill & Melinda Gates Foundation. |
scifact-queries-384 | null | Epidemiological disease burden from noncommunicable diseases is more prevalent in low economic settings. |
scifact-corpus-9955779 | null | Epigenetic Therapy Ties MYC Depletion to Reversing Immune Evasion and Treating Lung Cancer
Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/β-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC. |
scifact-queries-385 | null | Epigenetic modulating agents (EMAs) modulate antitumor immune response in a cancer model system. |
scifact-corpus-9767444 | null | Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden.
Ovarian cancer is the most lethal of all gynecological cancers, and there is an urgent unmet need to develop new therapies. Epithelial ovarian cancer (EOC) is characterized by an immune suppressive microenvironment, and response of ovarian cancers to immune therapies has thus far been disappointing. We now find, in a mouse model of EOC, that clinically relevant doses of DNA methyltransferase and histone deacetylase inhibitors (DNMTi and HDACi, respectively) reduce the immune suppressive microenvironment through type I IFN signaling and improve response to immune checkpoint therapy. These data indicate that the type I IFN response is required for effective in vivo antitumorigenic actions of the DNMTi 5-azacytidine (AZA). Through type I IFN signaling, AZA increases the numbers of CD45+ immune cells and the percentage of active CD8+ T and natural killer (NK) cells in the tumor microenvironment, while reducing tumor burden and extending survival. AZA also increases viral defense gene expression in both tumor and immune cells, and reduces the percentage of macrophages and myeloid-derived suppressor cells in the tumor microenvironment. The addition of an HDACi to AZA enhances the modulation of the immune microenvironment, specifically increasing T and NK cell activation and reducing macrophages over AZA treatment alone, while further increasing the survival of the mice. Finally, a triple combination of DNMTi/HDACi plus the immune checkpoint inhibitor α-PD-1 provides the best antitumor effect and longest overall survival, and may be an attractive candidate for future clinical trials in ovarian cancer. |
scifact-queries-385 | null | Epigenetic modulating agents (EMAs) modulate antitumor immune response in a cancer model system. |
scifact-corpus-16495649 | null | Ethnographic study of incidence and severity of intravenous drug errors.
OBJECTIVES To determine the incidence and clinical importance of errors in the preparation and administration of intravenous drugs and the stages of the process in which errors occur. DESIGN Prospective ethnographic study using disguised observation. PARTICIPANTS Nurses who prepared and administered intravenous drugs. SETTING 10 wards in a teaching and non-teaching hospital in the United Kingdom. MAIN OUTCOME MEASURES Number, type, and clinical importance of errors. RESULTS 249 errors were identified. At least one error occurred in 212 out of 430 intravenous drug doses (49%, 95% confidence interval 45% to 54%). Three doses (1%) had potentially severe errors, 126 (29%) potentially moderate errors, and 83 (19%) potentially minor errors. Most errors occurred when giving bolus doses or making up drugs that required multiple step preparation. CONCLUSIONS The rate of intravenous drug errors was high. Although most errors would cause only short term adverse effects, a few could have been serious. A combination of reducing the amount of preparation on the ward, training, and technology to administer slow bolus doses would probably have the greatest effect on error rates. |
scifact-queries-386 | null | Errors in peripheral IV drug administration are most common during bolus administration and multiple-step medicine preparations. |
scifact-corpus-1148122 | null | Regulatory and metabolic rewiring during laboratory evolution of ethanol tolerance in E. coli
Understanding the genetic basis of adaptation is a central problem in biology. However, revealing the underlying molecular mechanisms has been challenging as changes in fitness may result from perturbations to many pathways, any of which may contribute relatively little. We have developed a combined experimental/computational framework to address this problem and used it to understand the genetic basis of ethanol tolerance in Escherichia coli. We used fitness profiling to measure the consequences of single-locus perturbations in the context of ethanol exposure. A module-level computational analysis was then used to reveal the organization of the contributing loci into cellular processes and regulatory pathways (e.g. osmoregulation and cell-wall biogenesis) whose modifications significantly affect ethanol tolerance. Strikingly, we discovered that a dominant component of adaptation involves metabolic rewiring that boosts intracellular ethanol degradation and assimilation. Through phenotypic and metabolomic analysis of laboratory-evolved ethanol-tolerant strains, we investigated naturally accessible pathways of ethanol tolerance. Remarkably, these laboratory-evolved strains, by and large, follow the same adaptive paths as inferred from our coarse-grained search of the fitness landscape. |
scifact-queries-388 | null | Ethanol stress decreases the expression of IBP in bacteria. |
scifact-corpus-791050 | null | The relation between past exposure to fine particulate air pollution and prevalent anxiety: observational cohort study
OBJECTIVE To determine whether higher past exposure to particulate air pollution is associated with prevalent high symptoms of anxiety. DESIGN Observational cohort study. SETTING Nurses' Health Study. PARTICIPANTS 71,271 women enrolled in the Nurses' Health Study residing throughout the contiguous United States who had valid estimates on exposure to particulate matter for at least one exposure period of interest and data on anxiety symptoms. MAIN OUTCOME MEASURES Meaningfully high symptoms of anxiety, defined as a score of 6 points or greater on the phobic anxiety subscale of the Crown-Crisp index, administered in 2004. RESULTS The 71,271 eligible women were aged between 57 and 85 years (mean 70 years) at the time of assessment of anxiety symptoms, with a prevalence of high anxiety symptoms of 15%. Exposure to particulate matter was characterized using estimated average exposure to particulate matter <2.5 μm in diameter (PM2.5) and 2.5 to 10 μm in diameter (PM2.5-10) in the one month, three months, six months, one year, and 15 years prior to assessment of anxiety symptoms, and residential distance to the nearest major road two years prior to assessment. Significantly increased odds of high anxiety symptoms were observed with higher exposure to PM2.5 for multiple averaging periods (for example, odds ratio per 10 µg/m(3) increase in prior one month average PM2.5: 1.12, 95% confidence interval 1.06 to 1.19; in prior 12 month average PM2.5: 1.15, 1.06 to 1.26). Models including multiple exposure windows suggested short term averaging periods were more relevant than long term averaging periods. There was no association between anxiety and exposure to PM2.5-10. Residential proximity to major roads was not related to anxiety symptoms in a dose dependent manner. CONCLUSIONS Exposure to fine particulate matter (PM2.5) was associated with high symptoms of anxiety, with more recent exposures potentially more relevant than more distant exposures. Research evaluating whether reductions in exposure to ambient PM2.5 would reduce the population level burden of clinically relevant symptoms of anxiety is warranted. |
scifact-queries-399 | null | Exposure to fine particulate air pollution is relate to anxiety prevalence. |
Subsets and Splits