|
--- |
|
license: cc-by-nc-4.0 |
|
configs: |
|
- config_name: Bengali |
|
data_files: |
|
- split: train |
|
path: Bengali/train-* |
|
- config_name: Gujarati |
|
data_files: |
|
- split: train |
|
path: Gujarati/train-* |
|
- config_name: Hindi |
|
data_files: |
|
- split: train |
|
path: Hindi/train-* |
|
- config_name: Kannada |
|
data_files: |
|
- split: train |
|
path: Kannada/train-* |
|
- config_name: Malayalam |
|
data_files: |
|
- split: train |
|
path: Malayalam/train-* |
|
- config_name: Marathi |
|
data_files: |
|
- split: train |
|
path: Marathi/train-* |
|
- config_name: Odia |
|
data_files: |
|
- split: train |
|
path: Odia/train-* |
|
- config_name: Punjabi |
|
data_files: |
|
- split: train |
|
path: Punjabi/train-* |
|
- config_name: Sanskrit |
|
data_files: |
|
- split: train |
|
path: Sanskrit/train-* |
|
- config_name: Tamil |
|
data_files: |
|
- split: train |
|
path: Tamil/train-* |
|
- config_name: Telugu |
|
data_files: |
|
- split: train |
|
path: Telugu/train-* |
|
- config_name: Urdu |
|
data_files: |
|
- split: train |
|
path: Urdu/train-* |
|
dataset_info: |
|
- config_name: Bengali |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 26636977797.52 |
|
num_examples: 83448 |
|
download_size: 33644253977 |
|
dataset_size: 26636977797.52 |
|
- config_name: Gujarati |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 35729511328.708 |
|
num_examples: 118778 |
|
download_size: 50811268801 |
|
dataset_size: 35729511328.708 |
|
- config_name: Hindi |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 53003219701.92 |
|
num_examples: 205938 |
|
download_size: 56012925652 |
|
dataset_size: 53003219701.92 |
|
- config_name: Kannada |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 45376904249.101 |
|
num_examples: 115023 |
|
download_size: 68372746210 |
|
dataset_size: 45376904249.101 |
|
- config_name: Malayalam |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 15637888779.776 |
|
num_examples: 34128 |
|
download_size: 24407793288 |
|
dataset_size: 15637888779.776 |
|
- config_name: Marathi |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 71754219535.2 |
|
num_examples: 130150 |
|
download_size: 42561790240 |
|
dataset_size: 71754219535.2 |
|
- config_name: Odia |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: string |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 16945788457.908 |
|
num_examples: 52236 |
|
download_size: 23671968893 |
|
dataset_size: 16945788457.908 |
|
- config_name: Punjabi |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 66672910244.46 |
|
num_examples: 248354 |
|
download_size: 100577772676 |
|
dataset_size: 66672910244.46 |
|
- config_name: Sanskrit |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 197955155096.904 |
|
num_examples: 377504 |
|
download_size: 167171842242 |
|
dataset_size: 197955155096.904 |
|
- config_name: Tamil |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 85162574185.912 |
|
num_examples: 282312 |
|
download_size: 148502748897 |
|
dataset_size: 85162574185.912 |
|
- config_name: Telugu |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 64247424400.08 |
|
num_examples: 169896 |
|
download_size: 91708786871 |
|
dataset_size: 64247424400.08 |
|
- config_name: Urdu |
|
features: |
|
- name: audio |
|
dtype: audio |
|
- name: Generative Model |
|
dtype: string |
|
- name: Source Speaker_ID |
|
dtype: float64 |
|
- name: Target Speaker ID |
|
dtype: int64 |
|
- name: Gender |
|
dtype: string |
|
- name: Source Reference Audio |
|
dtype: string |
|
- name: Target Reference Audio |
|
dtype: string |
|
- name: TTS Transcript |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 23993474813.016 |
|
num_examples: 94898 |
|
download_size: 37773964000 |
|
dataset_size: 23993474813.016 |
|
tags: |
|
- Speech |
|
- Synthetic |
|
- DeepFake |
|
- SpeakerVerification |
|
- Audio Deepfake Detection |
|
- ADD |
|
- Voice Conversion |
|
- TTS |
|
- Text-to-Speech |
|
- Anti-Spoofing |
|
- Low-Resource Languages |
|
- Multilingual |
|
language: |
|
- bn |
|
- gu |
|
- hi |
|
- kn |
|
- ml |
|
- mr |
|
- or |
|
- pa |
|
- sa |
|
- ta |
|
- te |
|
- ur |
|
task_categories: |
|
- audio-classification |
|
- text-to-speech |
|
- automatic-speech-recognition |
|
pretty_name: IndicSynth |
|
--- |
|
|
|
# IndicSynth |
|
*A Large-Scale Multilingual Synthetic Speech Dataset for Low-Resource Indian Languages* |
|
|
|
**π Outstanding Paper Award, ACL 2025** |
|
|
|
--- |
|
|
|
## π§ Overview |
|
|
|
**IndicSynth** is a novel multilingual synthetic speech dataset designed to advance multilingual **audio deepfake detection (ADD)** and **anti-spoofing** research. It covers **12 low-resource Indian languages** and provides both **mimicry** and **diversity** subsets. |
|
|
|
- 4,000+ hours of synthetic audio |
|
- 12 languages: Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Odia, Punjabi, Sanskrit, Tamil, Telugu, Urdu |
|
- Useful for ADD, speaker verification (SV), and bias studies |
|
--- |
|
## π Dataset Structure |
|
|
|
Each language folder contains: |
|
|
|
<pre> |
|
IndicSynth/ |
|
βββ Bengali/ |
|
β βββ audio/ # All .wav files (synthetic clips) |
|
β βββ metadata.csv # Metadata for all synthetic clips |
|
βββ Gujarati/ |
|
β βββ audio/ |
|
β βββ metadata.csv |
|
</pre> |
|
Each 'metadata.csv' includes: |
|
- Generative Model (xtts_v2 / vits / freevc24) |
|
- Speaker IDs |
|
- Gender |
|
- Transcript (if applicable) |
|
- File path to synthetic audio |
|
|
|
π **Note on Transcripts in Metadata:** |
|
The transcripts included in the metadata.csv files represent the intended text prompts used during synthetic speech generation via TTS models. We provide these transcripts to enable future explorations, but do not guarantee perfect alignment with the generated audio. If you intend to use IndicSynth for speech-to-text or similar tasks, we strongly recommend conducting careful human evaluation with proficient native speakers of the respective languages. |
|
|
|
--- |
|
## βοΈ IndicSynth Generation? |
|
Synthetic data was generated using: |
|
|
|
| Model | Type | Transcript | Fine-Tuned | |
|
|------------|-----------|------------|-------------| |
|
| xtts_v2 | TTS | Yes | Yes (for 10 languages) | |
|
| vits | TTS | Yes | No | |
|
| freevc24 | VC | No | No | |
|
|
|
- **Mimicry subset**: For anti-spoofing research |
|
- **Diversity subset**: Contains diverse set of realistic synthetic voices for multilingual audio deepfake detection research |
|
|
|
For more details, please see the Table 1 and Section 3 of our paper: https://aclanthology.org/2025.acl-long.1070.pdf |
|
|
|
--- |
|
|
|
## π¦ Access the Dataset |
|
|
|
You can load data in a specific target language using the following code: |
|
|
|
```python |
|
|
|
import os |
|
import soundfile as sf |
|
from datasets import load_dataset |
|
from tqdm import tqdm |
|
import pandas as pd |
|
|
|
language = "Hindi" # Specify the target language here |
|
|
|
# Load Dataset |
|
dataset = load_dataset("vdivyasharma/IndicSynth", name=language, split="train") |
|
|
|
# Create target directory structure |
|
output_dir = language |
|
audio_dir = os.path.join(output_dir, "audio") |
|
os.makedirs(audio_dir, exist_ok=True) |
|
|
|
# Store metadata rows here |
|
metadata_rows = [] |
|
|
|
# Loop through dataset and save each clip |
|
for example in tqdm(dataset): |
|
audio_array = example["audio"]["array"] |
|
sampling_rate = example["audio"]["sampling_rate"] |
|
|
|
# Get filename |
|
original_name = example.get("file") or example.get("path") or example["audio"]["path"].split("/")[-1] |
|
|
|
# Save audio to audio/ subfolder |
|
audio_path = os.path.join("audio", original_name) # relative path for metadata |
|
sf.write(os.path.join(output_dir, audio_path), audio_array, sampling_rate) |
|
|
|
# Store metadata row |
|
row = {k: v for k, v in example.items() if k != "audio"} |
|
row["file_name"] = audio_path |
|
metadata_rows.append(row) |
|
|
|
# Save metadata to CSV |
|
df = pd.DataFrame(metadata_rows) |
|
df.to_csv(os.path.join(output_dir, "metadata.csv"), index=False) |
|
|
|
|
|
``` |
|
## License |
|
IndicSynth is released under the **CC BY-NC 4.0 License**. |
|
It is intended for **non-commercial, academic research only**. |
|
|
|
## Citation |
|
If you use IndicSynth, please cite the following papers: |
|
<pre>@inproceedings{sharma-etal-2025-indicsynth, |
|
title = "{I}ndic{S}ynth: A Large-Scale Multilingual Synthetic Speech Dataset for Low-Resource {I}ndian Languages", |
|
author = "Sharma, Divya V and |
|
Ekbote, Vijval and |
|
Gupta, Anubha", |
|
editor = "Che, Wanxiang and |
|
Nabende, Joyce and |
|
Shutova, Ekaterina and |
|
Pilehvar, Mohammad Taher", |
|
booktitle = "Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = jul, |
|
year = "2025", |
|
address = "Vienna, Austria", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2025.acl-long.1070/", |
|
pages = "22037--22060", |
|
ISBN = "979-8-89176-251-0" |
|
} |
|
</pre> |
|
<pre>@article{IndicSuperb, |
|
author = {Javed, Tahir and Bhogale, Kaushal and Raman, Abhigyan and Kumar, Pratyush and Kunchukuttan, Anoop and Khapra, Mitesh}, |
|
year = {2023}, |
|
month = {06}, |
|
pages = {12942-12950}, |
|
title = {IndicSUPERB: A Speech Processing Universal Performance Benchmark for Indian Languages}, |
|
volume = {37}, |
|
journal = {Proceedings of the AAAI Conference on Artificial Intelligence}, |
|
doi = {10.1609/aaai.v37i11.26521} |
|
} |
|
</pre> |
|
--- |
|
|
|
## π¬ Contact |
|
For questions or feedback, please feel free to reach out at [email protected]. |
|
|
|
## π Acknowledgments |
|
- π ACL Diversity & Inclusion Subsidy for enabling in-person presentation at ACL 2025 |
|
- π€ HuggingFace for dataset hosting support |
|
- πSBILab and Infosys Centre for Artificial Intelligence (CAI) at IIIT-Delhi for their support |