Dataset Viewer
Auto-converted to Parquet
case_id
stringlengths
26
29
file
stringlengths
36
39
num_nodes
int64
1.07k
47.5k
num_edges
int64
5.77k
250k
metadata
stringlengths
64
67
case00001_105762_19e04e0b_1
train/case00001_105762_19e04e0b_1.npz
18,219
95,752
{"case_name": "105762_19e04e0b_1", "zmax": null, "time_steps": 1}
case00002_107237_3c61f68c_17
train/case00002_107237_3c61f68c_17.npz
17,973
98,540
{"case_name": "107237_3c61f68c_17", "zmax": null, "time_steps": 1}
case00004_113358_08641c94_10
train/case00004_113358_08641c94_10.npz
30,135
161,740
{"case_name": "113358_08641c94_10", "zmax": null, "time_steps": 1}
case00009_128367_1483fb5d_5
train/case00009_128367_1483fb5d_5.npz
28,384
157,690
{"case_name": "128367_1483fb5d_5", "zmax": null, "time_steps": 1}
case00012_132345_cb79d6ac_1
train/case00012_132345_cb79d6ac_1.npz
22,537
126,400
{"case_name": "132345_cb79d6ac_1", "zmax": null, "time_steps": 1}
case00013_136886_3aa46890_0
train/case00013_136886_3aa46890_0.npz
7,953
45,336
{"case_name": "136886_3aa46890_0", "zmax": null, "time_steps": 1}
case00015_141294_8b13a67d_28
train/case00015_141294_8b13a67d_28.npz
33,731
188,234
{"case_name": "141294_8b13a67d_28", "zmax": null, "time_steps": 1}
case00017_143662_4efcefe6_9
train/case00017_143662_4efcefe6_9.npz
1,292
6,258
{"case_name": "143662_4efcefe6_9", "zmax": null, "time_steps": 1}
case00020_147926_b78316a8_10
train/case00020_147926_b78316a8_10.npz
36,641
192,024
{"case_name": "147926_b78316a8_10", "zmax": null, "time_steps": 1}
case00021_21232_dae006f4_0
train/case00021_21232_dae006f4_0.npz
3,156
14,820
{"case_name": "21232_dae006f4_0", "zmax": null, "time_steps": 1}
case00022_21237_7887a24b_35
train/case00022_21237_7887a24b_35.npz
14,394
76,336
{"case_name": "21237_7887a24b_35", "zmax": null, "time_steps": 1}
case00023_21395_7d6fda6f_12
train/case00023_21395_7d6fda6f_12.npz
32,226
166,364
{"case_name": "21395_7d6fda6f_12", "zmax": null, "time_steps": 1}
case00024_21477_babb9c34_10
train/case00024_21477_babb9c34_10.npz
21,987
121,772
{"case_name": "21477_babb9c34_10", "zmax": null, "time_steps": 1}
case00029_22343_34184fd5_18
train/case00029_22343_34184fd5_18.npz
15,989
87,540
{"case_name": "22343_34184fd5_18", "zmax": null, "time_steps": 1}
case00031_23161_e7f63a9f_2
train/case00031_23161_e7f63a9f_2.npz
27,237
146,450
{"case_name": "23161_e7f63a9f_2", "zmax": null, "time_steps": 1}
case00034_23522_5c2ec58e_9
train/case00034_23522_5c2ec58e_9.npz
35,706
201,330
{"case_name": "23522_5c2ec58e_9", "zmax": null, "time_steps": 1}
case00036_24376_3051de69_0
train/case00036_24376_3051de69_0.npz
9,961
56,022
{"case_name": "24376_3051de69_0", "zmax": null, "time_steps": 1}
case00037_25338_2a285026_24
train/case00037_25338_2a285026_24.npz
2,549
12,552
{"case_name": "25338_2a285026_24", "zmax": null, "time_steps": 1}
case00038_26165_100fec74_4
train/case00038_26165_100fec74_4.npz
14,040
75,054
{"case_name": "26165_100fec74_4", "zmax": null, "time_steps": 1}
case00039_26924_6c9a7ebf_3
train/case00039_26924_6c9a7ebf_3.npz
8,699
47,764
{"case_name": "26924_6c9a7ebf_3", "zmax": null, "time_steps": 1}
case00042_29377_3a04cb8d_6
train/case00042_29377_3a04cb8d_6.npz
18,261
101,256
{"case_name": "29377_3a04cb8d_6", "zmax": null, "time_steps": 1}
case00043_30377_e18ea3de_0
train/case00043_30377_e18ea3de_0.npz
30,800
155,320
{"case_name": "30377_e18ea3de_0", "zmax": null, "time_steps": 1}
case00045_31008_8fa25b35_11
train/case00045_31008_8fa25b35_11.npz
35,625
194,392
{"case_name": "31008_8fa25b35_11", "zmax": null, "time_steps": 1}
case00054_34983_439766af_10
train/case00054_34983_439766af_10.npz
11,699
65,558
{"case_name": "34983_439766af_10", "zmax": null, "time_steps": 1}
case00056_37220_fedc7162_2
train/case00056_37220_fedc7162_2.npz
4,098
17,426
{"case_name": "37220_fedc7162_2", "zmax": null, "time_steps": 1}
case00059_38287_88ec74de_3
train/case00059_38287_88ec74de_3.npz
22,334
119,674
{"case_name": "38287_88ec74de_3", "zmax": null, "time_steps": 1}
case00061_39796_45dcdc7d_4
train/case00061_39796_45dcdc7d_4.npz
44,964
249,032
{"case_name": "39796_45dcdc7d_4", "zmax": null, "time_steps": 1}
case00064_41508_c18d22f2_1
train/case00064_41508_c18d22f2_1.npz
13,820
75,820
{"case_name": "41508_c18d22f2_1", "zmax": null, "time_steps": 1}
case00067_41941_79d46bb4_5
train/case00067_41941_79d46bb4_5.npz
7,499
42,232
{"case_name": "41941_79d46bb4_5", "zmax": null, "time_steps": 1}
case00069_43934_912ff891_41
train/case00069_43934_912ff891_41.npz
17,472
96,426
{"case_name": "43934_912ff891_41", "zmax": null, "time_steps": 1}
case00071_44996_b3e9c266_3
train/case00071_44996_b3e9c266_3.npz
3,982
20,760
{"case_name": "44996_b3e9c266_3", "zmax": null, "time_steps": 1}
case00072_51708_867d4509_12
train/case00072_51708_867d4509_12.npz
45,187
241,468
{"case_name": "51708_867d4509_12", "zmax": null, "time_steps": 1}
case00079_63132_330141d7_16
train/case00079_63132_330141d7_16.npz
5,641
28,294
{"case_name": "63132_330141d7_16", "zmax": null, "time_steps": 1}
case00085_76880_9bb28e72_15
train/case00085_76880_9bb28e72_15.npz
28,676
150,286
{"case_name": "76880_9bb28e72_15", "zmax": null, "time_steps": 1}
case00087_77980_f6ed5970_4
train/case00087_77980_f6ed5970_4.npz
10,246
55,802
{"case_name": "77980_f6ed5970_4", "zmax": null, "time_steps": 1}
case00088_78083_9ebfbd69_1
train/case00088_78083_9ebfbd69_1.npz
32,764
178,768
{"case_name": "78083_9ebfbd69_1", "zmax": null, "time_steps": 1}
case00089_78966_584c5305_0
train/case00089_78966_584c5305_0.npz
17,745
95,180
{"case_name": "78966_584c5305_0", "zmax": null, "time_steps": 1}
case00094_87044_409f2ff1_6
train/case00094_87044_409f2ff1_6.npz
15,664
83,432
{"case_name": "87044_409f2ff1_6", "zmax": null, "time_steps": 1}
case00098_118342_c702e084_13
train/case00098_118342_c702e084_13.npz
7,362
41,946
{"case_name": "118342_c702e084_13", "zmax": null, "time_steps": 1}
case00099_121949_e10b5e85_1
train/case00099_121949_e10b5e85_1.npz
32,564
177,172
{"case_name": "121949_e10b5e85_1", "zmax": null, "time_steps": 1}
case00103_129849_c941acdf_4
train/case00103_129849_c941acdf_4.npz
33,282
165,378
{"case_name": "129849_c941acdf_4", "zmax": null, "time_steps": 1}
case00106_132811_57264a28_4
train/case00106_132811_57264a28_4.npz
31,443
172,736
{"case_name": "132811_57264a28_4", "zmax": null, "time_steps": 1}
case00109_137837_9c9f163d_5
train/case00109_137837_9c9f163d_5.npz
7,352
40,486
{"case_name": "137837_9c9f163d_5", "zmax": null, "time_steps": 1}
case00111_139257_6c66375e_7
train/case00111_139257_6c66375e_7.npz
19,157
104,662
{"case_name": "139257_6c66375e_7", "zmax": null, "time_steps": 1}
case00112_140194_b0abb2bf_16
train/case00112_140194_b0abb2bf_16.npz
4,769
23,466
{"case_name": "140194_b0abb2bf_16", "zmax": null, "time_steps": 1}
case00113_142852_f2535e8d_0
train/case00113_142852_f2535e8d_0.npz
4,017
22,174
{"case_name": "142852_f2535e8d_0", "zmax": null, "time_steps": 1}
case00115_146191_0fd44744_6
train/case00115_146191_0fd44744_6.npz
19,274
106,178
{"case_name": "146191_0fd44744_6", "zmax": null, "time_steps": 1}
case00129_23325_292b3294_15
train/case00129_23325_292b3294_15.npz
20,855
113,080
{"case_name": "23325_292b3294_15", "zmax": null, "time_steps": 1}
case00131_24026_1dd4094b_43
train/case00131_24026_1dd4094b_43.npz
22,483
125,868
{"case_name": "24026_1dd4094b_43", "zmax": null, "time_steps": 1}
case00134_24413_786c8353_8
train/case00134_24413_786c8353_8.npz
25,979
142,364
{"case_name": "24413_786c8353_8", "zmax": null, "time_steps": 1}
case00137_25473_0991d519_24
train/case00137_25473_0991d519_24.npz
25,138
141,008
{"case_name": "25473_0991d519_24", "zmax": null, "time_steps": 1}
case00139_25839_fac364bf_3
train/case00139_25839_fac364bf_3.npz
4,166
21,792
{"case_name": "25839_fac364bf_3", "zmax": null, "time_steps": 1}
case00141_27847_d2436f7c_35
train/case00141_27847_d2436f7c_35.npz
20,718
111,402
{"case_name": "27847_d2436f7c_35", "zmax": null, "time_steps": 1}
case00142_27855_19c5895a_8
train/case00142_27855_19c5895a_8.npz
31,833
163,898
{"case_name": "27855_19c5895a_8", "zmax": null, "time_steps": 1}
case00143_31360_a1accb4b_28
train/case00143_31360_a1accb4b_28.npz
29,808
163,992
{"case_name": "31360_a1accb4b_28", "zmax": null, "time_steps": 1}
case00145_32839_feb1aa29_9
train/case00145_32839_feb1aa29_9.npz
4,394
21,304
{"case_name": "32839_feb1aa29_9", "zmax": null, "time_steps": 1}
case00147_33044_7fdd9213_0
train/case00147_33044_7fdd9213_0.npz
31,579
176,636
{"case_name": "33044_7fdd9213_0", "zmax": null, "time_steps": 1}
case00149_33995_18423507_1
train/case00149_33995_18423507_1.npz
11,515
62,706
{"case_name": "33995_18423507_1", "zmax": null, "time_steps": 1}
case00152_36268_3c96c142_6
train/case00152_36268_3c96c142_6.npz
9,619
52,644
{"case_name": "36268_3c96c142_6", "zmax": null, "time_steps": 1}
case00154_37377_90529181_13
train/case00154_37377_90529181_13.npz
28,688
155,184
{"case_name": "37377_90529181_13", "zmax": null, "time_steps": 1}
case00155_38944_0d0c3fce_14
train/case00155_38944_0d0c3fce_14.npz
3,612
19,990
{"case_name": "38944_0d0c3fce_14", "zmax": null, "time_steps": 1}
case00158_40807_58058731_15
train/case00158_40807_58058731_15.npz
11,205
63,128
{"case_name": "40807_58058731_15", "zmax": null, "time_steps": 1}
case00166_43938_418421a7_0
train/case00166_43938_418421a7_0.npz
25,289
142,168
{"case_name": "43938_418421a7_0", "zmax": null, "time_steps": 1}
case00167_48526_5aecac8a_0
train/case00167_48526_5aecac8a_0.npz
41,491
219,152
{"case_name": "48526_5aecac8a_0", "zmax": null, "time_steps": 1}
case00172_51747_3d58eae0_1
train/case00172_51747_3d58eae0_1.npz
15,447
81,394
{"case_name": "51747_3d58eae0_1", "zmax": null, "time_steps": 1}
case00174_52770_058cfe37_1
train/case00174_52770_058cfe37_1.npz
36,407
199,732
{"case_name": "52770_058cfe37_1", "zmax": null, "time_steps": 1}
case00177_54735_cf8dcb52_0
train/case00177_54735_cf8dcb52_0.npz
8,604
46,464
{"case_name": "54735_cf8dcb52_0", "zmax": null, "time_steps": 1}
case00180_60562_3597c658_0
train/case00180_60562_3597c658_0.npz
35,720
185,536
{"case_name": "60562_3597c658_0", "zmax": null, "time_steps": 1}
case00181_67283_4097cbd6_5
train/case00181_67283_4097cbd6_5.npz
5,757
31,846
{"case_name": "67283_4097cbd6_5", "zmax": null, "time_steps": 1}
case00184_78513_7ad0bd6a_6
train/case00184_78513_7ad0bd6a_6.npz
37,594
202,942
{"case_name": "78513_7ad0bd6a_6", "zmax": null, "time_steps": 1}
case00187_82672_4705a693_0
train/case00187_82672_4705a693_0.npz
20,572
114,978
{"case_name": "82672_4705a693_0", "zmax": null, "time_steps": 1}
case00188_84256_4164b724_3
train/case00188_84256_4164b724_3.npz
3,051
17,168
{"case_name": "84256_4164b724_3", "zmax": null, "time_steps": 1}
case00189_84374_272a9731_7
train/case00189_84374_272a9731_7.npz
37,863
214,204
{"case_name": "84374_272a9731_7", "zmax": null, "time_steps": 1}
case00190_87951_500b1dcd_2
train/case00190_87951_500b1dcd_2.npz
4,041
22,790
{"case_name": "87951_500b1dcd_2", "zmax": null, "time_steps": 1}
case00192_98688_0b42cbdb_1
train/case00192_98688_0b42cbdb_1.npz
35,725
202,556
{"case_name": "98688_0b42cbdb_1", "zmax": null, "time_steps": 1}
case00196_109772_ead94f62_2
train/case00196_109772_ead94f62_2.npz
18,480
90,344
{"case_name": "109772_ead94f62_2", "zmax": null, "time_steps": 1}
case00197_109863_7d9015ee_1
train/case00197_109863_7d9015ee_1.npz
15,570
84,562
{"case_name": "109863_7d9015ee_1", "zmax": null, "time_steps": 1}
case00201_125745_cf468448_6
train/case00201_125745_cf468448_6.npz
24,475
130,994
{"case_name": "125745_cf468448_6", "zmax": null, "time_steps": 1}
case00202_127099_7d287b01_0
train/case00202_127099_7d287b01_0.npz
3,706
17,822
{"case_name": "127099_7d287b01_0", "zmax": null, "time_steps": 1}
case00205_128911_750970cf_6
train/case00205_128911_750970cf_6.npz
5,565
31,160
{"case_name": "128911_750970cf_6", "zmax": null, "time_steps": 1}
case00209_133129_0872b871_1
train/case00209_133129_0872b871_1.npz
18,915
104,132
{"case_name": "133129_0872b871_1", "zmax": null, "time_steps": 1}
case00210_136126_5202c059_0
train/case00210_136126_5202c059_0.npz
33,645
187,804
{"case_name": "136126_5202c059_0", "zmax": null, "time_steps": 1}
case00217_143590_87049041_2
train/case00217_143590_87049041_2.npz
22,358
111,610
{"case_name": "143590_87049041_2", "zmax": null, "time_steps": 1}
case00219_146137_92faaea5_18
train/case00219_146137_92faaea5_18.npz
1,071
5,924
{"case_name": "146137_92faaea5_18", "zmax": null, "time_steps": 1}
case00227_22206_703c82ed_2
train/case00227_22206_703c82ed_2.npz
41,597
226,936
{"case_name": "22206_703c82ed_2", "zmax": null, "time_steps": 1}
case00230_22654_4c426b0f_13
train/case00230_22654_4c426b0f_13.npz
11,106
62,674
{"case_name": "22654_4c426b0f_13", "zmax": null, "time_steps": 1}
case00236_24090_a2bf0d93_3
train/case00236_24090_a2bf0d93_3.npz
21,308
116,230
{"case_name": "24090_a2bf0d93_3", "zmax": null, "time_steps": 1}
case00243_28213_40ba97c1_12
train/case00243_28213_40ba97c1_12.npz
45,029
245,046
{"case_name": "28213_40ba97c1_12", "zmax": null, "time_steps": 1}
case00244_29592_0eb58185_0
train/case00244_29592_0eb58185_0.npz
34,113
192,214
{"case_name": "29592_0eb58185_0", "zmax": null, "time_steps": 1}
case00246_30818_33617072_0
train/case00246_30818_33617072_0.npz
36,037
198,118
{"case_name": "30818_33617072_0", "zmax": null, "time_steps": 1}
case00247_31460_39fdfc6a_7
train/case00247_31460_39fdfc6a_7.npz
39,212
214,780
{"case_name": "31460_39fdfc6a_7", "zmax": null, "time_steps": 1}
case00248_32743_f4c47bbc_13
train/case00248_32743_f4c47bbc_13.npz
8,355
45,276
{"case_name": "32743_f4c47bbc_13", "zmax": null, "time_steps": 1}
case00255_38675_6e07d74b_42
train/case00255_38675_6e07d74b_42.npz
22,466
118,266
{"case_name": "38675_6e07d74b_42", "zmax": null, "time_steps": 1}
case00257_39468_15fb2e60_43
train/case00257_39468_15fb2e60_43.npz
24,446
129,720
{"case_name": "39468_15fb2e60_43", "zmax": null, "time_steps": 1}
case00258_39792_60786b6c_15
train/case00258_39792_60786b6c_15.npz
22,978
124,504
{"case_name": "39792_60786b6c_15", "zmax": null, "time_steps": 1}
case00261_41774_88a7a483_36
train/case00261_41774_88a7a483_36.npz
7,392
42,070
{"case_name": "41774_88a7a483_36", "zmax": null, "time_steps": 1}
case00267_50777_2934de55_22
train/case00267_50777_2934de55_22.npz
43,978
243,342
{"case_name": "50777_2934de55_22", "zmax": null, "time_steps": 1}
case00272_53601_59d3ecd2_0
train/case00272_53601_59d3ecd2_0.npz
21,291
114,522
{"case_name": "53601_59d3ecd2_0", "zmax": null, "time_steps": 1}
case00274_56078_6d7f171c_0
train/case00274_56078_6d7f171c_0.npz
8,561
48,058
{"case_name": "56078_6d7f171c_0", "zmax": null, "time_steps": 1}
case00276_60990_7a1796da_1
train/case00276_60990_7a1796da_1.npz
27,495
152,530
{"case_name": "60990_7a1796da_1", "zmax": null, "time_steps": 1}
End of preview. Expand in Data Studio

Laser Powder Bed Fusion (LPBF) Additive Manufacturing Dataset

As part of our paper FLARE: Fast Low-Rank Attention Routing Engine (arXiv:2508.12594), we release a new 3D field prediction benchmark derived from numerical simulations of the Laser Powder Bed Fusion (LPBF) additive manufacturing process.

This dataset is designed for evaluating neural surrogate models on 3D field prediction tasks over complex geometries with up to 50,000 nodes. We believe this benchmark will be useful for researchers working on graph neural networks, mesh-based learning, surrogate PDE modeling, or 3D foundation models.


Dataset Overview

In metal additive manufacturing (AM), subtle variations in design geometry can cause residual stresses and shape distortion during the build process, leading to part inaccuracies or failures. We simulate the LPBF process on a set of complex 3D CAD geometries to generate a benchmark dataset where the goal is to predict the vertical (Z) displacement field of the printed part.

Split # Samples Max # Nodes / sample
Train 1,100 ~50,000
Test 290 ~50,000

Each sample consists of:

  • points: array of shape (N, 3) (x, y, z coordinates of mesh nodes)
  • optionally connectivity: edge_index array specifying axis-aligned hexahedral elements
  • 3D displacement filed: array of shape (N, 3)
  • Von mises stress field: array of shape (N, 1)

Usage

Quick Start

Load the LPBF dataset using the optimized PyTorch Geometric interface:

from pdebench.dataset.utils import LPBFDataset

# Load train and test datasets
train_dataset = LPBFDataset(split='train')
test_dataset = LPBFDataset(split='test')

print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")

# Access a sample
sample = train_dataset[0]
print(f"Nodes: {sample.x.shape}")           # [N, 3] - node coordinates
print(f"Edges: {sample.edge_index.shape}")  # [2, E] - edge connectivity 
print(f"Target: {sample.y.shape}")          # [N] - Z-displacement values
print(f"Elements: {sample.elems.shape}")    # [M, 8] - hex element connectivity

PyTorch DataLoader Integration

from torch_geometric.loader import DataLoader

# Create DataLoader for training
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)

# Training loop example
for batch in train_loader:
    # batch.x: [batch_size*N, 3] - node coordinates
    # batch.y: [batch_size*N] - target Z-displacements
    # batch.edge_index: [2, batch_size*E] - edges
    # batch.batch: [batch_size*N] - batch assignment
    
    # Your model forward pass here
    pred = model(batch.x, batch.edge_index, batch.batch)
    loss = loss_fn(pred, batch.y)

Performance Features

  • ⚑ Fast initialization: ~0.8s (vs 18s+ for naive approaches)
  • πŸš€ Efficient loading: ~8ms per sample access
  • πŸ’Ύ Smart caching: Downloads once, cached locally
  • πŸ”„ Lazy loading: Files downloaded only when first accessed

Data Fields

Each sample contains:

  • x (pos): Node coordinates [N, 3]
  • edge_index: Edge connectivity [2, E]
  • y: Target Z-displacement [N]
  • elems: Element connectivity [M, 8]
  • temp: Temperature field [N]
  • disp: Full displacement field [N, 3]
  • vmstr: Von Mises stress [N]
  • metadata: Simulation metadata

Implementation

LPBFDataset Class

The optimized LPBFDataset implementation with lazy loading and efficient caching:

import os
import json
import numpy as np
import torch
import torch_geometric as pyg
import datasets
import huggingface_hub

class LPBFDataset(pyg.data.Dataset):
    def __init__(self, split='train', transform=None):
        assert split in ['train', 'test'], f"Invalid split: {split}. Must be one of: 'train', 'test'."

        self.repo_id = 'vedantpuri/LPBF_FLARE'
        
        print(f"Initializing {split} dataset...")
        
        # Fast initialization: Load dataset index first (lightweight)
        import time
        start_time = time.time()
        self.dataset = datasets.load_dataset(self.repo_id, split=split, keep_in_memory=True)
        dataset_time = time.time() - start_time
        print(f"Dataset index load: {dataset_time:.2f}s")

        # Lazy cache initialization - only download when needed
        self._cache_dir = None
        
        print(f"βœ… Loaded {len(self.dataset)} samples for {split} split")

        super().__init__(None, transform=transform)
    
    @property
    def cache_dir(self):
        """Lazy loading of cache directory - only download when first sample is accessed."""
        if self._cache_dir is None:
            print("Downloading repository files on first access...")
            import time
            start_time = time.time()
            self._cache_dir = huggingface_hub.snapshot_download(self.repo_id, repo_type="dataset")
            download_time = time.time() - start_time
            print(f"Repository download/cache: {download_time:.2f}s")
            print(f"Cache directory: {self._cache_dir}")
        return self._cache_dir

    def len(self):
        return len(self.dataset)

    def get(self, idx):
        # Get file path from index
        entry = self.dataset[idx]
        rel_path = entry["file"]
        npz_path = os.path.join(self.cache_dir, rel_path)

        # Load NPZ file (main bottleneck check)
        data = np.load(npz_path, allow_pickle=True)
        graph = pyg.data.Data()

        # Convert to tensors efficiently
        for key, value in data.items():
            if key == "_metadata":
                graph["metadata"] = json.loads(value[0])["metadata"]
            else:
                # Use torch.from_numpy for faster conversion when possible
                if value.dtype.kind == "f":
                    tensor = torch.from_numpy(value.astype(np.float32))
                else:
                    tensor = torch.from_numpy(value.astype(np.int64)) if value.dtype != np.int64 else torch.from_numpy(value)
                graph[key] = tensor

        # Set standard attributes
        graph.x = graph.pos
        graph.y = graph.disp[:, 2]

        return graph

Key Implementation Features

πŸš€ Lazy Loading Strategy

  • Fast initialization (~0.8s): Only loads lightweight parquet index
  • Deferred downloads: Heavy NPZ files downloaded on first sample access
  • Property-based caching: @property cache_dir ensures files download only when needed

⚑ Efficient Tensor Conversion

# Optimized: Direct numpy->torch conversion (zero-copy when possible)
tensor = torch.from_numpy(value.astype(np.float32))

# vs. Slower: torch.tensor() creates new copy
tensor = torch.tensor(value, dtype=torch.float32)

πŸ’Ύ Smart Caching

  • Uses HuggingFace's built-in caching system
  • Files downloaded once, reused across all dataset instances
  • Automatic cache validation and updates

🎯 Memory Efficiency

  • No preloading of samples
  • On-demand loading with np.load()
  • Minimal memory footprint during initialization

Source & Generation

  • Geometries are taken from the Fusion 360 segmentation dataset.
  • Simulations performed using Autodesk NetFabb with Ti-6Al-4V material on a Renishaw AM250 machine.
  • Full thermomechanical simulation producing residual stress and displacement fields.
  • We applied subsampling and aspect-ratio filtering to select ~1,390 usable simulations.
  • The dataset focuses on steady-state residual deformation prediction.

Dataset Gallery

We simulate the LPBF process on selected geometries from the Autodesk segementation dataset (Lambourne et al., 2021) to generate a benchmark dataset for AM calculations. Several geometries are presented in this gallery. The color indicates Z (vertical) displacement field.

image/png


Dataset Statistics

Summary of LPBF dataset statistics.

image/png


Benchmark Task

Task: Given the 3D mesh coordinates of a part, predict the Z-displacement at each node after the LPBF build process (final state).

This surrogate modeling task is highly relevant to the additive manufacturing field, where fast prediction of distortion can save time and cost compared to full-scale FEM simulation.


Citation

If you use this dataset in your work, please cite:

@misc{puri2025flare,
      title={{FLARE}: {F}ast {L}ow-rank {A}ttention {R}outing {E}ngine}, 
      author={Vedant Puri and Aditya Joglekar and Kevin Ferguson and Yu-hsuan Chen and Yongjie Jessica Zhang and Levent Burak Kara},
      year={2025},
      eprint={2508.12594},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.12594}, 
}

Future Work & Extensions

We plan to expand this dataset toward larger-scale 3D shape foundation models, and potentially include dynamic time-history fields (stress, temperature, etc.) in future releases.


License

MIT License


Contact

For questions about the dataset or related research, feel free to reach out via email or the GitHub repository linked in the paper: https://github.com/vpuri3/FLARE.py.

Downloads last month
246