case_id
stringlengths 26
29
| file
stringlengths 36
39
| num_nodes
int64 1.07k
47.5k
| num_edges
int64 5.77k
250k
| metadata
stringlengths 64
67
|
---|---|---|---|---|
case00001_105762_19e04e0b_1
|
train/case00001_105762_19e04e0b_1.npz
| 18,219 | 95,752 |
{"case_name": "105762_19e04e0b_1", "zmax": null, "time_steps": 1}
|
case00002_107237_3c61f68c_17
|
train/case00002_107237_3c61f68c_17.npz
| 17,973 | 98,540 |
{"case_name": "107237_3c61f68c_17", "zmax": null, "time_steps": 1}
|
case00004_113358_08641c94_10
|
train/case00004_113358_08641c94_10.npz
| 30,135 | 161,740 |
{"case_name": "113358_08641c94_10", "zmax": null, "time_steps": 1}
|
case00009_128367_1483fb5d_5
|
train/case00009_128367_1483fb5d_5.npz
| 28,384 | 157,690 |
{"case_name": "128367_1483fb5d_5", "zmax": null, "time_steps": 1}
|
case00012_132345_cb79d6ac_1
|
train/case00012_132345_cb79d6ac_1.npz
| 22,537 | 126,400 |
{"case_name": "132345_cb79d6ac_1", "zmax": null, "time_steps": 1}
|
case00013_136886_3aa46890_0
|
train/case00013_136886_3aa46890_0.npz
| 7,953 | 45,336 |
{"case_name": "136886_3aa46890_0", "zmax": null, "time_steps": 1}
|
case00015_141294_8b13a67d_28
|
train/case00015_141294_8b13a67d_28.npz
| 33,731 | 188,234 |
{"case_name": "141294_8b13a67d_28", "zmax": null, "time_steps": 1}
|
case00017_143662_4efcefe6_9
|
train/case00017_143662_4efcefe6_9.npz
| 1,292 | 6,258 |
{"case_name": "143662_4efcefe6_9", "zmax": null, "time_steps": 1}
|
case00020_147926_b78316a8_10
|
train/case00020_147926_b78316a8_10.npz
| 36,641 | 192,024 |
{"case_name": "147926_b78316a8_10", "zmax": null, "time_steps": 1}
|
case00021_21232_dae006f4_0
|
train/case00021_21232_dae006f4_0.npz
| 3,156 | 14,820 |
{"case_name": "21232_dae006f4_0", "zmax": null, "time_steps": 1}
|
case00022_21237_7887a24b_35
|
train/case00022_21237_7887a24b_35.npz
| 14,394 | 76,336 |
{"case_name": "21237_7887a24b_35", "zmax": null, "time_steps": 1}
|
case00023_21395_7d6fda6f_12
|
train/case00023_21395_7d6fda6f_12.npz
| 32,226 | 166,364 |
{"case_name": "21395_7d6fda6f_12", "zmax": null, "time_steps": 1}
|
case00024_21477_babb9c34_10
|
train/case00024_21477_babb9c34_10.npz
| 21,987 | 121,772 |
{"case_name": "21477_babb9c34_10", "zmax": null, "time_steps": 1}
|
case00029_22343_34184fd5_18
|
train/case00029_22343_34184fd5_18.npz
| 15,989 | 87,540 |
{"case_name": "22343_34184fd5_18", "zmax": null, "time_steps": 1}
|
case00031_23161_e7f63a9f_2
|
train/case00031_23161_e7f63a9f_2.npz
| 27,237 | 146,450 |
{"case_name": "23161_e7f63a9f_2", "zmax": null, "time_steps": 1}
|
case00034_23522_5c2ec58e_9
|
train/case00034_23522_5c2ec58e_9.npz
| 35,706 | 201,330 |
{"case_name": "23522_5c2ec58e_9", "zmax": null, "time_steps": 1}
|
case00036_24376_3051de69_0
|
train/case00036_24376_3051de69_0.npz
| 9,961 | 56,022 |
{"case_name": "24376_3051de69_0", "zmax": null, "time_steps": 1}
|
case00037_25338_2a285026_24
|
train/case00037_25338_2a285026_24.npz
| 2,549 | 12,552 |
{"case_name": "25338_2a285026_24", "zmax": null, "time_steps": 1}
|
case00038_26165_100fec74_4
|
train/case00038_26165_100fec74_4.npz
| 14,040 | 75,054 |
{"case_name": "26165_100fec74_4", "zmax": null, "time_steps": 1}
|
case00039_26924_6c9a7ebf_3
|
train/case00039_26924_6c9a7ebf_3.npz
| 8,699 | 47,764 |
{"case_name": "26924_6c9a7ebf_3", "zmax": null, "time_steps": 1}
|
case00042_29377_3a04cb8d_6
|
train/case00042_29377_3a04cb8d_6.npz
| 18,261 | 101,256 |
{"case_name": "29377_3a04cb8d_6", "zmax": null, "time_steps": 1}
|
case00043_30377_e18ea3de_0
|
train/case00043_30377_e18ea3de_0.npz
| 30,800 | 155,320 |
{"case_name": "30377_e18ea3de_0", "zmax": null, "time_steps": 1}
|
case00045_31008_8fa25b35_11
|
train/case00045_31008_8fa25b35_11.npz
| 35,625 | 194,392 |
{"case_name": "31008_8fa25b35_11", "zmax": null, "time_steps": 1}
|
case00054_34983_439766af_10
|
train/case00054_34983_439766af_10.npz
| 11,699 | 65,558 |
{"case_name": "34983_439766af_10", "zmax": null, "time_steps": 1}
|
case00056_37220_fedc7162_2
|
train/case00056_37220_fedc7162_2.npz
| 4,098 | 17,426 |
{"case_name": "37220_fedc7162_2", "zmax": null, "time_steps": 1}
|
case00059_38287_88ec74de_3
|
train/case00059_38287_88ec74de_3.npz
| 22,334 | 119,674 |
{"case_name": "38287_88ec74de_3", "zmax": null, "time_steps": 1}
|
case00061_39796_45dcdc7d_4
|
train/case00061_39796_45dcdc7d_4.npz
| 44,964 | 249,032 |
{"case_name": "39796_45dcdc7d_4", "zmax": null, "time_steps": 1}
|
case00064_41508_c18d22f2_1
|
train/case00064_41508_c18d22f2_1.npz
| 13,820 | 75,820 |
{"case_name": "41508_c18d22f2_1", "zmax": null, "time_steps": 1}
|
case00067_41941_79d46bb4_5
|
train/case00067_41941_79d46bb4_5.npz
| 7,499 | 42,232 |
{"case_name": "41941_79d46bb4_5", "zmax": null, "time_steps": 1}
|
case00069_43934_912ff891_41
|
train/case00069_43934_912ff891_41.npz
| 17,472 | 96,426 |
{"case_name": "43934_912ff891_41", "zmax": null, "time_steps": 1}
|
case00071_44996_b3e9c266_3
|
train/case00071_44996_b3e9c266_3.npz
| 3,982 | 20,760 |
{"case_name": "44996_b3e9c266_3", "zmax": null, "time_steps": 1}
|
case00072_51708_867d4509_12
|
train/case00072_51708_867d4509_12.npz
| 45,187 | 241,468 |
{"case_name": "51708_867d4509_12", "zmax": null, "time_steps": 1}
|
case00079_63132_330141d7_16
|
train/case00079_63132_330141d7_16.npz
| 5,641 | 28,294 |
{"case_name": "63132_330141d7_16", "zmax": null, "time_steps": 1}
|
case00085_76880_9bb28e72_15
|
train/case00085_76880_9bb28e72_15.npz
| 28,676 | 150,286 |
{"case_name": "76880_9bb28e72_15", "zmax": null, "time_steps": 1}
|
case00087_77980_f6ed5970_4
|
train/case00087_77980_f6ed5970_4.npz
| 10,246 | 55,802 |
{"case_name": "77980_f6ed5970_4", "zmax": null, "time_steps": 1}
|
case00088_78083_9ebfbd69_1
|
train/case00088_78083_9ebfbd69_1.npz
| 32,764 | 178,768 |
{"case_name": "78083_9ebfbd69_1", "zmax": null, "time_steps": 1}
|
case00089_78966_584c5305_0
|
train/case00089_78966_584c5305_0.npz
| 17,745 | 95,180 |
{"case_name": "78966_584c5305_0", "zmax": null, "time_steps": 1}
|
case00094_87044_409f2ff1_6
|
train/case00094_87044_409f2ff1_6.npz
| 15,664 | 83,432 |
{"case_name": "87044_409f2ff1_6", "zmax": null, "time_steps": 1}
|
case00098_118342_c702e084_13
|
train/case00098_118342_c702e084_13.npz
| 7,362 | 41,946 |
{"case_name": "118342_c702e084_13", "zmax": null, "time_steps": 1}
|
case00099_121949_e10b5e85_1
|
train/case00099_121949_e10b5e85_1.npz
| 32,564 | 177,172 |
{"case_name": "121949_e10b5e85_1", "zmax": null, "time_steps": 1}
|
case00103_129849_c941acdf_4
|
train/case00103_129849_c941acdf_4.npz
| 33,282 | 165,378 |
{"case_name": "129849_c941acdf_4", "zmax": null, "time_steps": 1}
|
case00106_132811_57264a28_4
|
train/case00106_132811_57264a28_4.npz
| 31,443 | 172,736 |
{"case_name": "132811_57264a28_4", "zmax": null, "time_steps": 1}
|
case00109_137837_9c9f163d_5
|
train/case00109_137837_9c9f163d_5.npz
| 7,352 | 40,486 |
{"case_name": "137837_9c9f163d_5", "zmax": null, "time_steps": 1}
|
case00111_139257_6c66375e_7
|
train/case00111_139257_6c66375e_7.npz
| 19,157 | 104,662 |
{"case_name": "139257_6c66375e_7", "zmax": null, "time_steps": 1}
|
case00112_140194_b0abb2bf_16
|
train/case00112_140194_b0abb2bf_16.npz
| 4,769 | 23,466 |
{"case_name": "140194_b0abb2bf_16", "zmax": null, "time_steps": 1}
|
case00113_142852_f2535e8d_0
|
train/case00113_142852_f2535e8d_0.npz
| 4,017 | 22,174 |
{"case_name": "142852_f2535e8d_0", "zmax": null, "time_steps": 1}
|
case00115_146191_0fd44744_6
|
train/case00115_146191_0fd44744_6.npz
| 19,274 | 106,178 |
{"case_name": "146191_0fd44744_6", "zmax": null, "time_steps": 1}
|
case00129_23325_292b3294_15
|
train/case00129_23325_292b3294_15.npz
| 20,855 | 113,080 |
{"case_name": "23325_292b3294_15", "zmax": null, "time_steps": 1}
|
case00131_24026_1dd4094b_43
|
train/case00131_24026_1dd4094b_43.npz
| 22,483 | 125,868 |
{"case_name": "24026_1dd4094b_43", "zmax": null, "time_steps": 1}
|
case00134_24413_786c8353_8
|
train/case00134_24413_786c8353_8.npz
| 25,979 | 142,364 |
{"case_name": "24413_786c8353_8", "zmax": null, "time_steps": 1}
|
case00137_25473_0991d519_24
|
train/case00137_25473_0991d519_24.npz
| 25,138 | 141,008 |
{"case_name": "25473_0991d519_24", "zmax": null, "time_steps": 1}
|
case00139_25839_fac364bf_3
|
train/case00139_25839_fac364bf_3.npz
| 4,166 | 21,792 |
{"case_name": "25839_fac364bf_3", "zmax": null, "time_steps": 1}
|
case00141_27847_d2436f7c_35
|
train/case00141_27847_d2436f7c_35.npz
| 20,718 | 111,402 |
{"case_name": "27847_d2436f7c_35", "zmax": null, "time_steps": 1}
|
case00142_27855_19c5895a_8
|
train/case00142_27855_19c5895a_8.npz
| 31,833 | 163,898 |
{"case_name": "27855_19c5895a_8", "zmax": null, "time_steps": 1}
|
case00143_31360_a1accb4b_28
|
train/case00143_31360_a1accb4b_28.npz
| 29,808 | 163,992 |
{"case_name": "31360_a1accb4b_28", "zmax": null, "time_steps": 1}
|
case00145_32839_feb1aa29_9
|
train/case00145_32839_feb1aa29_9.npz
| 4,394 | 21,304 |
{"case_name": "32839_feb1aa29_9", "zmax": null, "time_steps": 1}
|
case00147_33044_7fdd9213_0
|
train/case00147_33044_7fdd9213_0.npz
| 31,579 | 176,636 |
{"case_name": "33044_7fdd9213_0", "zmax": null, "time_steps": 1}
|
case00149_33995_18423507_1
|
train/case00149_33995_18423507_1.npz
| 11,515 | 62,706 |
{"case_name": "33995_18423507_1", "zmax": null, "time_steps": 1}
|
case00152_36268_3c96c142_6
|
train/case00152_36268_3c96c142_6.npz
| 9,619 | 52,644 |
{"case_name": "36268_3c96c142_6", "zmax": null, "time_steps": 1}
|
case00154_37377_90529181_13
|
train/case00154_37377_90529181_13.npz
| 28,688 | 155,184 |
{"case_name": "37377_90529181_13", "zmax": null, "time_steps": 1}
|
case00155_38944_0d0c3fce_14
|
train/case00155_38944_0d0c3fce_14.npz
| 3,612 | 19,990 |
{"case_name": "38944_0d0c3fce_14", "zmax": null, "time_steps": 1}
|
case00158_40807_58058731_15
|
train/case00158_40807_58058731_15.npz
| 11,205 | 63,128 |
{"case_name": "40807_58058731_15", "zmax": null, "time_steps": 1}
|
case00166_43938_418421a7_0
|
train/case00166_43938_418421a7_0.npz
| 25,289 | 142,168 |
{"case_name": "43938_418421a7_0", "zmax": null, "time_steps": 1}
|
case00167_48526_5aecac8a_0
|
train/case00167_48526_5aecac8a_0.npz
| 41,491 | 219,152 |
{"case_name": "48526_5aecac8a_0", "zmax": null, "time_steps": 1}
|
case00172_51747_3d58eae0_1
|
train/case00172_51747_3d58eae0_1.npz
| 15,447 | 81,394 |
{"case_name": "51747_3d58eae0_1", "zmax": null, "time_steps": 1}
|
case00174_52770_058cfe37_1
|
train/case00174_52770_058cfe37_1.npz
| 36,407 | 199,732 |
{"case_name": "52770_058cfe37_1", "zmax": null, "time_steps": 1}
|
case00177_54735_cf8dcb52_0
|
train/case00177_54735_cf8dcb52_0.npz
| 8,604 | 46,464 |
{"case_name": "54735_cf8dcb52_0", "zmax": null, "time_steps": 1}
|
case00180_60562_3597c658_0
|
train/case00180_60562_3597c658_0.npz
| 35,720 | 185,536 |
{"case_name": "60562_3597c658_0", "zmax": null, "time_steps": 1}
|
case00181_67283_4097cbd6_5
|
train/case00181_67283_4097cbd6_5.npz
| 5,757 | 31,846 |
{"case_name": "67283_4097cbd6_5", "zmax": null, "time_steps": 1}
|
case00184_78513_7ad0bd6a_6
|
train/case00184_78513_7ad0bd6a_6.npz
| 37,594 | 202,942 |
{"case_name": "78513_7ad0bd6a_6", "zmax": null, "time_steps": 1}
|
case00187_82672_4705a693_0
|
train/case00187_82672_4705a693_0.npz
| 20,572 | 114,978 |
{"case_name": "82672_4705a693_0", "zmax": null, "time_steps": 1}
|
case00188_84256_4164b724_3
|
train/case00188_84256_4164b724_3.npz
| 3,051 | 17,168 |
{"case_name": "84256_4164b724_3", "zmax": null, "time_steps": 1}
|
case00189_84374_272a9731_7
|
train/case00189_84374_272a9731_7.npz
| 37,863 | 214,204 |
{"case_name": "84374_272a9731_7", "zmax": null, "time_steps": 1}
|
case00190_87951_500b1dcd_2
|
train/case00190_87951_500b1dcd_2.npz
| 4,041 | 22,790 |
{"case_name": "87951_500b1dcd_2", "zmax": null, "time_steps": 1}
|
case00192_98688_0b42cbdb_1
|
train/case00192_98688_0b42cbdb_1.npz
| 35,725 | 202,556 |
{"case_name": "98688_0b42cbdb_1", "zmax": null, "time_steps": 1}
|
case00196_109772_ead94f62_2
|
train/case00196_109772_ead94f62_2.npz
| 18,480 | 90,344 |
{"case_name": "109772_ead94f62_2", "zmax": null, "time_steps": 1}
|
case00197_109863_7d9015ee_1
|
train/case00197_109863_7d9015ee_1.npz
| 15,570 | 84,562 |
{"case_name": "109863_7d9015ee_1", "zmax": null, "time_steps": 1}
|
case00201_125745_cf468448_6
|
train/case00201_125745_cf468448_6.npz
| 24,475 | 130,994 |
{"case_name": "125745_cf468448_6", "zmax": null, "time_steps": 1}
|
case00202_127099_7d287b01_0
|
train/case00202_127099_7d287b01_0.npz
| 3,706 | 17,822 |
{"case_name": "127099_7d287b01_0", "zmax": null, "time_steps": 1}
|
case00205_128911_750970cf_6
|
train/case00205_128911_750970cf_6.npz
| 5,565 | 31,160 |
{"case_name": "128911_750970cf_6", "zmax": null, "time_steps": 1}
|
case00209_133129_0872b871_1
|
train/case00209_133129_0872b871_1.npz
| 18,915 | 104,132 |
{"case_name": "133129_0872b871_1", "zmax": null, "time_steps": 1}
|
case00210_136126_5202c059_0
|
train/case00210_136126_5202c059_0.npz
| 33,645 | 187,804 |
{"case_name": "136126_5202c059_0", "zmax": null, "time_steps": 1}
|
case00217_143590_87049041_2
|
train/case00217_143590_87049041_2.npz
| 22,358 | 111,610 |
{"case_name": "143590_87049041_2", "zmax": null, "time_steps": 1}
|
case00219_146137_92faaea5_18
|
train/case00219_146137_92faaea5_18.npz
| 1,071 | 5,924 |
{"case_name": "146137_92faaea5_18", "zmax": null, "time_steps": 1}
|
case00227_22206_703c82ed_2
|
train/case00227_22206_703c82ed_2.npz
| 41,597 | 226,936 |
{"case_name": "22206_703c82ed_2", "zmax": null, "time_steps": 1}
|
case00230_22654_4c426b0f_13
|
train/case00230_22654_4c426b0f_13.npz
| 11,106 | 62,674 |
{"case_name": "22654_4c426b0f_13", "zmax": null, "time_steps": 1}
|
case00236_24090_a2bf0d93_3
|
train/case00236_24090_a2bf0d93_3.npz
| 21,308 | 116,230 |
{"case_name": "24090_a2bf0d93_3", "zmax": null, "time_steps": 1}
|
case00243_28213_40ba97c1_12
|
train/case00243_28213_40ba97c1_12.npz
| 45,029 | 245,046 |
{"case_name": "28213_40ba97c1_12", "zmax": null, "time_steps": 1}
|
case00244_29592_0eb58185_0
|
train/case00244_29592_0eb58185_0.npz
| 34,113 | 192,214 |
{"case_name": "29592_0eb58185_0", "zmax": null, "time_steps": 1}
|
case00246_30818_33617072_0
|
train/case00246_30818_33617072_0.npz
| 36,037 | 198,118 |
{"case_name": "30818_33617072_0", "zmax": null, "time_steps": 1}
|
case00247_31460_39fdfc6a_7
|
train/case00247_31460_39fdfc6a_7.npz
| 39,212 | 214,780 |
{"case_name": "31460_39fdfc6a_7", "zmax": null, "time_steps": 1}
|
case00248_32743_f4c47bbc_13
|
train/case00248_32743_f4c47bbc_13.npz
| 8,355 | 45,276 |
{"case_name": "32743_f4c47bbc_13", "zmax": null, "time_steps": 1}
|
case00255_38675_6e07d74b_42
|
train/case00255_38675_6e07d74b_42.npz
| 22,466 | 118,266 |
{"case_name": "38675_6e07d74b_42", "zmax": null, "time_steps": 1}
|
case00257_39468_15fb2e60_43
|
train/case00257_39468_15fb2e60_43.npz
| 24,446 | 129,720 |
{"case_name": "39468_15fb2e60_43", "zmax": null, "time_steps": 1}
|
case00258_39792_60786b6c_15
|
train/case00258_39792_60786b6c_15.npz
| 22,978 | 124,504 |
{"case_name": "39792_60786b6c_15", "zmax": null, "time_steps": 1}
|
case00261_41774_88a7a483_36
|
train/case00261_41774_88a7a483_36.npz
| 7,392 | 42,070 |
{"case_name": "41774_88a7a483_36", "zmax": null, "time_steps": 1}
|
case00267_50777_2934de55_22
|
train/case00267_50777_2934de55_22.npz
| 43,978 | 243,342 |
{"case_name": "50777_2934de55_22", "zmax": null, "time_steps": 1}
|
case00272_53601_59d3ecd2_0
|
train/case00272_53601_59d3ecd2_0.npz
| 21,291 | 114,522 |
{"case_name": "53601_59d3ecd2_0", "zmax": null, "time_steps": 1}
|
case00274_56078_6d7f171c_0
|
train/case00274_56078_6d7f171c_0.npz
| 8,561 | 48,058 |
{"case_name": "56078_6d7f171c_0", "zmax": null, "time_steps": 1}
|
case00276_60990_7a1796da_1
|
train/case00276_60990_7a1796da_1.npz
| 27,495 | 152,530 |
{"case_name": "60990_7a1796da_1", "zmax": null, "time_steps": 1}
|
Laser Powder Bed Fusion (LPBF) Additive Manufacturing Dataset
As part of our paper FLARE: Fast Low-Rank Attention Routing Engine (arXiv:2508.12594), we release a new 3D field prediction benchmark derived from numerical simulations of the Laser Powder Bed Fusion (LPBF) additive manufacturing process.
This dataset is designed for evaluating neural surrogate models on 3D field prediction tasks over complex geometries with up to 50,000 nodes. We believe this benchmark will be useful for researchers working on graph neural networks, mesh-based learning, surrogate PDE modeling, or 3D foundation models.
Dataset Overview
In metal additive manufacturing (AM), subtle variations in design geometry can cause residual stresses and shape distortion during the build process, leading to part inaccuracies or failures. We simulate the LPBF process on a set of complex 3D CAD geometries to generate a benchmark dataset where the goal is to predict the vertical (Z) displacement field of the printed part.
Split | # Samples | Max # Nodes / sample |
---|---|---|
Train | 1,100 | ~50,000 |
Test | 290 | ~50,000 |
Each sample consists of:
points
: array of shape(N, 3)
(x, y, z coordinates of mesh nodes)- optionally connectivity:
edge_index
array specifying axis-aligned hexahedral elements - 3D
displacement
filed: array of shape(N, 3)
- Von mises
stress
field: array of shape(N, 1)
Usage
Quick Start
Load the LPBF dataset using the optimized PyTorch Geometric interface:
from pdebench.dataset.utils import LPBFDataset
# Load train and test datasets
train_dataset = LPBFDataset(split='train')
test_dataset = LPBFDataset(split='test')
print(f"Train samples: {len(train_dataset)}")
print(f"Test samples: {len(test_dataset)}")
# Access a sample
sample = train_dataset[0]
print(f"Nodes: {sample.x.shape}") # [N, 3] - node coordinates
print(f"Edges: {sample.edge_index.shape}") # [2, E] - edge connectivity
print(f"Target: {sample.y.shape}") # [N] - Z-displacement values
print(f"Elements: {sample.elems.shape}") # [M, 8] - hex element connectivity
PyTorch DataLoader Integration
from torch_geometric.loader import DataLoader
# Create DataLoader for training
train_loader = DataLoader(train_dataset, batch_size=4, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=4, shuffle=False)
# Training loop example
for batch in train_loader:
# batch.x: [batch_size*N, 3] - node coordinates
# batch.y: [batch_size*N] - target Z-displacements
# batch.edge_index: [2, batch_size*E] - edges
# batch.batch: [batch_size*N] - batch assignment
# Your model forward pass here
pred = model(batch.x, batch.edge_index, batch.batch)
loss = loss_fn(pred, batch.y)
Performance Features
- β‘ Fast initialization: ~0.8s (vs 18s+ for naive approaches)
- π Efficient loading: ~8ms per sample access
- πΎ Smart caching: Downloads once, cached locally
- π Lazy loading: Files downloaded only when first accessed
Data Fields
Each sample contains:
x
(pos): Node coordinates [N, 3]edge_index
: Edge connectivity [2, E]y
: Target Z-displacement [N]elems
: Element connectivity [M, 8]temp
: Temperature field [N]disp
: Full displacement field [N, 3]vmstr
: Von Mises stress [N]metadata
: Simulation metadata
Implementation
LPBFDataset Class
The optimized LPBFDataset
implementation with lazy loading and efficient caching:
import os
import json
import numpy as np
import torch
import torch_geometric as pyg
import datasets
import huggingface_hub
class LPBFDataset(pyg.data.Dataset):
def __init__(self, split='train', transform=None):
assert split in ['train', 'test'], f"Invalid split: {split}. Must be one of: 'train', 'test'."
self.repo_id = 'vedantpuri/LPBF_FLARE'
print(f"Initializing {split} dataset...")
# Fast initialization: Load dataset index first (lightweight)
import time
start_time = time.time()
self.dataset = datasets.load_dataset(self.repo_id, split=split, keep_in_memory=True)
dataset_time = time.time() - start_time
print(f"Dataset index load: {dataset_time:.2f}s")
# Lazy cache initialization - only download when needed
self._cache_dir = None
print(f"β
Loaded {len(self.dataset)} samples for {split} split")
super().__init__(None, transform=transform)
@property
def cache_dir(self):
"""Lazy loading of cache directory - only download when first sample is accessed."""
if self._cache_dir is None:
print("Downloading repository files on first access...")
import time
start_time = time.time()
self._cache_dir = huggingface_hub.snapshot_download(self.repo_id, repo_type="dataset")
download_time = time.time() - start_time
print(f"Repository download/cache: {download_time:.2f}s")
print(f"Cache directory: {self._cache_dir}")
return self._cache_dir
def len(self):
return len(self.dataset)
def get(self, idx):
# Get file path from index
entry = self.dataset[idx]
rel_path = entry["file"]
npz_path = os.path.join(self.cache_dir, rel_path)
# Load NPZ file (main bottleneck check)
data = np.load(npz_path, allow_pickle=True)
graph = pyg.data.Data()
# Convert to tensors efficiently
for key, value in data.items():
if key == "_metadata":
graph["metadata"] = json.loads(value[0])["metadata"]
else:
# Use torch.from_numpy for faster conversion when possible
if value.dtype.kind == "f":
tensor = torch.from_numpy(value.astype(np.float32))
else:
tensor = torch.from_numpy(value.astype(np.int64)) if value.dtype != np.int64 else torch.from_numpy(value)
graph[key] = tensor
# Set standard attributes
graph.x = graph.pos
graph.y = graph.disp[:, 2]
return graph
Key Implementation Features
π Lazy Loading Strategy
- Fast initialization (~0.8s): Only loads lightweight parquet index
- Deferred downloads: Heavy NPZ files downloaded on first sample access
- Property-based caching:
@property cache_dir
ensures files download only when needed
β‘ Efficient Tensor Conversion
# Optimized: Direct numpy->torch conversion (zero-copy when possible)
tensor = torch.from_numpy(value.astype(np.float32))
# vs. Slower: torch.tensor() creates new copy
tensor = torch.tensor(value, dtype=torch.float32)
πΎ Smart Caching
- Uses HuggingFace's built-in caching system
- Files downloaded once, reused across all dataset instances
- Automatic cache validation and updates
π― Memory Efficiency
- No preloading of samples
- On-demand loading with
np.load()
- Minimal memory footprint during initialization
Source & Generation
- Geometries are taken from the Fusion 360 segmentation dataset.
- Simulations performed using Autodesk NetFabb with Ti-6Al-4V material on a Renishaw AM250 machine.
- Full thermomechanical simulation producing residual stress and displacement fields.
- We applied subsampling and aspect-ratio filtering to select ~1,390 usable simulations.
- The dataset focuses on steady-state residual deformation prediction.
Dataset Gallery
We simulate the LPBF process on selected geometries from the Autodesk segementation dataset (Lambourne et al., 2021) to generate a benchmark dataset for AM calculations. Several geometries are presented in this gallery. The color indicates Z (vertical) displacement field.
Dataset Statistics
Summary of LPBF dataset statistics.
Benchmark Task
Task: Given the 3D mesh coordinates of a part, predict the Z-displacement at each node after the LPBF build process (final state).
This surrogate modeling task is highly relevant to the additive manufacturing field, where fast prediction of distortion can save time and cost compared to full-scale FEM simulation.
Citation
If you use this dataset in your work, please cite:
@misc{puri2025flare,
title={{FLARE}: {F}ast {L}ow-rank {A}ttention {R}outing {E}ngine},
author={Vedant Puri and Aditya Joglekar and Kevin Ferguson and Yu-hsuan Chen and Yongjie Jessica Zhang and Levent Burak Kara},
year={2025},
eprint={2508.12594},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2508.12594},
}
Future Work & Extensions
We plan to expand this dataset toward larger-scale 3D shape foundation models, and potentially include dynamic time-history fields (stress, temperature, etc.) in future releases.
License
MIT License
Contact
For questions about the dataset or related research, feel free to reach out via email or the GitHub repository linked in the paper: https://github.com/vpuri3/FLARE.py
.
- Downloads last month
- 246