medreport_audio_204 / README.md
wouk1805's picture
Update README.md
96e17fd verified
metadata
license: apache-2.0
task_categories:
  - automatic-speech-recognition
  - text-generation
language:
  - fr
tags:
  - audio
  - transcription
  - speech-to-text
  - medical
  - reports
size_categories:
  - 1K<n<10K
dataset_info:
  features:
    - name: file_name
      dtype: string
    - name: text
      dtype: string
    - name: id
      dtype: string
  config_name: default
  splits:
    - name: train
      num_examples: 204
pretty_name: MedReport - 204 examples of real medical audio transcriptions

MedReport - Audio Dataset

Dataset Description

This dataset contains medical report audio files with their transcriptions, formatted according to HuggingFace Audio Dataset specifications. It's suitable for training speech-to-text models and instruction-following models in the medical domain.

Dataset Structure

This dataset follows the official HuggingFace Audio Dataset format:

dataset/
└── train/
    ├── audio/
    │   ├── 20240315143022.wav
    │   ├── 20240315143155.wav
    │   └── ...
    ├── metadata.csv
    └── metadata.jsonl

Columns

  • file_name: Relative path to audio file (e.g., "audio/20240315143022.wav")
  • text: Human transcription of the audio (primary transcription column)
  • id: Audio file identifier (filename only, e.g., "20240315143022.wav")

Statistics

  • Total audio files: 204
  • Format: WAV
  • Metadata formats: CSV and JSONL
  • License: Apache License 2.0
  • Created: 2025-08-05

Usage

Loading the dataset

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("wouk1805/medreport_audio_204")

# Access audio and transcription
for example in dataset['train']:
    audio = example['audio']
    transcription = example['text']
    print(f"Transcription: {transcription}")

For speech-to-text training

# Clean, simple dataset structure
audio_column = "audio"
text_column = "text"
id_column = "id"  # For tracking/identification

Files

  • train/audio/: Directory containing all WAV audio files
  • train/metadata.csv: Main metadata file (HuggingFace standard)
  • backup_metadata.jsonl: Alternative JSONL format (for reference)

Citation

@dataset{medreport_audio_dataset,
  author = {Young-wouk KIM},
  title={MedReport - Audio Dataset},
  year={2025},
  url={https://huggingface.co/datasets/wouk1805/medreport_audio_204}
}