Datasets:
metadata
license: apache-2.0
task_categories:
- automatic-speech-recognition
- text-generation
language:
- fr
tags:
- audio
- transcription
- speech-to-text
- medical
- reports
size_categories:
- 1K<n<10K
dataset_info:
features:
- name: file_name
dtype: string
- name: text
dtype: string
- name: id
dtype: string
config_name: default
splits:
- name: train
num_examples: 204
pretty_name: MedReport - 204 examples of real medical audio transcriptions
MedReport - Audio Dataset
Dataset Description
This dataset contains medical report audio files with their transcriptions, formatted according to HuggingFace Audio Dataset specifications. It's suitable for training speech-to-text models and instruction-following models in the medical domain.
Dataset Structure
This dataset follows the official HuggingFace Audio Dataset format:
dataset/
└── train/
├── audio/
│ ├── 20240315143022.wav
│ ├── 20240315143155.wav
│ └── ...
├── metadata.csv
└── metadata.jsonl
Columns
- file_name: Relative path to audio file (e.g., "audio/20240315143022.wav")
- text: Human transcription of the audio (primary transcription column)
- id: Audio file identifier (filename only, e.g., "20240315143022.wav")
Statistics
- Total audio files: 204
- Format: WAV
- Metadata formats: CSV and JSONL
- License: Apache License 2.0
- Created: 2025-08-05
Usage
Loading the dataset
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("wouk1805/medreport_audio_204")
# Access audio and transcription
for example in dataset['train']:
audio = example['audio']
transcription = example['text']
print(f"Transcription: {transcription}")
For speech-to-text training
# Clean, simple dataset structure
audio_column = "audio"
text_column = "text"
id_column = "id" # For tracking/identification
Files
train/audio/
: Directory containing all WAV audio filestrain/metadata.csv
: Main metadata file (HuggingFace standard)backup_metadata.jsonl
: Alternative JSONL format (for reference)
Citation
@dataset{medreport_audio_dataset,
author = {Young-wouk KIM},
title={MedReport - Audio Dataset},
year={2025},
url={https://huggingface.co/datasets/wouk1805/medreport_audio_204}
}