Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowInvalid
Message:      Schema at index 1 was different: 
all: struct<len: int64, sensor_downtime: struct<0: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 1: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 2: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 3: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 4: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 5: struct<time: list<item: timestamp[s]>, index: list<item: int64>>>>
vs
all_except_battery: struct<len: int64, sensor_downtime: struct<0: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 1: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 2: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 3: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 4: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 5: struct<time: list<item: timestamp[s]>, index: list<item: int64>>>>
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 3422, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2187, in _head
                  return next(iter(self.iter(batch_size=n)))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2391, in iter
                  for key, example in iterator:
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1882, in __iter__
                  for key, pa_table in self._iter_arrow():
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1904, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 527, in _iter_arrow
                  yield new_key, pa.Table.from_batches(chunks_buffer)
                File "pyarrow/table.pxi", line 4116, in pyarrow.lib.Table.from_batches
                File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Schema at index 1 was different: 
              all: struct<len: int64, sensor_downtime: struct<0: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 1: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 2: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 3: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 4: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 5: struct<time: list<item: timestamp[s]>, index: list<item: int64>>>>
              vs
              all_except_battery: struct<len: int64, sensor_downtime: struct<0: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 1: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 2: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 3: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 4: struct<time: list<item: timestamp[s]>, index: list<item: int64>>, 5: struct<time: list<item: timestamp[s]>, index: list<item: int64>>>>

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

WIATS: Weather-centric Intervention-Aware Time Series Multimodal Dataset

Data source:

Dataset Structure

The dataset is organized into the following structure:

|-- subdataset1

|   |-- raw_data  # Original data files
|   |-- time_series # Rule-based Imputed data files
|   |   |-- all_version_1.parquet # Time series data for each subject can be multivariate, can be in csv, parquet, etc.
|   |   |-- all_version_2.parquet
|   |   |-- ...
|   |   |-- id_info.json # Metadata for each subject

|   |-- weather
|   |   |-- location_1
|   |   |   |-- raw_data
|   |   |   |   |-- daily_weather_raw_????.json
|   |   |   |   |-- ...
|   |   |   |   |-- daily_weather_????.csv
|   |   |   |   |-- ...
|   |   |   |   |-- hourly_weather_????.csv
|   |   |   |   |-- ...
|   |   |   |-- weather_report (can be flattened and use regex to extract the version)
|   |   |   |   |-- version_1
|   |   |   |   |   |-- xxx_weather_report_????.json
|   |   |   |   |   |-- ...
|   |   |   |   |-- version_2
|   |   |   |   |-- ...
|   |   |   |-- report_embedding # embedding for the weather report
|   |   |   |   |-- version_1
|   |   |   |   |   |-- xxx_report_embedding_????.pkl
|   |   |   |   |   |-- ...
|   |   |   |   |-- version_2
|   |   |   |   |-- ...

|   |   |-- location_2
|   |   |-- ...

|   |   |-- merged_report_embedding # merged embedding for multiple needed locations (optional)
|   |   |   |-- xxx_embeddings_????.pkl
|   |   |   |-- ...

|   |   |-- merged_general_report # merged general report for multiple needed locations (optional)
|   |   |   |-- xxx_report.json
|   |   |   |-- ...

|   |-- scripts # Scripts for data processing, model training, and evaluation
|   |-- id_info.json # Metadata for whole dataset without preprocessing
|   |-- static_info.json # Static information for this dataset, including the dataset information, channel information, downtime reasons. 
|   |-- static_info_embeddings.pkl

|-- subdataset2
|-- ......

id_info.json Structure

The id_info.json file contains metadata for each subject in the dataset. Extracted from the raw dataset. The structure is as follows:

{
    "id_1": {
        "len": 1000, # Length of the time series data
        "sensor_downtime": {
            1: {
                "time": [yyyy-mm-dd hh:mm:ss, yyyy-mm-dd hh:mm:ss],
                "index": [start_index, end_index]
            },
            2: {
                "time": [yyyy-mm-dd hh:mm:ss, yyyy-mm-dd hh:mm:ss],
                "index": [start_index, end_index]
            },
            ...
        },
        "other_info_1": "value_1", # Other information about the subject customizable entry
        "other_info_2": "value_2",
        ...
    },
    "id_2": ...

}

static_info.json Structure

The static_info.json file contains static information for the whole dataset. The structure is as follows:

{
    "general_info": "description of the dataset",
    "downtime_prompt": "",
    "channel_info": {
        "id_1": {
            "channel_1": "channel 1 is xxx",
            "channel_2": "channel 2 is xxx"
        },
        "id_2": {
            "channel_1": "channel 1 is xxx",
            "channel_2": "channel 2 is xxx"
        },
        ...
    },
}
Downloads last month
195