|
import os
|
|
import zipfile
|
|
|
|
import findfile
|
|
import requests
|
|
import torch
|
|
from omnigenbench import (
|
|
ClassificationMetric,
|
|
OmniTokenizer,
|
|
OmniModelForSequenceClassification,
|
|
OmniDatasetForSequenceClassification,
|
|
Trainer,
|
|
)
|
|
|
|
|
|
|
|
|
|
def download_te_dataset(local_dir):
|
|
if not findfile.find_cwd_dir(local_dir, disable_alert=True):
|
|
os.makedirs(local_dir, exist_ok=True)
|
|
url_to_download = "https://huggingface.co/datasets/yangheng/translation_efficiency_prediction/resolve/main/translation_efficiency_prediction.zip"
|
|
zip_path = os.path.join(local_dir, "te_rice_dataset.zip")
|
|
if not os.path.exists(zip_path):
|
|
print(f"Downloading te_rice_dataset.zip from {url_to_download}...")
|
|
response = requests.get(url_to_download, stream=True)
|
|
response.raise_for_status()
|
|
|
|
with open(zip_path, 'wb') as f:
|
|
for chunk in response.iter_content(chunk_size=8192):
|
|
f.write(chunk)
|
|
print(f"Downloaded {zip_path}")
|
|
|
|
|
|
ZIP_DATASET = findfile.find_cwd_file("te_rice_dataset.zip")
|
|
if ZIP_DATASET:
|
|
with zipfile.ZipFile(ZIP_DATASET, 'r') as zip_ref:
|
|
zip_ref.extractall(local_dir)
|
|
print(f"Extracted te_rice_dataset.zip into {local_dir}")
|
|
os.remove(ZIP_DATASET)
|
|
else:
|
|
print("te_rice_dataset.zip not found. Skipping extraction.")
|
|
|
|
|
|
class TEClassificationDataset(OmniDatasetForSequenceClassification):
|
|
def __init__(self, data_source, tokenizer, max_length, **kwargs):
|
|
super().__init__(data_source, tokenizer, max_length, **kwargs)
|
|
|
|
def prepare_input(self, instance, **kwargs):
|
|
sequence, labels = instance["sequence"], instance["label"]
|
|
|
|
tokenized_inputs = self.tokenizer(
|
|
sequence,
|
|
padding=True,
|
|
truncation=True,
|
|
max_length=self.max_length,
|
|
return_tensors="pt",
|
|
**kwargs
|
|
)
|
|
tokenized_inputs["labels"] = torch.tensor(int(labels), dtype=torch.long)
|
|
|
|
for col in tokenized_inputs:
|
|
tokenized_inputs[col] = tokenized_inputs[col].squeeze(0)
|
|
|
|
if labels is not None:
|
|
label_id = self.label2id.get(str(labels), -100)
|
|
tokenized_inputs["labels"] = torch.tensor(label_id, dtype=torch.long)
|
|
|
|
return tokenized_inputs
|
|
|
|
def run_finetuning(
|
|
model_name,
|
|
train_file,
|
|
valid_file,
|
|
test_file,
|
|
label2id,
|
|
epochs,
|
|
learning_rate,
|
|
weight_decay,
|
|
batch_size,
|
|
max_length,
|
|
seed,
|
|
):
|
|
"""
|
|
Runs the full TE classification analysis pipeline.
|
|
"""
|
|
|
|
tokenizer = OmniTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
|
ssp_model = OmniModelForSequenceClassification(
|
|
model_name,
|
|
tokenizer=tokenizer,
|
|
label2id=label2id,
|
|
trust_remote_code=True,
|
|
)
|
|
print(f"Model '{model_name}' and tokenizer loaded successfully.")
|
|
|
|
|
|
train_set = TEClassificationDataset(data_source=train_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
|
|
valid_set = TEClassificationDataset(data_source=valid_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
|
|
test_set = TEClassificationDataset(data_source=test_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
|
|
|
|
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
|
|
valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size)
|
|
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size)
|
|
print("Datasets and DataLoaders created.")
|
|
|
|
|
|
compute_metrics = [ClassificationMetric(ignore_y=-100, average="macro").f1_score]
|
|
optimizer = torch.optim.AdamW(ssp_model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
|
|
|
trainer = Trainer(
|
|
model=ssp_model,
|
|
train_loader=train_loader,
|
|
eval_loader=valid_loader,
|
|
test_loader=test_loader,
|
|
batch_size=batch_size,
|
|
epochs=epochs,
|
|
optimizer=optimizer,
|
|
compute_metrics=compute_metrics,
|
|
seeds=seed,
|
|
)
|
|
|
|
|
|
metrics = trainer.train()
|
|
trainer.save_model("finetuned_te_model")
|
|
print("Training completed!")
|
|
|
|
return metrics
|
|
|
|
|
|
|