Dataset Viewer
Auto-converted to Parquet
Path
stringlengths
17
33
Object_name
stringclasses
100 values
Object_id
int64
1
100
Category
stringclasses
10 values
EV_offset
stringclasses
17 values
EV_idx
int64
-4
17
Lux
int64
10
1k
Shutter_speed
stringclasses
29 values
ISO
int64
100
6.4k
F-Number
float64
4.5
22
Num_objects
int64
2
5
1_cup/10/-5/9_0_2.jpg
1_cup
1
cup
-5
10
10
1/8
100
11
3
1_cup/10/-5/9_1_1.jpg
1_cup
1
cup
-5
10
10
1/8
200
16
3
1_cup/10/-5/9_2_0.jpg
1_cup
1
cup
-5
10
10
1/8
400
22
3
1_cup/10/-5/6_1_4.jpg
1_cup
1
cup
-5
10
10
1/60
200
5.6
3
1_cup/10/-5/3_4_4.jpg
1_cup
1
cup
-5
10
10
1/500
1,600
5.6
3
1_cup/10/-5/3_5_3.jpg
1_cup
1
cup
-5
10
10
1/500
3,200
8
3
1_cup/10/-5/10_0_1.jpg
1_cup
1
cup
-5
10
10
1/4
100
16
3
1_cup/10/-5/7_0_4.jpg
1_cup
1
cup
-5
10
10
1/30
100
5.6
3
1_cup/10/-5/7_3_1.jpg
1_cup
1
cup
-5
10
10
1/30
800
16
3
1_cup/10/-5/7_4_0.jpg
1_cup
1
cup
-5
10
10
1/30
1,600
22
3
1_cup/10/-5/4_5_2.jpg
1_cup
1
cup
-5
10
10
1/250
3,200
11
3
1_cup/10/-5/4_6_1.jpg
1_cup
1
cup
-5
10
10
1/250
6,400
16
3
1_cup/10/-5/8_0_3.jpg
1_cup
1
cup
-5
10
10
1/15
100
8
3
1_cup/10/-5/8_2_1.jpg
1_cup
1
cup
-5
10
10
1/15
400
16
3
1_cup/10/-5/8_3_0.jpg
1_cup
1
cup
-5
10
10
1/15
800
22
3
1_cup/10/-5/5_2_4.jpg
1_cup
1
cup
-5
10
10
1/125
400
5.6
3
1_cup/10/-5/5_6_0.jpg
1_cup
1
cup
-5
10
10
1/125
6,400
22
3
1_cup/10/-5/2_5_4.jpg
1_cup
1
cup
-5
10
10
1/1000
3,200
5.6
3
1_cup/10/-4/9_0_3.jpg
1_cup
1
cup
-4
9
10
1/8
100
8
3
1_cup/10/-4/9_2_1.jpg
1_cup
1
cup
-4
9
10
1/8
400
16
3
1_cup/10/-4/9_3_0.jpg
1_cup
1
cup
-4
9
10
1/8
800
22
3
1_cup/10/-4/6_2_4.jpg
1_cup
1
cup
-4
9
10
1/60
400
5.6
3
1_cup/10/-4/6_4_2.jpg
1_cup
1
cup
-4
9
10
1/60
1,600
11
3
1_cup/10/-4/6_5_1.jpg
1_cup
1
cup
-4
9
10
1/60
3,200
16
3
1_cup/10/-4/6_6_0.jpg
1_cup
1
cup
-4
9
10
1/60
6,400
22
3
1_cup/10/-4/3_5_4.jpg
1_cup
1
cup
-4
9
10
1/500
3,200
5.6
3
1_cup/10/-4/3_6_3.jpg
1_cup
1
cup
-4
9
10
1/500
6,400
8
3
1_cup/10/-4/10_1_1.jpg
1_cup
1
cup
-4
9
10
1/4
200
16
3
1_cup/10/-4/10_2_0.jpg
1_cup
1
cup
-4
9
10
1/4
400
22
3
1_cup/10/-4/4_5_3.jpg
1_cup
1
cup
-4
9
10
1/250
3,200
8
3
1_cup/10/-4/8_0_4.jpg
1_cup
1
cup
-4
9
10
1/15
100
5.6
3
1_cup/10/-4/8_1_3.jpg
1_cup
1
cup
-4
9
10
1/15
200
8
3
1_cup/10/-4/8_3_1.jpg
1_cup
1
cup
-4
9
10
1/15
800
16
3
1_cup/10/-4/5_3_4.jpg
1_cup
1
cup
-4
9
10
1/125
800
5.6
3
1_cup/10/-4/5_5_2.jpg
1_cup
1
cup
-4
9
10
1/125
3,200
11
3
1_cup/10/-4/5_6_1.jpg
1_cup
1
cup
-4
9
10
1/125
6,400
16
3
1_cup/10/-4/12_0_0.jpg
1_cup
1
cup
-4
9
10
1
100
22
3
1_cup/10/-4/11_0_1.jpg
1_cup
1
cup
-4
9
10
0.5
100
16
3
1_cup/10/-4/11_1_0.jpg
1_cup
1
cup
-4
9
10
0.5
200
22
3
1_cup/10/-3/9_0_4.jpg
1_cup
1
cup
-3
8
10
1/8
100
5.6
3
1_cup/10/-3/9_1_3.jpg
1_cup
1
cup
-3
8
10
1/8
200
8
3
1_cup/10/-3/9_3_1.jpg
1_cup
1
cup
-3
8
10
1/8
800
16
3
1_cup/10/-3/6_4_3.jpg
1_cup
1
cup
-3
8
10
1/60
1,600
8
3
1_cup/10/-3/6_5_2.jpg
1_cup
1
cup
-3
8
10
1/60
3,200
11
3
1_cup/10/-3/6_6_1.jpg
1_cup
1
cup
-3
8
10
1/60
6,400
16
3
1_cup/10/-3/3_6_4.jpg
1_cup
1
cup
-3
8
10
1/500
6,400
5.6
3
1_cup/10/-3/10_0_3.jpg
1_cup
1
cup
-3
8
10
1/4
100
8
3
1_cup/10/-3/10_1_2.jpg
1_cup
1
cup
-3
8
10
1/4
200
11
3
1_cup/10/-3/10_2_1.jpg
1_cup
1
cup
-3
8
10
1/4
400
16
3
1_cup/10/-3/10_3_0.jpg
1_cup
1
cup
-3
8
10
1/4
800
22
3
1_cup/10/-3/7_4_2.jpg
1_cup
1
cup
-3
8
10
1/30
1,600
11
3
1_cup/10/-3/7_6_0.jpg
1_cup
1
cup
-3
8
10
1/30
6,400
22
3
1_cup/10/-3/4_5_4.jpg
1_cup
1
cup
-3
8
10
1/250
3,200
5.6
3
1_cup/10/-3/4_6_3.jpg
1_cup
1
cup
-3
8
10
1/250
6,400
8
3
1_cup/10/-3/8_1_4.jpg
1_cup
1
cup
-3
8
10
1/15
200
5.6
3
1_cup/10/-3/8_2_3.jpg
1_cup
1
cup
-3
8
10
1/15
400
8
3
1_cup/10/-3/8_3_2.jpg
1_cup
1
cup
-3
8
10
1/15
800
11
3
1_cup/10/-3/8_5_0.jpg
1_cup
1
cup
-3
8
10
1/15
3,200
22
3
1_cup/10/-3/5_4_4.jpg
1_cup
1
cup
-3
8
10
1/125
1,600
5.6
3
1_cup/10/-3/5_5_3.jpg
1_cup
1
cup
-3
8
10
1/125
3,200
8
3
1_cup/10/-3/13_0_0.jpg
1_cup
1
cup
-3
8
10
2
100
22
3
1_cup/10/-3/12_0_1.jpg
1_cup
1
cup
-3
8
10
1
100
16
3
1_cup/10/-3/12_1_0.jpg
1_cup
1
cup
-3
8
10
1
200
22
3
1_cup/10/-3/11_2_0.jpg
1_cup
1
cup
-3
8
10
0.5
400
22
3
1_cup/10/-2/9_4_1.jpg
1_cup
1
cup
-2
7
10
1/8
1,600
16
3
1_cup/10/-2/6_4_4.jpg
1_cup
1
cup
-2
7
10
1/60
1,600
5.6
3
1_cup/10/-2/6_5_3.jpg
1_cup
1
cup
-2
7
10
1/60
3,200
8
3
1_cup/10/-2/6_6_2.jpg
1_cup
1
cup
-2
7
10
1/60
6,400
11
3
1_cup/10/-2/10_0_4.jpg
1_cup
1
cup
-2
7
10
1/4
100
5.6
3
1_cup/10/-2/10_4_0.jpg
1_cup
1
cup
-2
7
10
1/4
1,600
22
3
1_cup/10/-2/7_5_2.jpg
1_cup
1
cup
-2
7
10
1/30
3,200
11
3
1_cup/10/-2/7_6_1.jpg
1_cup
1
cup
-2
7
10
1/30
6,400
16
3
1_cup/10/-2/4_6_4.jpg
1_cup
1
cup
-2
7
10
1/250
6,400
5.6
3
1_cup/10/-2/8_2_4.jpg
1_cup
1
cup
-2
7
10
1/15
400
5.6
3
1_cup/10/-2/8_6_0.jpg
1_cup
1
cup
-2
7
10
1/15
6,400
22
3
1_cup/10/-2/14_0_0.jpg
1_cup
1
cup
-2
7
10
4
100
22
3
1_cup/10/-2/12_0_2.jpg
1_cup
1
cup
-2
7
10
1
100
11
3
1_cup/10/-2/12_2_0.jpg
1_cup
1
cup
-2
7
10
1
400
22
3
1_cup/10/-2/11_0_3.jpg
1_cup
1
cup
-2
7
10
0.5
100
8
3
1_cup/10/-2/11_1_2.jpg
1_cup
1
cup
-2
7
10
0.5
200
11
3
1_cup/10/-2/11_2_1.jpg
1_cup
1
cup
-2
7
10
0.5
400
16
3
1_cup/10/-1/9_2_4.jpg
1_cup
1
cup
-1
6
10
1/8
400
5.6
3
1_cup/10/-1/9_3_3.jpg
1_cup
1
cup
-1
6
10
1/8
800
8
3
1_cup/10/-1/9_4_2.jpg
1_cup
1
cup
-1
6
10
1/8
1,600
11
3
1_cup/10/-1/9_5_1.jpg
1_cup
1
cup
-1
6
10
1/8
3,200
16
3
1_cup/10/-1/9_6_0.jpg
1_cup
1
cup
-1
6
10
1/8
6,400
22
3
1_cup/10/-1/7_5_3.jpg
1_cup
1
cup
-1
6
10
1/30
3,200
8
3
1_cup/10/-1/8_4_3.jpg
1_cup
1
cup
-1
6
10
1/15
1,600
8
3
1_cup/10/-1/8_5_2.jpg
1_cup
1
cup
-1
6
10
1/15
3,200
11
3
1_cup/10/-1/8_6_1.jpg
1_cup
1
cup
-1
6
10
1/15
6,400
16
3
1_cup/10/-1/5_6_4.jpg
1_cup
1
cup
-1
6
10
1/125
6,400
5.6
3
1_cup/10/-1/12_2_1.jpg
1_cup
1
cup
-1
6
10
1
400
16
3
1_cup/10/-1/11_4_0.jpg
1_cup
1
cup
-1
6
10
0.5
1,600
22
3
1_cup/10/0/9_4_3.jpg
1_cup
1
cup
0
5
10
1/8
1,600
8
3
1_cup/10/0/9_5_2.jpg
1_cup
1
cup
0
5
10
1/8
3,200
11
3
1_cup/10/0/10_2_4.jpg
1_cup
1
cup
0
5
10
1/4
400
5.6
3
1_cup/10/0/10_3_3.jpg
1_cup
1
cup
0
5
10
1/4
800
8
3
1_cup/10/0/10_4_2.jpg
1_cup
1
cup
0
5
10
1/4
1,600
11
3
1_cup/10/0/10_5_1.jpg
1_cup
1
cup
0
5
10
1/4
3,200
16
3
1_cup/10/0/10_6_0.jpg
1_cup
1
cup
0
5
10
1/4
6,400
22
3
End of preview. Expand in Data Studio

SNAP Benchmark

Code and annotations: [https://github.com/ykotseruba/SNAP]

SNAP (stands for Shutter speed, ISO seNsitivity, and APerture) is a new benchmark consisting of images of objects taken under controlled lighting conditions and with densely sampled camera settings.

This benchmark allows testing the effects of capture bias, which includes camera settings and illumination, on performance of vision algorithms.

SNAP contains 37,558 images of 100 scenes (10 scenes per 10 object categories) uniformly distributed across sensor settings and annotations for the following tasks:

  • image classification;
  • object detection;
  • instance segmentation;
  • visual question answering (VQA).
  • Curated by: Iuliia Kotseruba
  • Shared by: Iuliia Kotseruba
  • Language(s) (NLP): English
  • License: CC-by-4.0
Downloads last month
43